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Dyck paths

● A Dyck path of size n=8 (size=number of up steps)
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Dyck paths

● A Dyck path of size n=8 (size=number of up steps)

valleys (EN)

Base path: 
staircase (NE)n

● Also: arbitrary NE paths/walks

valleys
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Paths, walks and maps: natural connections
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Paths, walks and maps: natural connections
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Planar maps

Def. A connected planar (multi)graph, given with an embedding in 
the plane, taken up to continuous deformation.

Components:
- vertices
- edges
- faces
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Planar maps

Def. A connected planar (multi)graph, given with an embedding in 
the plane, taken up to continuous deformation.

Components:
- vertices
- edges
- faces

Rooted map: a distinguished corner in the outer face

Triangulation: all faces have  degree  3 
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Outline

➔ Stanley lattices

➔ Tamari lattices

➔ Recursive constructions and functional equations

➔ Greedy Tamari posets

➔ Final comments



I. Stanley’s lattice

© Knuth, The Art of Computer Programming, vol. 4 
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Stanley’s lattice Sn

A poset on Dyck paths of size n
Def. The path u is smaller than v if u lies below v 
(or: u is contained in v).

n=3
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Stanley’s lattice Sn

A poset on Dyck paths of size n
Def. The path u is smaller than v if u lies below v 
(or: u is contained in v).

● Covering relations are given by 
EN → NE (that is, valley → peak)

● A sub-lattice of the Young lattice

● Graded (by area)
n=3
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Stanley’s lattice: interesting numbers

Number of: 
- elements

- covering relations

n=3
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Stanley’s lattice: interesting numbers

Number of: 
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Stanley’s lattice: interesting numbers

Number of: 
- elements

- covering relations

- intervals: pairs of comparable Dyck paths

- p-chains
n=3

p=3
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p-Chains in Stanley’s lattice

Tools
● Lindström-Gessel-Viennot determinants
● [Krattenthaler 99] “Advanced determinant calculus” 

non-intersecting paths
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Stanley’s lattice: interesting numbers

Number of 
- intervals: pairs of comparable Dyck paths

- p-chains: product formula
Connection with plane partitions, and symplectic tableaux
[Proctor 86, 88]  [Krattenthaler, Guttmann, Viennot 00]  
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Intervals in Stanley’s lattice and planar maps

OEIS A005700

● Quadrant loops with steps E, W, NW, SE

● (Some) Young tableaux of height at most 4 

[Gouyou-Beauchamps 89]
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Intervals in Stanley’s lattice and planar maps

OEIS A005700

● Quadrant loops with steps E, W, NW, SE

● (Some) Young tableaux of height at most 4 

[Gouyou-Beauchamps 89]

●  Some maps:  triangulations with a Schnyder wood 

[Bonichon 05, Bernardi-Bonichon 09]
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Triangulations with a Schnyder wood

Def. A rooted triangulation where the inner edges are oriented 
and coloured following some rules [Schnyder 89, graph drawing]

Bijection with pairs of non-intersecting Dyck paths of size n
[Bonichon 05] 

n vertices
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14 intervals for Dyck paths of size 3

(1) (1)

(6)

(3)(3)

(5)

(3) (3)

(2)

(1)

n=3
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The v-Stanley lattice Sv

Def. For  any  base path v,  consider all NE paths above v.  
Order them by containment: lattice Sv 

Base path v
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The v-Stanley lattice Sv

Def. For  any  base path v,  consider all NE paths above v.  
Order them by containment: lattice Sv 

Interesting choices: 

  v=EiNj : all paths ending at (i,j)
  v=(NEm)n : m-Dyck paths

Base path v
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The v-Stanley lattice Sv

Def. For  any  base path v,  consider all NE paths above v.  
Order them by containment: lattice Sv 

Interesting choices: 

  v=EiNj : all paths ending at (i,j)
  v=(NEm)n : m-Dyck paths

Base path v
m=2

A 2-Dyck path:



28

Number of elements in the lattice Sv (all walks above v):
● arbitrary v: determinant [Kreweras 65]

● v=EiNj : all paths ending at (i,j)

● v=(NEm)n
 : m-Dyck paths

The v-Stanley lattices: number of elements
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The v-Stanley lattices: number of intervals

For v=(NEm)n
 : 

   Q. Are there m-Schnyder woods for m>1 ?
   Q. Product formula for p-chains ?
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The v-Stanley lattices: number of intervals

For v=(NEm)n
 : 

   Q. Are there m-Schnyder woods for m>1 ?
   Q. Product formula for p-chains ?

YES !  (added after the talk)
See Ex. 7.101(b) in Stanley’s EC2

Thanks to Richard and Sam 
(Hopkins)
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The v-Stanley lattices: number of intervals

Summing over some v:  triples of non-intersecting paths 

i

j
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The v-Stanley lattices: number of intervals

Summing over some v:  triples of non-intersecting paths 

● Baxter permutations with i+1 ascents and j+1 descents
 [Chung et al. 78, Mallows 79]

i

j
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The v-Stanley lattices: number of intervals

Summing over some v:  triples of non-intersecting paths 

● Baxter permutations with i+1 ascents and j+1 descents
 [Chung et al. 78, Mallows 79]

●  Maps  carrying a bipolar orientation
[Baxter 01 -- Bonichon, mbm, Felsner, 
Fusy, Noy, Orden, Poulalhon…]

i

j



II. Tamari lattice(s)

Tamari(v) ⊂ Stanley(v)
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● A poset on Dyck paths with n up steps
● Covering relations: choose a valley in the path u. 

Swap the East step and the  shortest Dyck path  that follows
                                                                                    

The Tamari lattice                                     [Tamari 51]

⋖valley

u v
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● A poset on Dyck paths with n up steps
● Covering relations: choose a valley in the path u. 

Swap the East step and the  shortest Dyck path  that follows
                                                                                    

The Tamari lattice                                     [Tamari 51]

⋖valley

u v

n=3
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● A poset on Dyck paths with n up steps
● Covering relations: choose a valley in the path u. 

Swap the East step and the  shortest Dyck path  that follows
                                                                                    

The Tamari lattice                                     [Tamari 51]

⋖valley

u v

notgraded

n=3
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● A poset on Dyck paths with n up steps
● Covering relations: choose a valley in the path u. 

Swap the East step and the  shortest Dyck path  that follows
                                                                                    

The Tamari lattice                                     [Tamari 51]

notgraded

n=3Stanley
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Extension: the v-Tamari lattice

Next point at horizontal 
distance d=2 of the 

forbidden area

⋖
valley

d

d

[Préville-Ratelle & Viennot 17] 
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Extension: the v-Tamari lattice

Next point at horizontal 
distance d=4 of the 

forbidden area

⋖
valley

d

d

[Préville-Ratelle & Viennot 17] 

[Ceballos, Padrol, Sarmiento 20]
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The v-Tamari lattice: an example

v-Stanley lattice v-Tamari lattice
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A very special case: v-Tamari with v = EiNj 

⋖
valley

Next point at horizontal 
distance d=6 of the 

forbidden area

d

d

The covering relations are EN → NE: 
one recovers the Stanley lattice Sv
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An interesting case: v-Tamari, with v ==(NEm)n
 

m=2

Conjectured relation with 
coinvariant polynomials in 3 sets 
of variables

[Bergeron & Prévil le-Ratelle 12]
[Haiman 94]

Also called m-Tamari lattice 
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Intervals in the m-Tamari lattices

[Chapoton 06 (m=1) -- MBM, Fusy & Prévil le-Ratelle 11]

For v=(NEm)n, the number of intervals in the v-Tamari lattice is:
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Intervals in the m-Tamari lattices

[Chapoton 06 (m=1) -- MBM, Fusy & Prévil le-Ratelle 11]

For v=(NEm)n, the number of intervals in the v-Tamari lattice is:
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In the planar maps literature...

all maps

non-separable

bipartite

cubic

3-connected
triangulations

m-constellations
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In the planar maps literature...

all maps

non-separable

bipartite

cubic

3-connected
triangulations

m-constellations
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Stanley intervals Tamari intervals

Triangulations
with a Schnyder 

wood
Triangulations with their 

canonical Schnyder wood

Bijective proof (m=1)  
[Bernardi & Bonichon 07]

Intervals in the m-Tamari lattices
[Chapoton 06 (m=1) -- MBM, Fusy & Prévil le-Ratelle 11]

For v=(NEm)n, the number of intervals in the v-Tamari lattice is:

bijection

specialization
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Bijective proof (m=1)  
[Bernardi & Bonichon 07]

Intervals in the m-Tamari lattices
[Chapoton 06 (m=1) -- MBM, Fusy & Prévil le-Ratelle 11]

For v=(NEm)n, the number of intervals in the v-Tamari lattice is:

For m>1, which type of maps do these numbers count?

+ another bijection  [Fang 18]

[Fusy & Humbert 19]
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Intervals in the v-Tamari lattices
Summing over some v            [Fang & Prévil le-Ratelle 17, Fang 17(a)]
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Intervals in the v-Tamari lattices
Summing over some v            [Fang & Prévil le-Ratelle 17, Fang 17(a)]

This is also the number of  synchronized intervals  in the ordinary 
Tamari lattice Tn+1                                  [Prévil le-Ratelle &Viennot 17]
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Intervals in the v-Tamari lattices
Summing over some v            [Fang & Prévil le-Ratelle 17, Fang 17(a)]

This is also the number of  synchronized intervals  in the ordinary 
Tamari lattice Tn+1                                  [Prévil le-Ratelle &Viennot 17]
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Summing over some v            [Fang & Prévil le-Ratelle 17, Fang 17(a)]

Intervals in the v-Tamari lattices
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Summing over some v            [Fang & Prévil le-Ratelle 17, Fang 17(a)]

Intervals in the v-Tamari lattices

More precisely,

Bijection with non-separable planar maps (no cut-point) with (i+2) 
vertices and (j+2) faces.

+ Another bijective proof [Fusy & Humbert 19]



III. Recursive proofs 
and discrete 

differential equations
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Recursive description of Tamari intervals

Consider the original Tamari lattice  (i.e.,  v=(NE)n)

interval with 
a marked contact 
in the bottom path

*

Tamari interval

arbitrary
Tamari interval

 bijection 
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A discrete differential equation

Consider the original Tamari lattice  (i.e.,  v=(NE)n)

*

Then                                                                      satisfies:

with Discretederivative

 bijection 
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A discrete differential equation (m-Tamari)

Consider the  m-Tamari lattice  (i.e.,  v=(NEm)n)⇒  Similar decomposition of intervals

The series                                                                       satisfies

with

The operator  F(x)Δ  is applied m times.

[mbm, Fusy, Préville-Ratelle 11]
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A discrete differential equation (m-Tamari)

Consider the  m-Tamari lattice  (i.e.,  v=(NEm)n)⇒  Similar decomposition of intervals

The series                                                                       satisfies

with

The operator  F(x)Δ  is applied m times.

[mbm, Fusy, Préville-Ratelle 11]

Example: m=2
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Discrete differential equations
Thm. The solution of any discrete differential equation is algebraic 
[mbm & Jehanne 06]

This holds for 

But we had to  guess & check  the value of F(x).

In particular,
[mbm, Fusy, Préville-Ratelle 11]



IV. Greedy Tamari posets

Greedy(v) ⊂ Tamari(v) ⊂ Stanley(v)
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Be greedy when swapping!

First point at horizontal 
distance d=2 of the 

forbidden area
followed by E (or final)

⋖
valley d

d

[Dermenjian 23] 
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Be greedy when swapping!

⋖
valley d

d

[Dermenjian 23] 
First point at horizontal 

distance d=2 of the 
forbidden area

followed by E (or final)
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Tamari vs. greedy Tamari: Dyck paths

Tamari T3 Greedy Tamari G3
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Tamari vs. greedy Tamari

Greedy Tamari GvTamari Tv



66

The number of greedy m-Tamari intervals

[MBM & Chapoton 23(a)]

For v=(NEm)n, the number of intervals in the greedy Tamari order is:
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The number of greedy m-Tamari intervals

[MBM & Chapoton 23(a)]

For v=(NEm)n, the number of intervals in the greedy Tamari order is:

Proof: a recursive construction of intervals, involving a new 
“catalytic” parameter: the final descent of the upper path.

Discrete differential equation: 
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The number of greedy m-Tamari intervals

[MBM & Chapoton 23(a)]

For v=(NEm)n, the number of intervals in the greedy Tamari order is:

Proof: a recursive construction of intervals, involving a new 
“catalytic” parameter: the final descent of the upper path.

Discrete differential equation: 

Bijective proof? We know what these numbers count!
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[MBM & Schaeffer 00]
The number of planar (m+1)-constellations with n black faces is:

Planar constellations

Constellation: a rooted planar map with bicolored faces
- black faces of degree (m+1)
- white faces of degree k(m+1), for some k>0.

Bijection with 
greedy intervals?

m+1=3

[Lando & Zvonkine 04]



V. Final remarks



71

Refined enumeration of intervals
Conjecture: a bijection between
➔ greedy m-Tamari intervals [v,w] where w has ni ascents of size i 

for each i,
➔ (m+1)-constellations with ni white faces of degree i(m+1).

The size of the first ascent matches the degree of the root face.
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Refined enumeration of intervals
Conjecture: a bijection between
➔ greedy m-Tamari intervals [v,w] where w has ni ascents of size i 

for each i,
➔ (m+1)-constellations with ni white faces of degree i(m+1).

The size of the first ascent matches the degree of the root face.

where

Equation for m-constellations [Fang 16]:

and pi counts non-root faces of degree i(m+1).



73

Refined enumeration of intervals
Conjecture: a bijection between
➔ greedy m-Tamari intervals [v,w] where w has ni ascents of size i 

for each i,
➔ (m+1)-constellations with ni white faces of degree i(m+1).

The size of the first ascent matches the degree of the root face.

where

Equation for m-constellations [Fang 16]:

and pi counts non-root faces of degree i(m+1).

cf. Enumeration of m-Tamari intervals [v,w] by ascent lengths of w
[mbm, Chapuy & Prévil le-Ratelle 13]
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q-Analogues

Count intervals [w1, w2] and record the length of the longest chain 
from w1 to w2.

➔ Stanley lattices Sv : some known results  (e.g.,  v = Ei Nj) 



75

q-Analogues

Count intervals [w1, w2] and record the length of the longest chain 
from w1 to w2.

➔ Stanley lattices Sv : some known results  (e.g.,  v = Ei Nj) 

➔ m-Tamari lattices: solve

with



76

q-Analogues

Count intervals [w1, w2] and record the length of the longest chain 
from w1 to w2.

➔ Stanley lattices Sv : some known results  (e.g.,  v = Ei Nj) 

➔ m-Tamari lattices: solve

with

Diagonal harmonics



77

q-Analogues

Count intervals [w1, w2] and record the length of the longest chain 
from w1 to w2.

➔ Stanley lattices Sv : some known results  (e.g.,  v = Ei Nj) 

➔ m-Tamari lattices: solve

with

➔ Greedy m-Tamari posets: solve  

Diagonal harmonics
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More questions

➔ Summing over v the number of intervals in the greedy posets Gv:

  Algebraicity?  D-finiteness? Asymptotics?
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More questions

➔ Summing over v the number of intervals in the greedy posets Gv:

  Algebraicity?  D-finiteness? Asymptotics?

➔ Number of p-chains in Tamari lattices, p>2? 
   Algebraicity?  D-finiteness? Asymptotics?

➔ Are there v-Kreweras lattices?  [Bernardi-Bonichon 09]

➔ Are higher genus maps hiding somewhere?

➔ Asymptotic properties of random intervals? [Chapuy 23]

➔ Intervals in Cambrian lattices? [Reading 06, Stump et al. 15]
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Thanks for your 
attention
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Des tamaris gloutons ?

Des tamaris
Tamarinier, feuil les et fruits 
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Des tamaris gloutons ?

Des tamaris
Tamarinier, feuil les et fruits 

Un tamarin empereur Un glouton

Dov Tamari (1911-2006)


