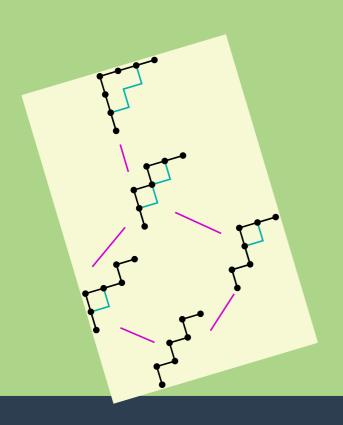
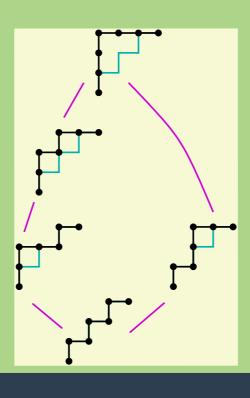
Posets on Dyck paths and their intervals



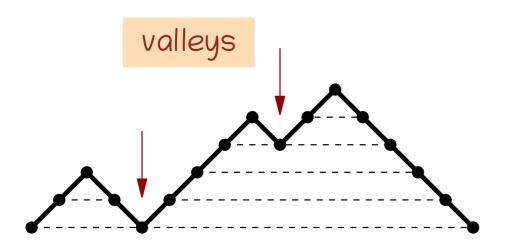


Dov Tamari

Mireille Bousquet-Mélou CNRS, Université de Bordeaux, France

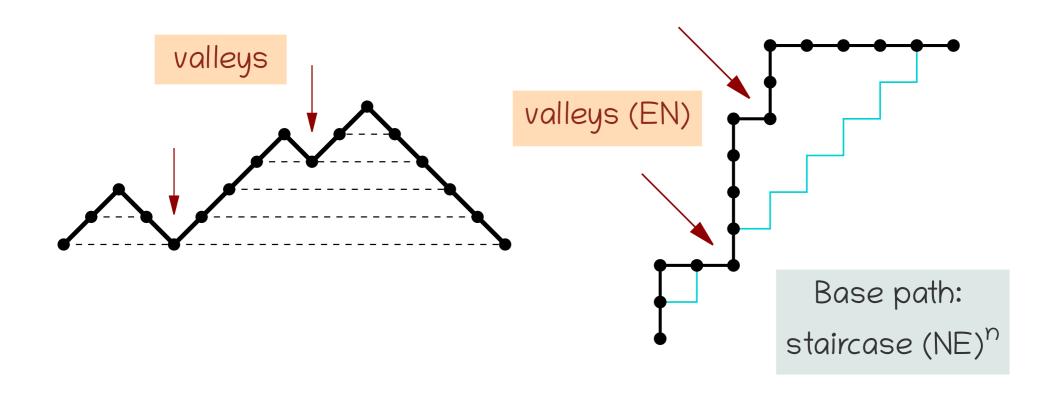
Dyck paths

• A Dyck path of size n=8 (size=number of up steps)



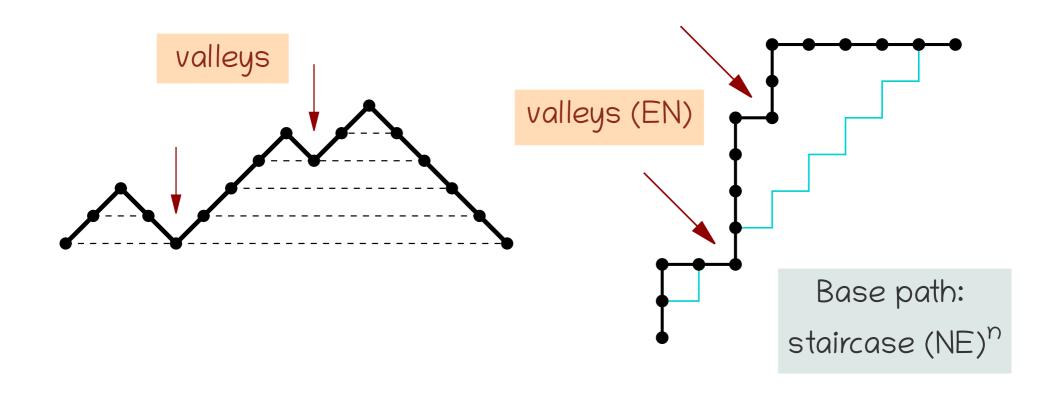
Dyck paths

• A Dyck path of size n=8 (size=number of up steps)

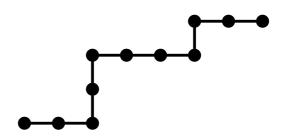


Dyck paths

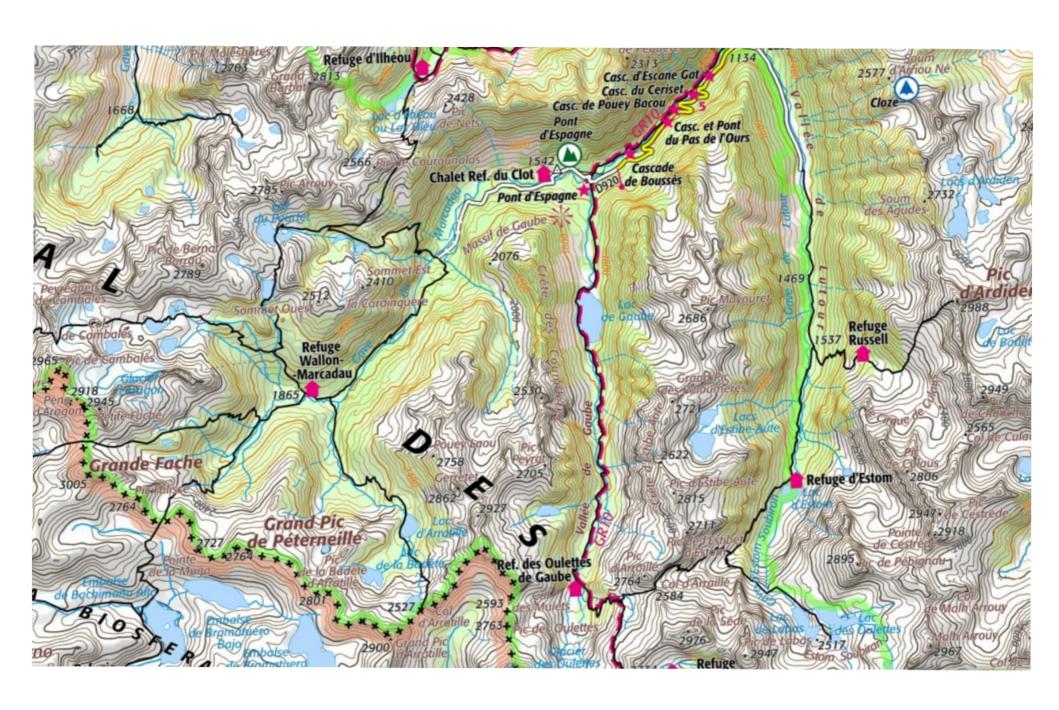
• A Dyck path of size n=8 (size=number of up steps)



• Also: arbitrary NE paths/walks



Paths, walks and maps: natural connections

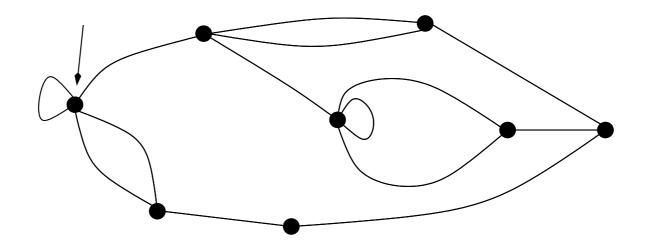


Planar maps

Def. A connected planar (multi)graph, given with an embedding in the plane, taken up to continuous deformation.

Components:

- vertices
- edges
- faces

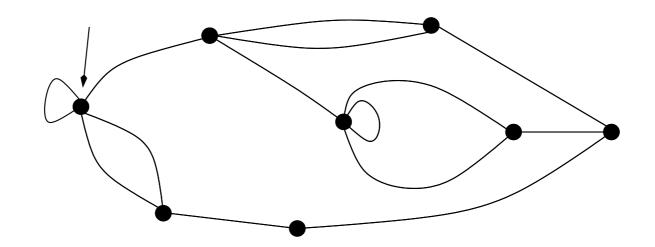


Planar maps

Def. A connected planar (multi)graph, given with an embedding in the plane, taken up to continuous deformation.

Components:

- vertices
- edges
- faces



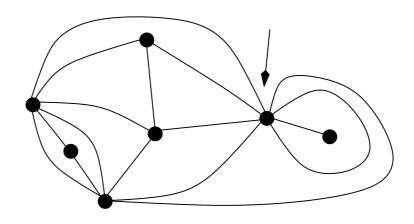
Rooted map: a distinguished corner in the outer face

Planar maps

Def. A connected planar (multi)graph, given with an embedding in the plane, taken up to continuous deformation.

Components:

- vertices
- edges
- faces



Rooted map: a distinguished corner in the outer face

Triangulation: all faces have degree 3

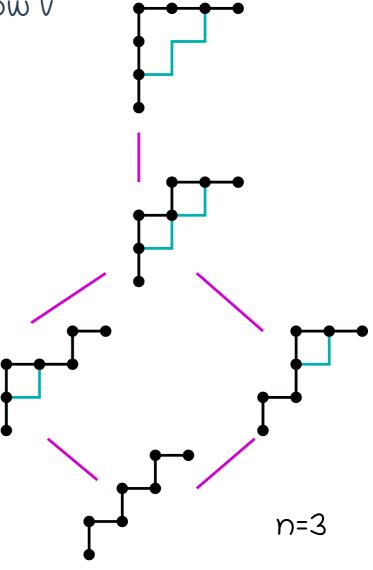
Outline

- → Stanley lattices
- → Tamari lattices
- → Recursive constructions and functional equations
- → Greedy Tamari posets
- → Final comments

I. Stanley's lattice

A poset on Dyck paths of size n

Def. The path u is smaller than v if u lies below v (or: u is contained in v).

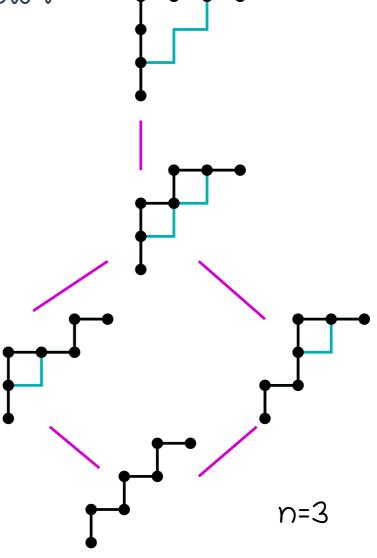


A poset on Dyck paths of size n

Def. The path u is smaller than v if u lies below v (or: u is contained in v).

Covering relations are given by

 $EN \rightarrow NE$ (that is, valley \rightarrow peak)



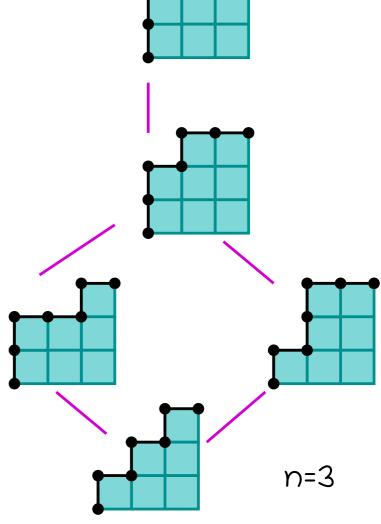
A poset on Dyck paths of size n

Def. The path u is smaller than v if u lies below v (or: u is contained in v).

Covering relations are given by

 $EN \rightarrow NE$ (that is, valley \rightarrow peak)

A sub-lattice of the Young lattice



A poset on Dyck paths of size n

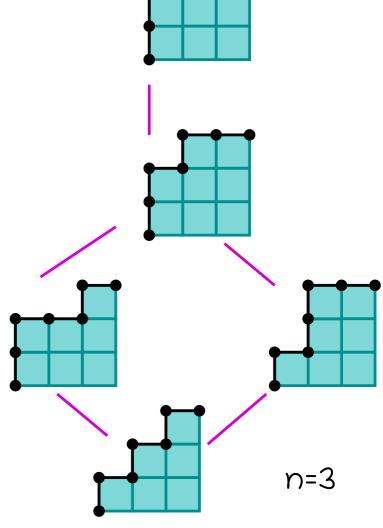
Def. The path u is smaller than v if u lies below v (or: u is contained in v).

Covering relations are given by

 $EN \rightarrow NE$ (that is, valley \rightarrow peak)

A sub-lattice of the Young lattice

Graded (by area)



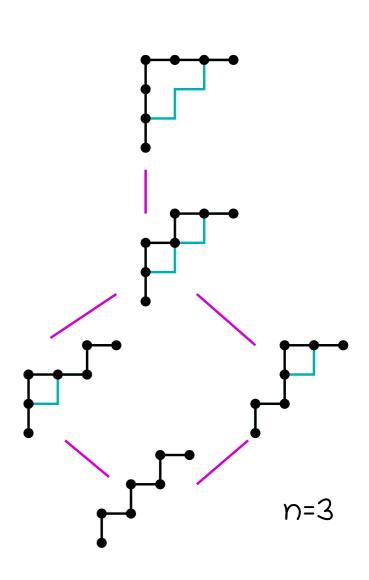
Number of:

- elements

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

- covering relations

$$\binom{2n-1}{n-2}$$



Number of:

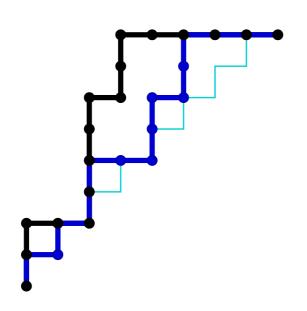
- elements

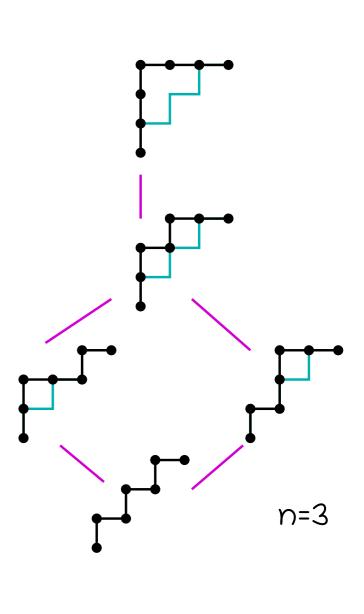
$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

- covering relations

$$\binom{2n-1}{n-2}$$

- intervals: pairs of comparable Dyck paths





Number of:

- elements

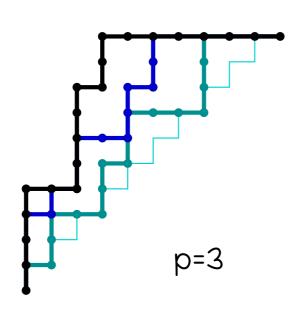
$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

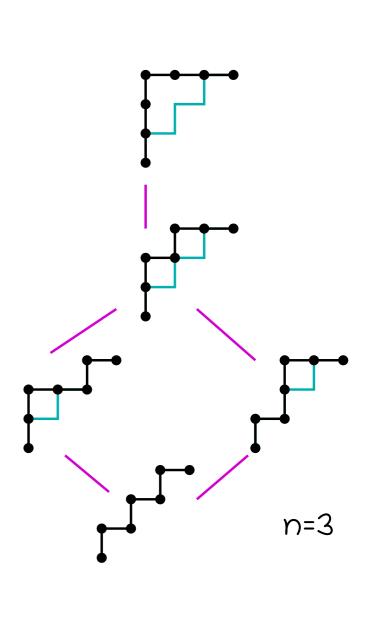
- covering relations

$$\binom{2n-1}{n-2}$$

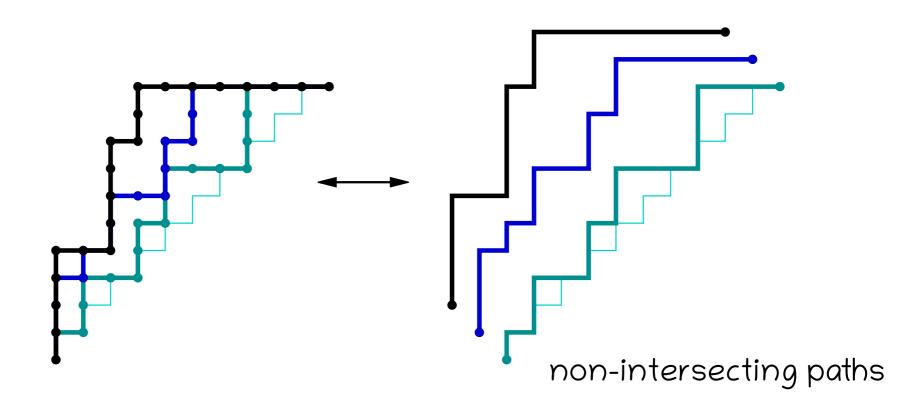
- intervals: pairs of comparable Dyck paths

- p-chains





p-Chains in Stanley's lattice



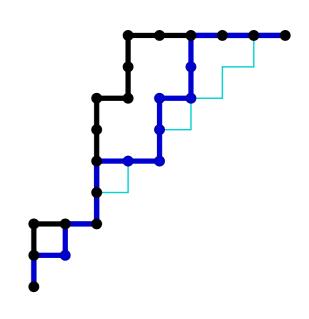
Tools

- Lindström-Gessel-Viennot determinants
- [Krattenthaler 99] "Advanced determinant calculus"

Number of

- intervals: pairs of comparable Dyck paths

$$C_{n-1}C_{n+1} - C_n^2 = \frac{6(2n)!(2n+2)!}{n!(n+1)!(n+2)!(n+3)!}$$



- p-chains: product formula $\sim \kappa 4^{pn} n^{-p^2-p/2}$

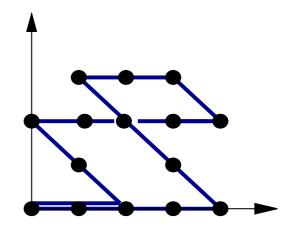
Connection with plane partitions, and symplectic tableaux

[Proctor 86, 88] [Krattenthaler, Guttmann, Viennot 00]

Intervals in Stanley's lattice and planar maps

$$C_{n-1}C_{n+1} - C_n^2 = \frac{6(2n)!(2n+2)!}{n!(n+1)!(n+2)!(n+3)!} \sim \frac{24 \cdot 4^{2n}}{\pi n^5}$$

OEIS A005700



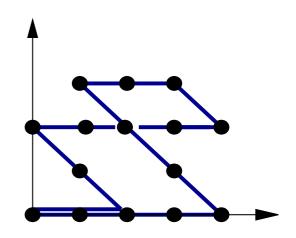
- Quadrant loops with steps E, W, NW, SE
- (Some) Young tableaux of height at most 4

[Gouyou-Beauchamps 89]

Intervals in Stanley's lattice and planar maps

$$C_{n-1}C_{n+1} - C_n^2 = \frac{6(2n)!(2n+2)!}{n!(n+1)!(n+2)!(n+3)!} \sim \frac{24 \cdot 4^{2n}}{\pi n^5}$$

OEIS A005700

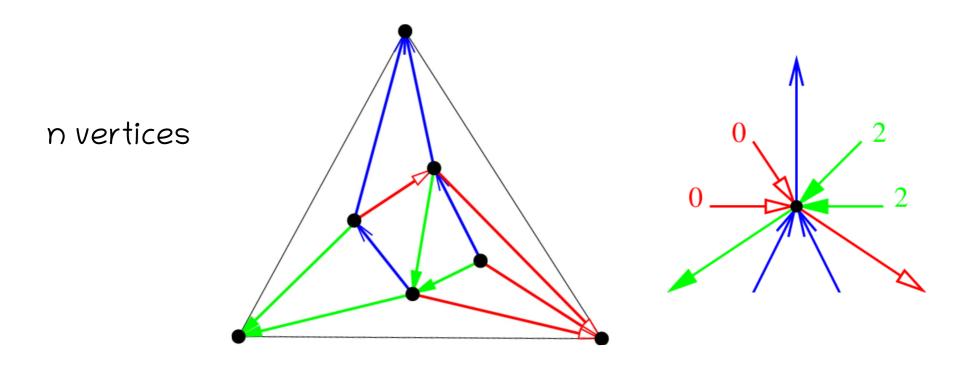


- Quadrant loops with steps E, W, NW, SE
- (Some) Young tableaux of height at most 4 [Gouyou-Beauchamps 89]
- Some maps: triangulations with a Schnyder wood

[Bonichon 05, Bernardi-Bonichon 09]

Triangulations with a Schnyder wood

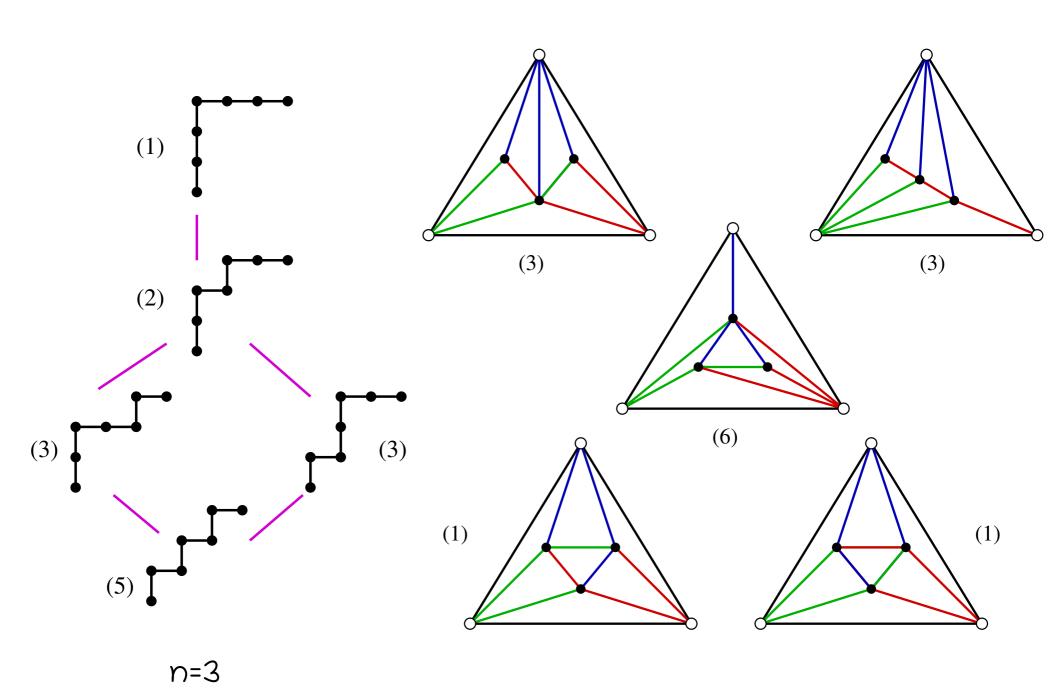
Def. A rooted triangulation where the inner edges are oriented and coloured following some rules [Schnyder 89, graph drawing]



Bijection with pairs of non-intersecting Dyck paths of size n [Bonichon 05]

$$C_{n-1}C_{n+1} - C_n^2 = \frac{6(2n)!(2n+2)!}{n!(n+1)!(n+2)!(n+3)!}$$

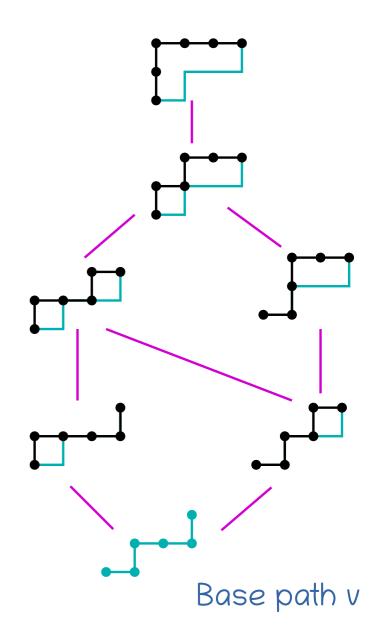
14 intervals for Dyck paths of size 3



The v-Stanley lattice S_v

Def. For any base path v, consider all NE paths above v.

Order them by containment: lattice Sv



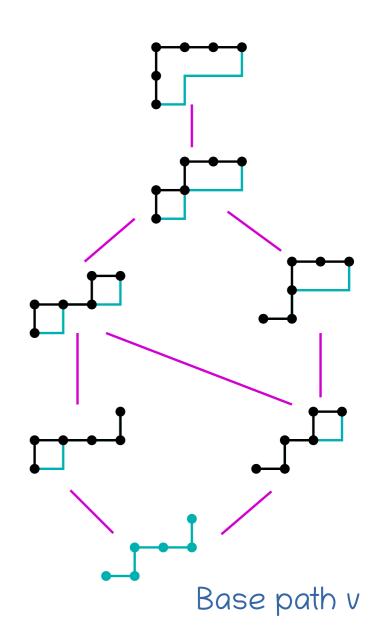
The v-Stanley lattice S_v

Def. For any base path v, consider all NE paths above v.

Order them by containment: lattice Sv

Interesting choices:

- v=EⁱN^j: all paths ending at (i,j)
- $v=(NE^m)^n$: m-Dyck paths



The v-Stanley lattice S_v

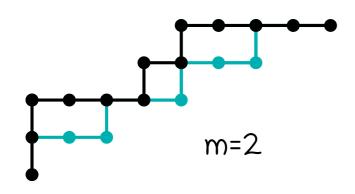
Def. For any base path v, consider all NE paths above v.

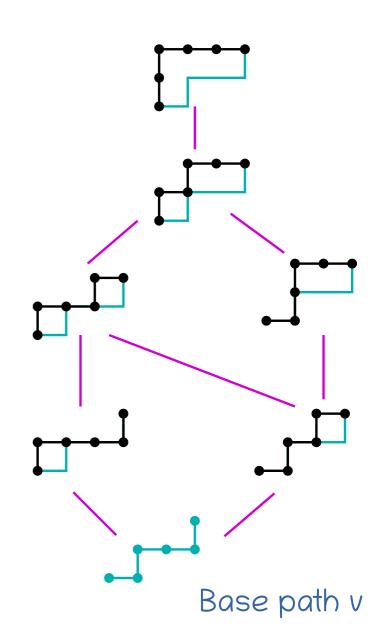
Order them by containment: lattice Sv

Interesting choices:

- v=EⁱN^j: all paths ending at (i,j)
- $v=(NE^m)^n$: m-Dyck paths

A 2-Dyck path:





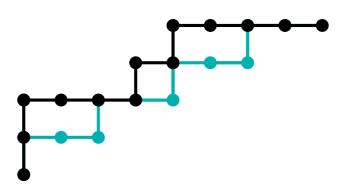
The v-Stanley lattices: number of elements

Number of elements in the lattice S_v (all walks above v):

• arbitrary v: determinant [Kreweras 65]

•
$$v=E^iN^j$$
: all paths ending at (i,j) $\binom{i+j}{i}$

• v=(NE^m)ⁿ: m-Dyck paths
$$\frac{1}{mn+1}\binom{(m+1)n}{n}$$



For $v=(NE^m)^n$:

$$Int(S_{\nu}) = \frac{2(m+2)((m+1)n)!((m+1)(n+1))!}{n!(n+1)!(mn+2)!(m(n+2)+2)!}$$

- Q. Are there m-Schnyder woods for m>1?
- Q. Product formula for p-chains?

For $v=(NE^m)^n$:

$$Int(S_{\nu}) = \frac{2(m+2)((m+1)n)!((m+1)(n+1))!}{n!(n+1)!(mn+2)!(m(n+2)+2)!}$$

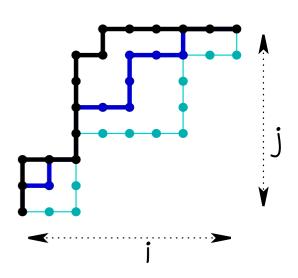
- \mathbb{Q} . Are there m-Schnyder woods for m>1?
- Q. Product formula for p-chains?

YES! (added after the talk) See Ex. 7.101(b) in Stanley's EC2

Thanks to Richard and Sam (Hopkins)

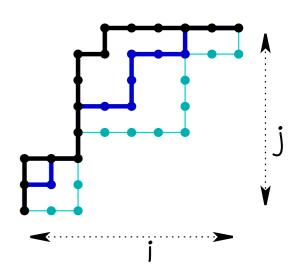
Summing over some v: triples of non-intersecting paths

$$\sum_{v \leadsto (i,j)} \operatorname{Int}(S_v) = 2 \frac{(i+j)!(i+j+1)!(i+j+2)!}{i!(i+1)!(i+2)!j!(j+1)!(j+2)!}$$



Summing over some v: triples of non-intersecting paths

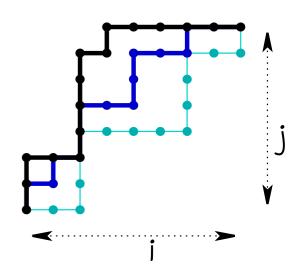
$$\sum_{v \leadsto (i,j)} \operatorname{Int}(S_v) = 2 \frac{(i+j)!(i+j+1)!(i+j+2)!}{i!(i+1)!(i+2)!j!(j+1)!(j+2)!}$$



• Baxter permutations with i+1 ascents and j+1 descents [Chung et al. 78, Mallows 79]

Summing over some v: triples of non-intersecting paths

$$\sum_{v \leadsto (i,j)} Int(S_v) = 2 \frac{(i+j)!(i+j+1)!(i+j+2)!}{i!(i+1)!(i+2)!j!(j+1)!(j+2)!}$$



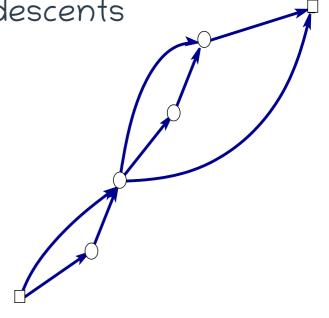
Baxter permutations with i+1 ascents and j+1 descents

[Chung et al. 78, Mallows 79]

Maps carrying a bipolar orientation

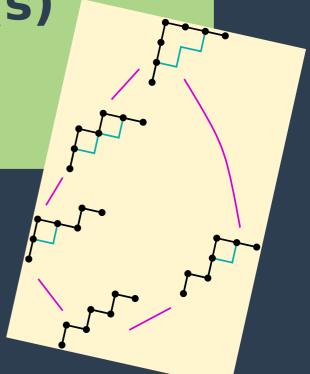
[Baxter 01 -- Bonichon, mbm, Felsner,

Fusy, Noy, Orden, Poulalhon...]

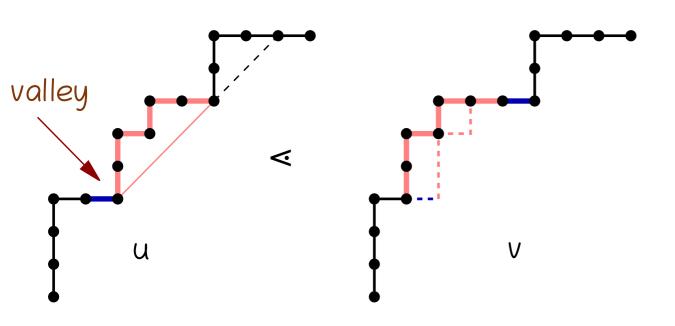


II. Tamari lattice(s)

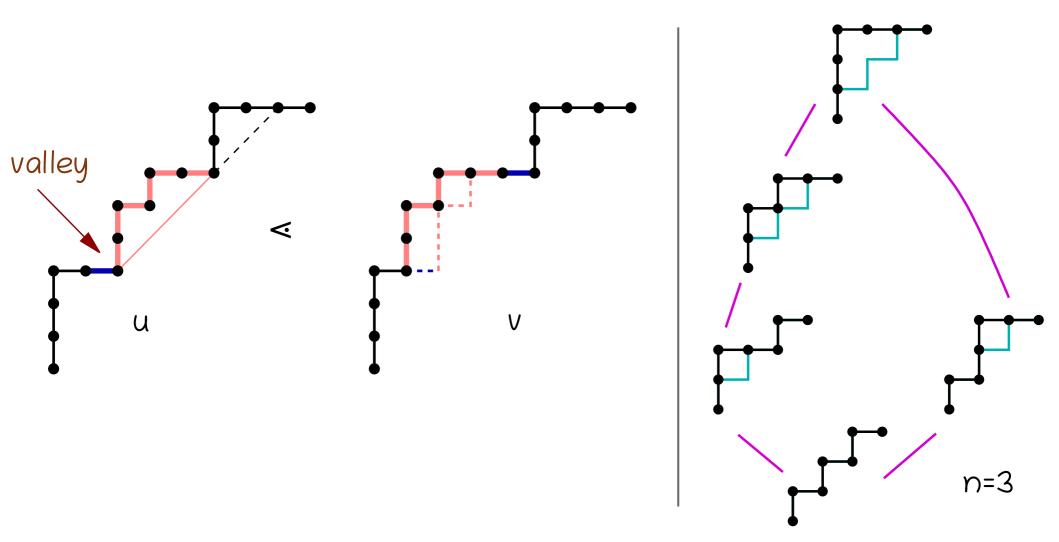
 $Tamari(v) \subset Stanley(v)$



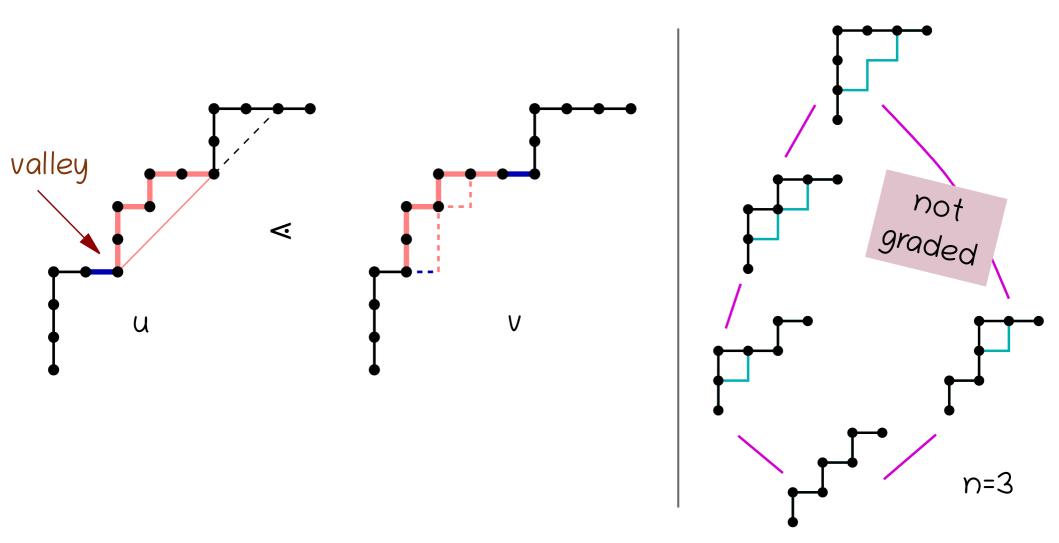
- A poset on Dyck paths with n up steps
- Covering relations: choose a valley in the path u. Swap the East step and the shortest Dyck path that follows



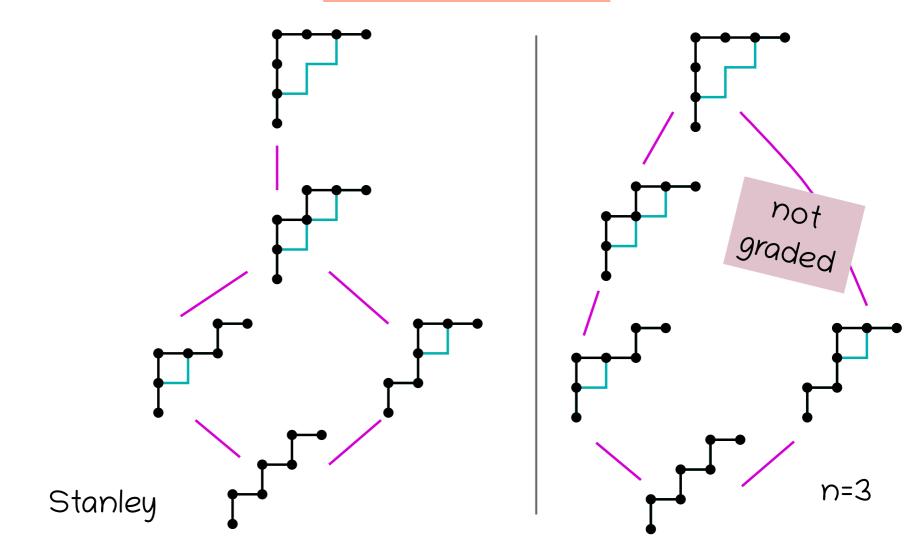
- A poset on Dyck paths with n up steps
- Covering relations: choose a valley in the path u. Swap the East step and the shortest Dyck path that follows



- A poset on Dyck paths with n up steps
- Covering relations: choose a valley in the path u. Swap the East step and the shortest Dyck path that follows



- A poset on Dyck paths with n up steps
- Covering relations: choose a valley in the path u.
 Swap the East step and the shortest Dyck path that follows

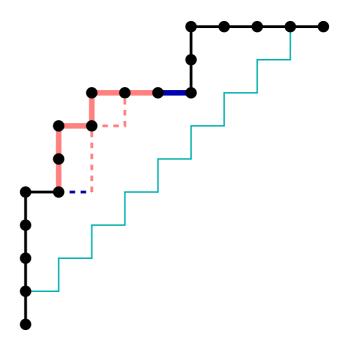


Extension: the v-Tamari lattice

Next point at horizontal distance d=2 of the forbidden area

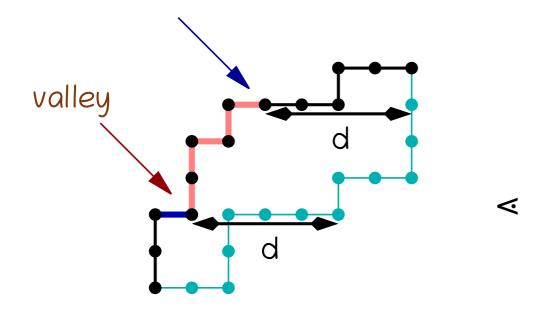
valley

[Préville-Ratelle & Viennot 17]



Extension: the v-Tamari lattice

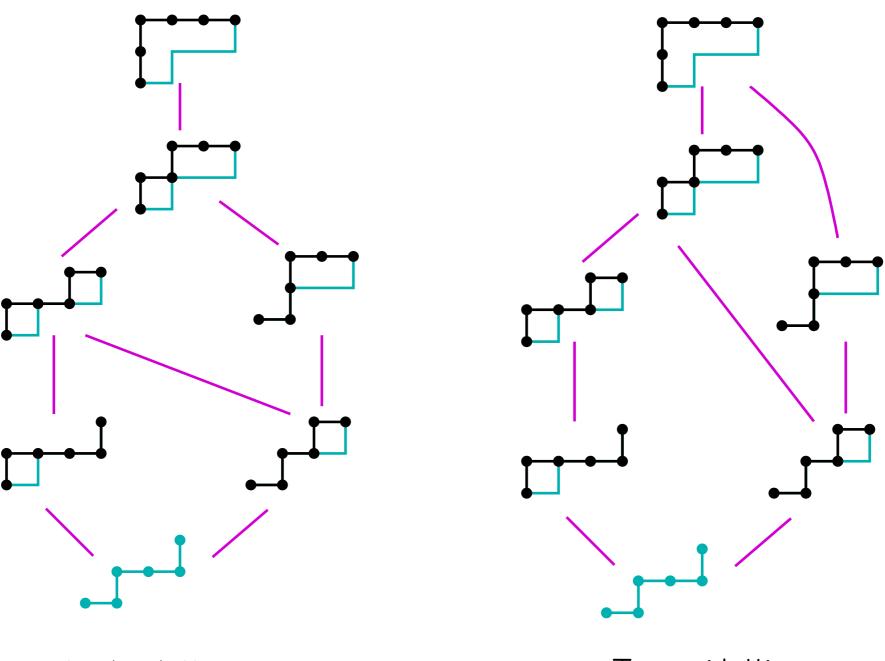
Next point at horizontal distance d=4 of the forbidden area [Préville-Ratelle & Viennot 17]





[Ceballos, Padrol, Sarmiento 20]

The v-Tamari lattice: an example



v-Stanley lattice

v-Tamari lattice

A very special case: v-Tamari with v = EiNi

Next point at horizontal distance d=6 of the forbidden area

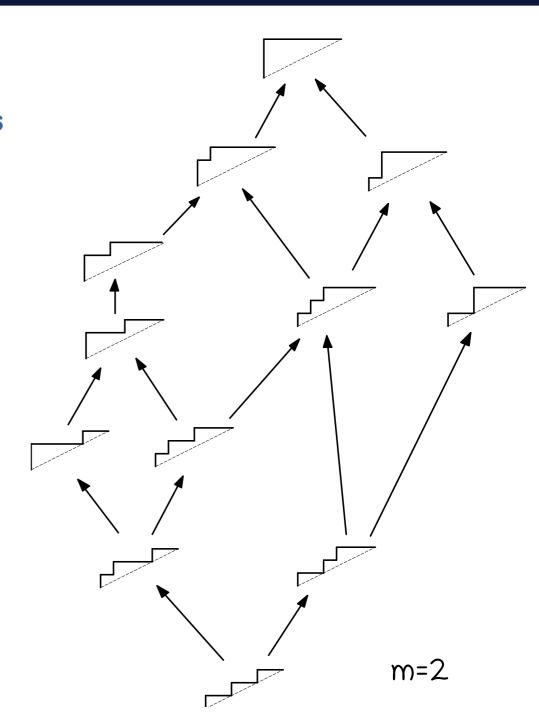
The covering relations are EN \rightarrow NE: one recovers the Stanley lattice S_v

An interesting case: v-Tamari, with $v = (NE^m)^n$

Conjectured relation with coinvariant polynomials in 3 sets of variables

[Bergeron & Préville-Ratelle 12] [Haiman 94]

Also called m-Tamari lattice



[Chapoton 06 (m=1) -- MBM, Fusy & Préville-Ratelle 11]

For $v=(NE^m)^n$, the number of intervals in the v-Tamari lattice is:

$$t_n^{(m)} = Int(T_v) = \frac{m+1}{n(mn+1)} {(m+1)^2 n + m \choose n-1}$$

[Chapoton 06 (m=1) -- MBM, Fusy & Préville-Ratelle 11]

For $v=(NE^m)^n$, the number of intervals in the v-Tamari lattice is:

$$t_n^{(m)} = Int(T_v) = \frac{m+1}{n(mn+1)} {(m+1)^2 n + m \choose n-1}$$

$$t_n^{(1)} = \frac{2}{n(n+1)} \binom{4n+1}{n-1}$$

$$t_n^{(2)} = \frac{3}{n(2n+1)} \binom{9n+2}{n-1}$$

$$t_n^{(3)} = \frac{4}{n(3n+1)} \binom{16n+3}{n-1}$$

In the planar maps literature...

$$(n+1)(2n+1) \binom{3n}{n}$$

$$\frac{2^n}{(n+1)(2n+1)} \binom{3n}{n}$$

cubic

non-separable

$$\frac{2 \cdot 3^n}{(n+1)(n+2)} (2n)$$
all maps

$$\frac{3 \cdot 2^{n-1}}{(n+1)(n+2)} \binom{2n}{n}$$
bipartite

$$\frac{(m+2)(m+1)^{n-1}}{(mn+1)(mn+2)}\binom{(m+1)n}{n}$$
m-constellations
$$\frac{2}{(n+1)(3n+2)}\binom{4n+1}{n}$$

3-connected triangulations

In the planar maps literature...

$$(n+1)(2n+1) \begin{pmatrix} 3n \\ n \end{pmatrix}$$

non-separable

$$\frac{2 \cdot 3^n}{(n+1)(n+2)} (2n)$$
all maps

$$\frac{2^n}{(n+1)(2n+1)} \binom{3n}{n}$$

cubic

$$\frac{3 \cdot 2^{n-1}}{(n+1)(n+2)} \binom{2n}{n}$$
bipartite

$$\frac{(m+2)(m+1)^{n-1}}{(mn+1)(mn+2)}\binom{(m+1)n}{n}$$
m-constellations
$$\frac{2}{(n+1)(3n+2)}\binom{4n+1}{n} = \frac{2}{n(n+1)}\binom{4n+1}{n-1} = t_n^{(1)}$$
3-connected triangulations

$$\frac{2}{(n+1)(3n+2)} \binom{n}{n}$$

$$\frac{2}{n(n+1)} \binom{4n+1}{n-1} = t_n^{(1)}$$

triangulations

[Chapoton 06 (m=1) -- MBM, Fusy & Préville-Ratelle 11]

For $v=(NE^m)^n$, the number of intervals in the v-Tamari lattice is:

$$t_n^{(m)} = Int(T_v) = \frac{m+1}{n(mn+1)} {(m+1)^2n + m \choose n-1}$$

Bijective proof (m=1)

[Bernardi & Bonichon 07]

specialization

bijection	Stanley intervals	Tamari intervals
	Triangulations with a Schnyder wood	Triangulations with their canonical Schnyder wood

[Chapoton 06 (m=1) -- MBM, Fusy & Préville-Ratelle 11]

For $v=(NE^m)^n$, the number of intervals in the v-Tamari lattice is:

$$t_n^{(m)} = Int(T_v) = \frac{m+1}{n(mn+1)} {(m+1)^2 n + m \choose n-1}$$

Bijective proof (m=1)

[Bernardi & Bonichon 07]

+ another bijection [Fang 18]

For m>1, which type of maps do these numbers count?

Summing over some v [Fang & Préville-Ratelle 17, Fang 17(a)]

$$\sum_{i+j=n} \sum_{v \leadsto (i,j)} \operatorname{Int}(T_v) = \cdots$$

Summing over some v [Fang & Préville-Ratelle 17, Fang 17(a)]

$$\sum_{i+j=n} \sum_{v \leadsto (i,j)} Int(T_v) = \cdots$$

Tamari lattice T_{n+1}

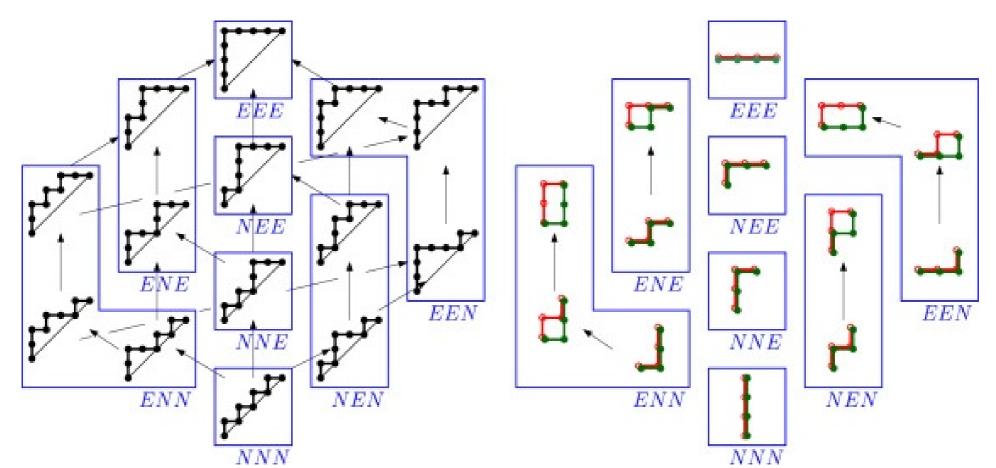
This is also the number of synchronized intervals in the ordinary [Préville-Ratelle & Viennot 17]

Summing over some v

[Fang & Préville-Ratelle 17, Fang 17(a)]

$$\sum_{i+j=n} \sum_{v \leadsto (i,j)} \operatorname{Int}(T_v) = \cdots$$

This is also the number of synchronized intervals in the ordinary [Préville-Ratelle & Viennot 17]



Summing over some v

[Fang & Préville-Ratelle 17, Fang 17(a)]

$$\sum_{i+j=n} \sum_{v \leadsto (i,j)} \operatorname{Int}(T_v) = \frac{2}{(n+1)(n+2)} \binom{3n}{n}$$

Summing over some v

[Fang & Préville-Ratelle 17, Fang 17(a)]

$$\sum_{i+j=n} \sum_{v \leadsto (i,j)} \operatorname{Int}(T_v) = \frac{2}{(n+1)(n+2)} {3n \choose n}$$

More precisely,

$$\sum_{v \leadsto (i,j)} \operatorname{Int}(\mathsf{T}_v) = \frac{1}{(i+1)(j+1)} \binom{2i+j+1}{j} \binom{2j+i+1}{i}$$

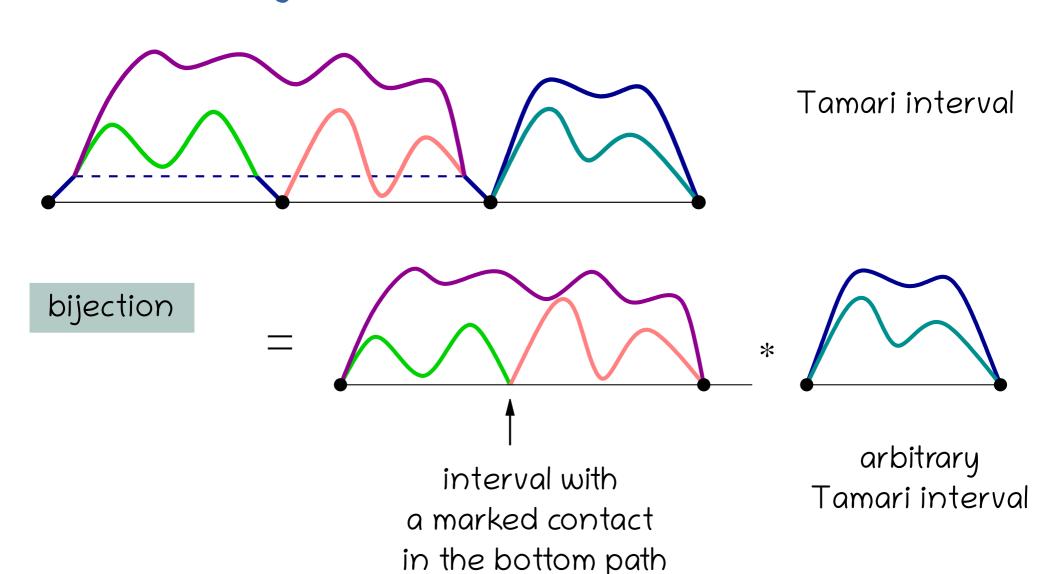
Bijection with non-separable planar maps (no cut-point) with (i+2) vertices and (j+2) faces.

+ Another bijective proof [Fusy & Humbert 19]

III. Recursive proofs and discrete differential equations

Recursive description of Tamari intervals

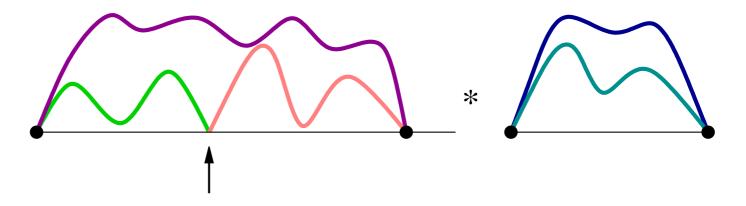
Consider the original Tamari lattice (i.e., v=(NE)ⁿ)



A discrete differential equation

Consider the original Tamari lattice (i.e., $v=(NE)^{n}$)

bijection



Then
$$F(x) \equiv F(x;t) = \sum_{n \geq 0} t^n \sum_{[u,v] \subset T_n} x^{\operatorname{contacts}(u)}$$
 satisfies:

$$F(x) = x + tx \frac{F(x) - F(1)}{x - 1} F(x)$$
$$= x + tx \Delta F(x) F(x),$$

with
$$\Delta F(x) := \frac{F(x) - F(1)}{x - 1}$$
. Discrete derivative

A discrete differential equation (m-Tamari)

Consider the m-Tamari lattice (i.e., $v=(NE^m)^n$)

⇒ Similar decomposition of intervals

The series
$$F(x) \equiv F(x;t) = \sum_{n \geq 0} t^n \sum_{[u,v] \subset T_n} x^{\operatorname{contacts}(u)}$$
 satisfies

$$F(x) = x + tx (F(x)\Delta)^{(m)} F(x),$$

with
$$\Delta F(x) := \frac{F(x) - F(1)}{x - 1}$$
. [mbm, Fusy, Préville-Ratelle 11]

The operator $F(x)\Delta$ is applied m times.

A discrete differential equation (m-Tamari)

Consider the m-Tamari lattice (i.e., $v=(NE^m)^n$)

⇒ Similar decomposition of intervals

The series
$$F(x) \equiv F(x;t) = \sum_{n \geq 0} t^n \sum_{[\mathfrak{u},\nu] \subset T_n} x^{\operatorname{contacts}(\mathfrak{u})}$$
 satisfies

$$F(x) = x + tx (F(x)\Delta)^{(m)} F(x),$$

with
$$\Delta F(x) := \frac{F(x) - F(1)}{x - 1}$$
. [mbm, Fusy, Préville-Ratelle 11]

The operator $F(x)\Delta$ is applied m times.

Example: m=2

$$F(x) = x + \frac{xt}{x-1} F(x) \left(F(x) \frac{F(x) - F(1)}{x-1} - F(1)F'(1) \right).$$

Discrete differential equations

Thm. The solution of any discrete differential equation is algebraic [mbm & Jehanne 06]

This holds for

$$F(x) = x + tx (F(x)\Delta)^{(m)} F(x),$$

But we had to guess & check the value of F(x).

[mbm, Fusy, Préville-Ratelle 11]

In particular,

$$F(1) = \sum_{n \ge 0} t^n \frac{m+1}{n(mn+1)} \binom{(m+1)^2 n + m}{n-1}$$

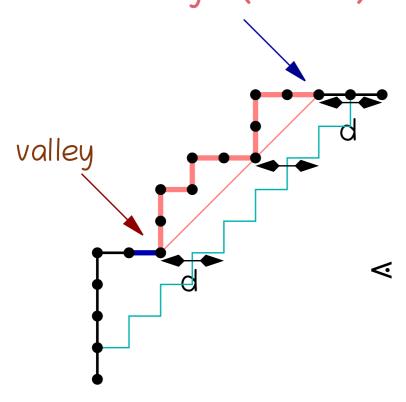
IV. Greedy Tamari posets

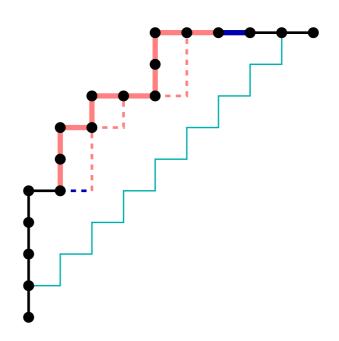
Greedy(v) \subset Tamari(v) \subset Stanley(v)

Be greedy when swapping!

First point at horizontal distance d=2 of the forbidden area followed by E (or final)

[Dermenjian 23]

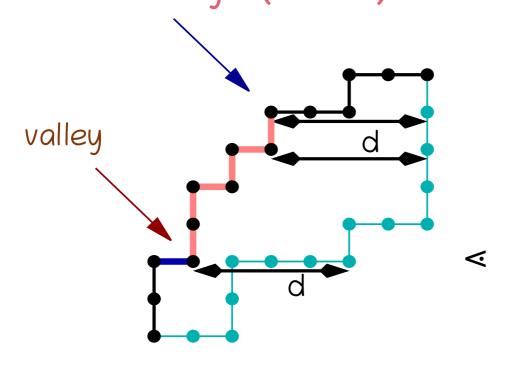


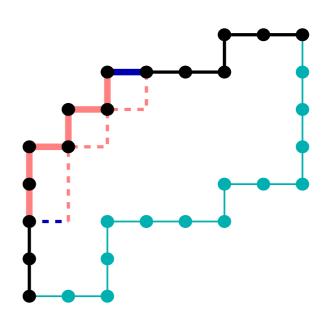


Be greedy when swapping!

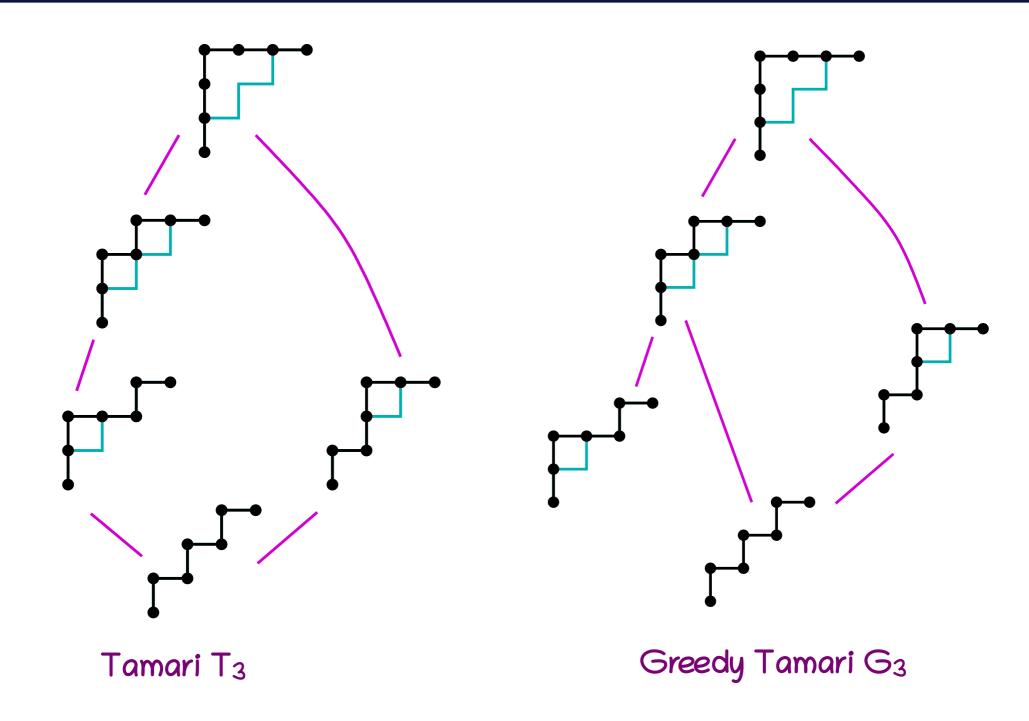
First point at horizontal distance d=2 of the forbidden area followed by E (or final)

[Dermenjian 23]

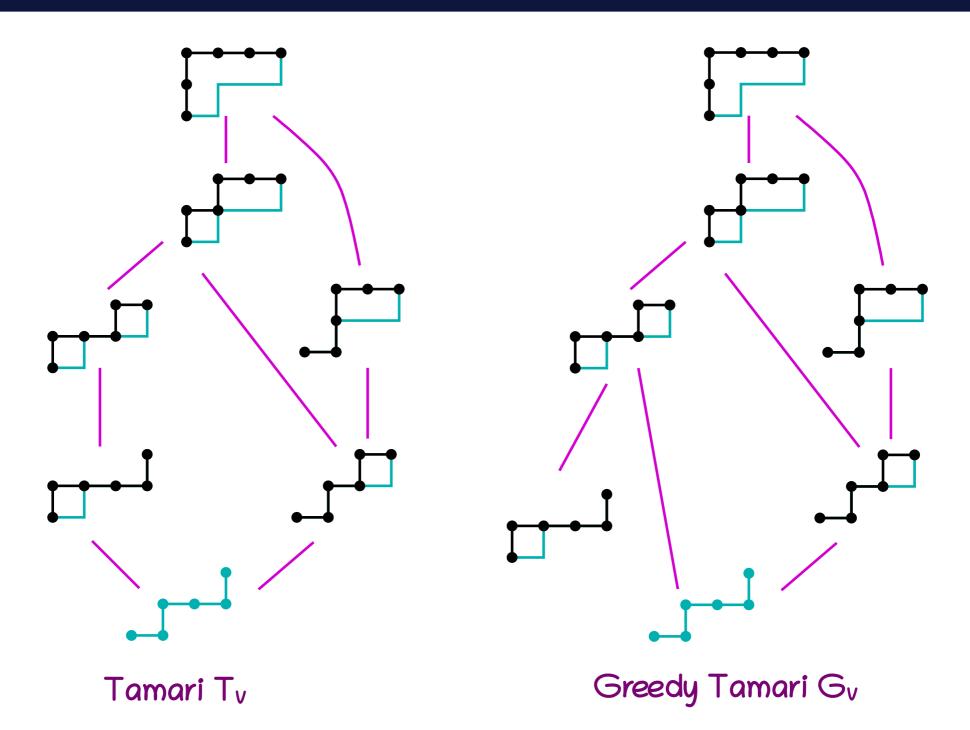




Tamari vs. greedy Tamari: Dyck paths



Tamari vs. greedy Tamari



The number of greedy m-Tamari intervals

[MBM & Chapoton 23(a)]

For $v=(NE^m)^n$, the number of intervals in the greedy Tamari order is:

$$g_n^{(m)} = \frac{(m+2)(m+1)^{n-1}}{(mn+1)(mn+2)} {(m+1)n \choose n}.$$

The number of greedy m-Tamari intervals

[MBM & Chapoton 23(a)]

For $v=(NE^m)^n$, the number of intervals in the greedy Tamari order is:

$$g_n^{(m)} = \frac{(m+2)(m+1)^{n-1}}{(mn+1)(mn+2)} {(m+1)n \choose n}.$$

Proof: a recursive construction of intervals, involving a new "catalytic" parameter: the final descent of the upper path.

Discrete differential equation:

$$x^{2}G(x) = t(x + x^{2}G(x)\Delta)^{(m+2)}$$
 (1).

The number of greedy m-Tamari intervals

[MBM & Chapoton 23(a)]

For $v=(NE^m)^n$, the number of intervals in the greedy Tamari order is:

$$g_n^{(m)} = \frac{(m+2)(m+1)^{n-1}}{(mn+1)(mn+2)} {(m+1)n \choose n}.$$

Proof: a recursive construction of intervals, involving a new "catalytic" parameter: the final descent of the upper path.

Discrete differential equation:

$$x^{2}G(x) = t(x + x^{2}G(x)\Delta)^{(m+2)}$$
 (1).

Bijective proof? We know what these numbers count!

Planar constellations

[MBM & Schaeffer 00]

The number of planar (m+1)-constellations with n black faces is:

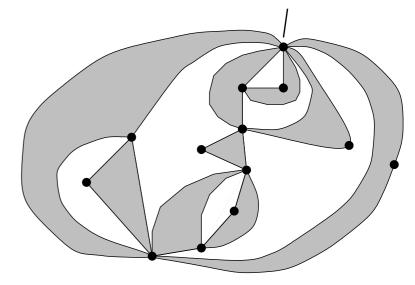
$$g_n^{(m)} = \frac{(m+2)(m+1)^{n-1}}{(mn+1)(mn+2)} {(m+1)n \choose n}.$$

Constellation: a rooted planar map with bicolored faces

- black faces of degree (m+1)
- white faces of degree k(m+1), for some k>0.

[Lando & Zvonkine 04]

Bijection with greedy intervals?



V. Final remarks

Refined enumeration of intervals

Conjecture: a bijection between

- → greedy m-Tamari intervals [v,w] where w has n; ascents of size i for each i,
- \rightarrow (m+1)-constellations with n_i white faces of degree i(m+1).

The size of the first ascent matches the degree of the root face.

Refined enumeration of intervals

Conjecture: a bijection between

- → greedy m-Tamari intervals [v,w] where w has n; ascents of size i for each i,
- \rightarrow (m+1)-constellations with n_i white faces of degree i(m+1).

The size of the first ascent matches the degree of the root face.

Equation for m-constellations [Fang 16]:

$$C(x) = 1 + xt \left(C(x) + \Omega\right)^{(m)} (1),$$

where

$$\Omega(\mathbf{x}^k) = \sum_{i=1}^k \mathbf{p}_i \mathbf{x}^{k-i},$$

and pi counts non-root faces of degree i(m+1).

Refined enumeration of intervals

Conjecture: a bijection between

- → greedy m-Tamari intervals [v,w] where w has n; ascents of size i for each i,
- \rightarrow (m+1)-constellations with n_i white faces of degree i(m+1).

The size of the first ascent matches the degree of the root face.

Equation for m-constellations [Fang 16]:

$$C(x) = 1 + xt \left(C(x) + \Omega\right)^{(m)} (1),$$

where

$$\Omega(\mathbf{x}^k) = \sum_{i=1}^k \mathbf{p}_i \mathbf{x}^{k-i},$$

and p_i counts non-root faces of degree i(m+1).

cf. Enumeration of m-Tamari intervals [v,w] by ascent lengths of w [mbm, Chapuy & Préville-Ratelle 13]

Count intervals $[w_1, w_2]$ and record the length of the longest chain from w_1 to w_2 .

→ Stanley lattices S_v : some known results (e.g., $v = E^i N^j$)

Count intervals $[w_1, w_2]$ and record the length of the longest chain from w_1 to w_2 .

- → Stanley lattices S_v : some known results (e.g., $v = E^i N^j$)
- → m-Tamari lattices: solve

$$F(x) = x + tx (F(x)\Delta_q)^{(m)} F(x),$$

with
$$\Delta_q F(x) := \frac{F(xq) - F(1)}{xq - 1}$$
.

Count intervals $[w_1, w_2]$ and record the length of the longest chain from w_1 to w_2 .

- → Stanley lattices S_v : some known results (e.g., $v = E^i N^j$)
- → m-Tamari lattices: solve

$$F(x) = x + tx (F(x)\Delta_q)^{(m)} F(x),$$

Diagonal harmonics

with
$$\Delta_q F(x) := \frac{F(xq) - F(1)}{xq - 1}$$
.

Count intervals $[w_1, w_2]$ and record the length of the longest chain from w_1 to w_2 .

- → Stanley lattices S_v : some known results (e.g., $v = E^i N^j$)
- → m-Tamari lattices: solve

$$F(x) = x + tx (F(x)\Delta_q)^{(m)} F(x),$$

Diagonal harmonics

with
$$\Delta_q F(x) := \frac{F(xq) - F(1)}{xq - 1}$$
.

→ Greedy m-Tamari posets: solve

$$x^{2}G(x) = t(x + x^{2}G(x)\Delta_{q})^{(m+2)}$$
 (1).

 \rightarrow Summing over v the number of intervals in the greedy posets G_v :

$$\sum_{v \leadsto (i,j)} \operatorname{Int}(G_v) = ???$$

 \rightarrow Summing over v the number of intervals in the greedy posets G_v :

$$\sum_{v \leadsto (i,j)} \operatorname{Int}(G_v) = ???$$

Algebraicity? D-finiteness? Asymptotics?

→ Number of p-chains in Tamari lattices, p>2? Algebraicity? D-finiteness? Asymptotics?

 \rightarrow Summing over v the number of intervals in the greedy posets G_v :

$$\sum_{v \leadsto (i,j)} Int(G_v) = ???$$

- → Number of p-chains in Tamari lattices, p>2? Algebraicity? D-finiteness? Asymptotics?
- → Are there v-Kreweras lattices? [Bernardi-Bonichon 09]

 \rightarrow Summing over v the number of intervals in the greedy posets G_v :

$$\sum_{v \leadsto (i,j)} \operatorname{Int}(G_v) = ???$$

- → Number of p-chains in Tamari lattices, p>2? Algebraicity? D-finiteness? Asymptotics?
- → Are there v-Kreweras lattices? [Bernardi-Bonichon 09]
- → Are higher genus maps hiding somewhere?

 \rightarrow Summing over v the number of intervals in the greedy posets G_v :

$$\sum_{v \leadsto (i,j)} \operatorname{Int}(G_v) = ???$$

- → Number of p-chains in Tamari lattices, p>2? Algebraicity? D-finiteness? Asymptotics?
- → Are there v-Kreweras lattices? [Bernardi-Bonichon 09]
- → Are higher genus maps hiding somewhere?
- → Asymptotic properties of random intervals? [Chapuy 23]
- → Intervals in Cambrian lattices? [Reading 06, Stump et al. 15]

Des tamaris

Tamarinier, feuilles et fruits

Des tamaris

Un tamarin empereur

Tamarinier, feuilles et fruits

Des tamaris

Un tamarin empereur

Tamarinier, feuilles et fruits

Un glouton

