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T he Ising model on a graph
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T he Ising model on a graph

N vertices
Spin up H o; = 1 O
spin down H o; = —1
frustrated edge
e Partition function:
J H )
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_ kT — kT =
=010y ) i—J i
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e When H = 0 (no field), then z =y and
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T he hard-particle model on a graph

occupied vertex @

vacant vertex O

Two adjacent vertices

cannot be both occupied

e Partition function:

Zpp(G) =) z%y*



Classical statistical physics
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Aim Compute the following sum, over all possible configurations of spins:

Z(N) = M ' y® w7t
conf.

(Only solved in 2D, when =z =y...)



Statistical physics on planar maps

Two-dimensional quantum gravity:

1. replace the regular 2D grid by a random planar graph (or more precisely a
random planar map)

2. average the partition function over all maps of a given size.

[t'Hooft, Brezin, Itzykson, Parisi, Zuber, Kazakov, Duplantier, Kostov...]
[Knizhnik, Polyakov, Zamolodchikov 88]




Map (rooted, planar): proper embedding of a connected planar graph in the
plane. One edge is oriented, with the infinite face on its right.
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degree 3

Mote: maps #= graphs
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Example: the Ising model on 4-valent maps

Partition function:

(@ y,u) = 3 Y eyt
M o

where f is the number of frustrated edges.

|[Kazakov 86, Boulatov-Kazakov 87]: solution via matrix integrals
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H, K: hermitian N x N matrices



Example: the Ising model on 4-valent maps

Partition function:

(@ y,u) = 3 Y eyt
M o

where f is the number of frustrated edges.

|[Kazakov 86, Boulatov-Kazakov 87]: solution via matrix integrals

— [(x,y,u) is an algebraic function of z,y, u
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H? 4+ K=< H* EJ
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H, K: hermitian N x N matrices



Algebraic power series

Def. The generating function S(z1,z>,...,x;) = S(x) is algebraic if there exists
a polynomial ¢ such that

Qe1, ...,z S(x)) = 0.



Algebraic power series

Def. The generating function S(z1,z>,...,x;) = S(x) is algebraic if there exists
a polynomial ¢ such that

Qe1, ...,z S(x)) = 0.

Example: the generating function A(z) for rooted trees (embedded in the
plane) is algebraic.

A(z) =) ana”

where an Is the number of trees with n vertices.

— @& +
= A(z) =z + A(x)?




Enumeration of planar maps

Arques Bauer Bedard Bender Bernardi Bessis Bodirsky Bousquet-Melou
Boulatov Bouttier Brezin Brown Canfield Chauve Cori Di Francesco
Duplantier Fusy Gao Goupil Goulden Guitter t'Hooft Itzykson Jackson
Jacquard Kazakov Kostov Labelle Lehman Leroux Liskovets Liu Machi Mehta

Mullin Parisi Poulalhon Richmond Robinson
Schaeffer Strehl Tutte Vainshtein VVauquelin Visentin Walsh Wanless
Wormald Zinn-Justin Zuber Zvonkine...
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Planar maps (tend to) have algebraic generating functions




Algebraicity for planar maps of bounded degree

T heorem [Bouttier—Di Francesco—Guitter 02]

Fork =2, let M(xq,z5,...,x;) bethe generating function of maps with vertices
of degree at most k (z; counts vertices of degree ).

T his series is algebraic.

(Quantum gravity: maps with no matter.)

Example: 4-valent maps (all vertices have degree 4)

M(z)=P —zP3 where P=1+43zP°.



Three approaches for counting maps

e [Tutte 60’'s]: recursive decompositions of maps, functional equations, quadratic
method

[Bender, Canfield 94], [MBM, Jehanne 05]

e [Brezin, Itzykson, Parisi, Zuber 78]: matrix integrals
[Bouttier, Di Francesco, Guitter 02]

2
Ner [ 2 Mﬁ,m

1 2 i=1 ¢

?_EJ_GG N2 log q\._&mm

H: hermitian N x N matrix

e [Schaeffer 97]: bijection with trees
[BDG 02]



In this talk...
Algebraicity still holds for maps carrying an Ising model (or a hard-particle
model)
Theorem [MBM—Schaeffer 02]
For k = 2, let I(zq1,25,...,21Y91,...,¥r, u) be the Ising generating function of

maps with vertices of degree at most k (z; counts white vertices of degree i,
and y; counts black vertices of degree 1).

T his series is algebraic.

Its algebraicity is explained combinatorially thanks to a bijection with certain
trees.

Mot true for the g-state Potts model (equivalent to the Tutte polynomial).



Example: hard particles on tetravalent maps

Let P = P(x,y) be the power series defined by
3z P?
(1 —9zyP?)?

T hen the hard-particle generating function of 4-valent maps (rooted at a vacant
edge) is

P=1+43zyP>+

rP2(3 — 2P) 27 x3yP°

H — pP3 _ .
(@ y) =P+ 1 — 9xyP? (1 — 9zxyP?2)3

H(z,y)=>_ > z%*

M @



The Ising and hard-particle models on general planar maps

O spin down ==
® SpIin up
O
22 o
T1T2X3T4 Y1YsYalYs U
e Ising generating function:
m] 1 n|_ mn .
Hﬁﬁuﬁuﬁv — MHHHHMM...EHHW‘MM...;%
._._.J..&.u_uu.
= > aMy™t
._._.J..nm.u_uu.

where m; (resp. n;) is the number of white (resp. black) vertices of M having
degree i and f i1s the number of frustrated edges.

e Hard-particle generating function: sum over hp-configurations only

H(z,y)=) zMy"
M



Enumeration of bipartite maps

M(z,y)= > aMy"=) a{txi? - yitys?-
M bip. M
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From hard-particles to bipartite maps

mAHH_HM_..._ﬁH_fM_...v — r.._...\m.ﬁH.H_HM_..._E_H-HI_Im___mum___m_...u



From the Ising model to bipartite maps

b

I(x1,x2,...,91,Y2,...,1) — M(X1, Xo,...,Y1,Y5,..)

with

k/2

— —\ K/
Xp=zxp(u—u)"", Yi=uyp(u— EV.H: 2

and u=1/u.



Planar maps with legs

Bipartite maps rooted at a black vertex of degree 2: two cases

P
+—all o—

Two maps with one leg each One map with two legs

Legs always lie in the infinite face.



Bijective enumeration of planar maps:
which trees hide in which maps?

1. Introduce the “right” family of trees (easy to count)

2. Construct a bijection between maps and some of these trees, called balanced

3. Count balanced trees

[Schaeffer 97], [MBM-Schaeffer 00], [Poulalhon—Schaeffer 02], [Bouttier—Di
Francesco—Guitter 02] COMPLETER

Planar Eulerian maps, constellations, non-separable triangulations, general pla-
nar maps...



The ‘“right” family of trees: blossoming trees

- rooted

- bicolored ﬂ

- with
buds attached to black vertices V\'
leaves attached to white vertices \O



The ‘“right” family of trees: blossoming trees

rooted 0
bicolored

with
buds attached to black vertices \. 0
leaves attached to white vertices \O

the charge at a vertex: { leaves - { buds
the charge at every white vertex is = 0 ()

the charge at every black vertex is <1



T he total charge of a blossoming tree

rooted LEAF 4

bicolored

with
buds attached to black vertices V\.
leaves attached to white vertices \u

the charge at a vertex: {§ leaves -} buds

-

the charge at every white vertex is = 0
1

the charge at every black vertex is <

TOTAL CHARGE =041




From trees to maps: the closure of a tree

Ly L

Match
buds to leaves

Total charge 2
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From trees to maps: the closure of a tree

Match
buds to lea



From trees to maps: the closure of a tree

s,

_‘\Hll /
L

Two leaves remain unmatched



Balanced blossoming trees

A blossoming tree, rooted at a white vertex, is balanced if the root-leaf remains
unmatched after the closure of the tree.

Total charge 2

Two leaves remain unmatched Two-leg map



The bijection

Theorem [MEM-Schaeffer 02]

For k= 1,2, the closure iIs a bijection between:
— balanced blossoming trees of total charge k
— bipartite maps having k legs.

Moreover, this bijection preserves the degrees of black and white vertices.

S S e

This theorems includes and extends some former bijections for: maps with
even valencies [Schaeffer 97|, “constellations” [MBM--Schaeffer 00], maps with
arbitrary valencies [Eouttier, Di Francesco, Guitter 02]

COMPLETER



From maps to balanced blossoming trees

Open
BW edges
when possible




From maps to balanced blossoming trees

Open
BW edges
when possible




From maps to balanced blossoming trees

Open
EW edges
when possible




From maps to balanced blossoming trees




Counting blossoming trees is easy

For k = 0, let Wr(x,y) be the generating function of blossoming trees rooted
at a white vertex of charge k. For k <1, let Bi.(x,y) be the generating function
of blossoming trees rooted at a black vertex of charge k.

Trees have a simple recursive structure:

white root of degree i } 1 k
charge k

leaf
i sons (leaves or black vertices)

by ko4 ks + 1=k B, B By,



Example: vertices of degree 2 and 4

White root, charge 1

S O O 3 Y

ENH — Iz |_| HmmH |_| MHhmIH |_| mHhmIHmH |_| MHLLWIHLWW

W1 = z3(1 + B1) + 3z4B_1(1 + B1)? B_1 = y> + 3ysW1
W3 = z4(1 + B1)> B1 = yoW1 + 3ya(Ws + W7).
Let P=1+4 B4. Then

P(xo + 3zay2P)(y2 + mfamwv
(1 — 9z4ysP?)?

P =14 3z4ys P>+



General formulae for the enumeration of blossoming trees

For k = 0, let Wr(x,y) be the generating function of blossoming trees rooted

at a white vertex of charge k. For k < 1, let Bi.(x,y) be the generating function
of blossoming trees rooted at a black vertex of charge k. T hen

Wi =[] 3 2iy1 (= + B(2))

120
Br = ["1Y" wix1(1/2 + W(2))*
i=0
with

W(z)= Y Wpz" and B(z) =) B.2"
k=0 k<1

If the degree of the trees is bounded, almost all series B and W, are zero, and
the others are algebraic.



Balanced blossoming trees of total charge 1
+—— One-leg maps

AKArA

The GF of balanced blossoming trees of total charge 1 is

2: exceptior
charge

%D — __“%wﬂ — mm
with
By =[] yir1(1/2+W(2))".

i=0



Balanced blossoming trees of total charge 2
+—— Two-leg maps

T

W4 W1 B3 4 mmm

The GF of balanced blossoming trees of total charge 2 is
W1 =W — (Bz+ B3)
with
Br = ["1 Y wiy1 (1/z2+ W(2))'.

i=0



Enumeration of bipartite maps

T he generating function of bipartite maps (rooted at a black vertex of degree
2), counted by their degree distribution, is

M(z,y) =2 (

e @r. D

Yz Swm y=2W

W3+ W1) = Qﬂ% + Wy — B3 — 2WpB,) .




Applications

T he Ising and hard-particle models
— Combinatorial solution
— The partition function is algebraic as soon as the degree is bounded

Former solutions (2-matrix models)
— hard-particles on 3-valent and 4-valent maps [EDG 02]

— Ising on 3-valent and 4-valent maps [Kazakov 86, Boulatov-Kazakov &7



Corollary: hard particles on tetravalent maps

Let P = P(x,y) be the power series defined by

3xP?
(1 — 9zyP2)2
T he hard-particle generating function of 4-valent maps rooted at a vacant edge

P=1+43zyP>+

IS
zP2(3 — 2P) 27 x3yP°
1 — 9zyP? (1 — 9xyP?2)3

H(z,y) = zP>+

-~

Y

|[Bouttier—Di Francesco—Guitter 02]: same approach, more general roots (tetrava-
lent case only).



Corollary: Ising on tetravalent maps

Let P= P(X,Y,v) be the power series defined by
P(143XP)(1+43YP)

P=143XYP> 42
+ e (1 — 9XY P2)2

T hen the Ising generating function of 4-valent maps is
I(x,y,u) = Rational(z, y,u, P),
with X = z(u —4)?,Y = y(u — @)%, and v = 4 = 1 /u.




Summary

NEW Enumeration of bipartite planar maps (based on a bijection with trees).

Includes all previous enumeration results based on this principle, except those
that deal with maps of higher connectivity [Poulalhon Schaeffer| COMPLETER

Combinatorial explanation for the algebraicity of the generating functions of
mayps of bounded degree

— bipartite maps

— hard-particle models

— Ising models.

NOT discussed the singularities of the GFs [Eoulatov, Kazakov 87].

http://xxx.1lpthe.jussieu.fr/abs/math.C0/0211070



Maps with unbounded degree?
Surprisingly little is known...

One exception: The hard-particle model on general planar maps
[MBM-Jehanne 05]

u: degree of the infinite face

Back to Tutte’s original approach: functional equations

tu(uF(u) — F(1))

u—1

o F(u) =z +G(u)+ tu’F(u)’ +

tu (G(u) — G(1))
u—1

e G(u)=tyuF(u)+ tuF(u)G(u)+

°F(1) =T?(1—-7TH16T°4+T-15T34+4T* with T(1-27)(1-37+377) =t.



Extensions — Perspectives
Other models (preferably known to be algebraic)
¢ Models on general maps
e Hard particles on bipartite maps (4-matrix model [EDG|COMPLE TER)

e Two-particle models (on bipartite maps: 6-matrix model [BEDG])

¢ 3-state Potts



