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Rooted planar maps
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Triangulations

Every fae has degree 3.Loops and multiple edges are allowed.



ColouringsProper
Non-proper (general)

Monohromati edge



Map enumerationLet M be a set of planar maps, and let m(n) be the number of maps of M ofsize (= edge number) n.
• Objetive: determine the sequene m(n)

m(n) = · · · or M(t) :=
∑

n≥0

m(n)tn =
∑

M∈M
te(M) = · · ·where M(t) is the generating funtion of M.

• Multi-parameter enumeration:
m(n; k) = · · · or M(t;x) :=

∑

n≥0

m(n; k)tnxk = · · ·



Examples

• The generating funtion of planar maps, ounted by edges, is

M(t) =
∑

M

te(M) =
∑

n≥0

2 · 3n
n(n+1)

(2n

n

)

tn =
(1− 12t)3/2 − 1+ 18 t

54t2[Tutte 60's℄
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• The generating funtion of planar triangulations, ounted by verties, is

T(t) =
∑

T

tv(T) =
∑

n≥2

2 · 4n−2 (3n− 6)!!

n!(n− 2)!!
tnwith k!! = k(k − 2)(k − 4) · · · , and satis�es the ubi equation

64T(t)3 + (1− 96 t)T(t)2 − t (1− 30 t)T(t) + t3 (1− 27 t) = 0[Mullin, Nemeth, Shellenberg 70℄



Maps equipped with an additional strutureIn ombinatoris, but mostly in statistial physisHow many maps equipped with... What is the expetedpartition funtion of...� a spanning tree? � the Ising model?[Mullin 67℄ [Boulatov, Kazakov, MBM, Shae�er,Bouttier et al.℄� a spanning forest?[Bouttier et al., Sportiello et al.℄ � the hard-partile model?[MBM, Shae�er, Jehanne,� a self-avoiding walk? Bouttier et al. 02, 07℄[Duplantier-Kostov 88℄ � the Potts model?� a proper q-olouring? [Eynard-Bonnet 99, Baxter 01,[Tutte 74, Bouttier et al. 02℄ MBM-Bernardi 09, Guionnet et al. 10℄



The Potts model on planar maps

• Count all q-olourings of some family M of planar maps, keeping trak of thenumber m(M) of monohromati edges:

M(q, ν, t) :=
∑

M q−oloured te(M) νm(M)

The Potts generating funtion of maps.

• In other words,
M(q, ν, t) =

∑

M

ZM(q, ν)te(M)where

ZM(q, ν) =
∑

c:V (M)→{1,2,...,q}
νm(c)

is the Potts partition funtion of M .Example: When M has one edge and two verties, ZM(q, ν) = qν + q(q − 1)

ν i j 6= ii i proper



The Potts model on planar maps

• Count all q-olourings of some family M of planar maps, keeping trak of thenumber m(M) of monohromati edges:

M(q, ν, t) :=
∑

M q−oloured te(M) νm(M)

The Potts generating funtion of maps.
• In partiular,

M(q,0, t) :=
∑

M q−prop. oloured te(M) =
∑

M

χM(q)te(M)

ounts properly oloured maps.



The Potts model on planar maps

• Count all q-olourings of some family M of planar maps, keeping trak of thenumber m(M) of monohromati edges:

M(q, ν, t) :=
∑

M q−oloured te(M) νm(M)

The Potts generating funtion of maps.
• Equivalently, �nd

∑

M∈M
TM(x, y) te(M) = · · ·where TM(x, y) is the Tutte polynomial of M . Connetion:

(x− 1)(y − 1)v(M)TM(x, y) =
∑

q−olourings of M

νm(M)

with q = (x− 1)(y − 1) and ν = y − 1.



Three approahes for ounting maps

• [Tutte 60's℄: reursive desription of maps

⇒ funtional equations for the GF
• [Shae�er 97℄: bijetions with trees
• [Brézin-Itzykson-Parisi-Zuber 78℄: matrix integrals

lim
N→∞

1

N2
log

∫

dHe
Ntr

(

−H2

2
+ t

H3

3

)

.

H: hermitian N ×N matrix



I.1. Unoloured enumeration:the reursive approah



Planar maps (tend to) have algebrai generating funtions

M(t1, . . . , tk) map GF: there exists a polynomial Q suh that

Q(t1, . . . , tk;M(t1, . . . , tk)) = 0.

Example:

M(t) =
(1− 12t)3/2 − 1 + 18 t

54t2
⇒

(

54t2M(t) + 1− 18t
)2

= (1− 12t)3
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Reursive desription of planar maps: deleting the root-edgeLet
F(t; x) ≡ F(x) =

∑

M

te(M)xdf(M) =
∑

d≥0

Fd(t)x
d

where e(M) is the number of edges and df(M) the degree of the outer fae.
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Reursive desription of planar maps: deleting the root-edgeLet
F(t; x) ≡ F(x) =

∑

M

te(M)xdf(M) =
∑

d≥0

Fd(t)x
d

where e(M) is the number of edges and df(M) the degree of the outer fae.

M M’ 

F(x) = 1 + tx2F(x)2 + t
∑

d≥0

Fd(t)
(

xd+1 + xd + · · ·+ x
)

= 1 + tx2F(x)2 + tx
xF(x)− F(1)

x− 1[Tutte 68℄ A quadrati equation with one atalyti variable, x



Reursive desription of planar maps: ontrating the root-edgeLet
F(t; y) ≡ F(y) =

∑

M

te(M)ydv(M) =
∑

d≥0

Fd(t)y
d

where e(M) is the number of edges and dv(M) the degree of the root vertex.

F(y) = 1 + ty2F(y)2 + t
∑

d≥0

Fd(t)
(

yd+1 + yd + · · ·+ y
)

= 1 + ty2F(y)2 + ty
yF(y)− F(1)

y − 1

The same equation... (duality)



Polynomial equations with one atalyti variableExamples:
F(x) = 1+ tx2F(x)2 + tx

xF(x)− F(1)

x− 1

F(x) = 1+ txF(x)3 + tx(2F(x) + F(1))
F(x)− F(1)

x− 1

+tx
F(x)− F(1)− (x− 1)F ′(1)

(x− 1)2

Solution:

• Guess and hek [Tutte 60's℄
• Brown's quadrati method [Brown 65℄
• A generalization to all polynomial equations with one atalyti variable[mbm-Jehanne 06℄



Polynomial equations with one atalyti variable

• General framework: A polynomial equation:

P(F(x), F1, . . . , Fm, t, x) = 0 (1) (1)where F(x) ≡ F(t; x) is a series in t with polynomial oe�ients in x, and

Fi ≡ Fi(t) does not depend on x.
• Results1. The solution of every proper equation of this type is algebrai: There exists

Q suh that Q(t, x, F(t; x)) = 0.2. A pratial (but heavy) strategy allows to solve spei� examples (that is,to derive from (1) an algebrai equation for F(x), or F1, . . . , Fm).

[MBM-Jehanne 06℄



Example

F(t; x) ≡ F(x) = 1+ tx2F(x)2 + tx
xF(x)− F(1)

x− 1

⇓

F(t; 1) =
(1− 12t)3/2 − 1+ 18 t

54t2with two lines of Maple.Equivalently,

F(t; 1) = A(t)− tA(t)3 where A(t) = 1+ 3tA(t)2

⇒ Many map families have an algebrai generating funtion



I.2. Unoloured enumeration:bijetions

The algebraiity of planar maps generating funtions an be explained via bi-jetions with plane trees



Algebrai series ount plane trees

Algebrai series usually arise from tree enumeration:

n nodes
a(n) = +

= 1 +A(t) tA(t)2

ε

Are there orrespondenes between maps and trees?



Four-valent maps: a proof from The Book?

• Bijetion between 4-valent planar maps (n verties) and balaned blossomingtrees (n nodes) [Shae�er 97℄

A planar map (GF M) A blossoming tree (GF A = 1+ 3tA2)

• An unbalaned blossoming tree is, in essene,
A AA

a 3-tuple of blossoming subtrees [Bouttier et al.02℄:

⇒ M = A− tA3.



Blossoming trees and 4-valent maps
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Blossoming trees and 4-valent maps



Blossoming trees and 4-valent maps



Bijetions between maps and trees...

• Improve our understanding of the nature of planar maps

• Lead to new results, e.g. on the geometry of random planar maps. Forinstane, the average diameter of a random map of size n sales like n1/4[Chassaing-Shae�er 02℄

• These bijetions are the starting point of many reent results in probabilitytheory on the asymptoti properties of large random maps [Le Gall, Miermont,Markert, Paulin...℄



II.1. Coloured enumeration:the reursive approah

(joint work with Olivier Bernardi)
M(q, ν, t) :=

∑

M q−oloured te(M) νm(M)

• Other approahes: [Eynard-Bonnet 99℄, [Guionnet et al. 10℄



Forget algebraiity!

Theorem [Tutte 73℄: For planar triangulations,

∑

T

χ′
T (1) t

v(T) =
∑

n
(−1)nb(n)tn+2where

b(n) =
2 (3n)!

n!(n+1)!(n+2)!
∼ 27nn−4,and this asymptoti behaviour prevents the series B(t) :=

∑

bntn from beingalgebrai.However, it satis�es a linear di�erential equation.



Catalyti variablesThe Potts generating funtion of planar maps, being transendental, annotbe desribed with one atalyti variable



Catalyti variablesThe Potts generating funtion of planar maps, being transendental, annotbe desribed with one atalyti variableHOWEVERit an be desribed with two atalyti variables



Catalyti variablesThe Potts generating funtion of planar maps, being transendental, annotbe desribed with one atalyti variableHOWEVERit an be desribed with two atalyti variablesWHY IS THAT SO?

• The reursive desription of the Potts partition funtion

ZG(q, ν) = ZG\e(q, ν) + (ν − 1)ZG/e(q, ν)alls for a reursive desription of maps by ontration and deletion of edges.

• This is possible if one keeps trak of the degree of the outer fae, and thedegree of the root-vertex.



Equations with two atalyti variables

• Let
M(x, y) ≡ M(q, ν, t;x, y) =

1

q

∑

M

ZM(q, ν)te(M)xdv(M)ydf(M),where dv(M) (resp. df(M)) is the degree of the root-vertex (resp. root-fae).

• The Potts generating funtion of planar maps satis�es:

M(x, y) = 1+ xyt ((ν − 1)(y − 1) + qy)M(x, y)M(1, y)

+xyzt(xν − 1)M(x, y)M(x,1)

+xyt(ν − 1)
xM(x, y)−M(1, y)

x− 1
+ xyzt

yM(x, y)−M(x,1)

y − 1
.[Tutte 68℄ This equation has been sleeping for 40 years



In the footsteps of W. Tutte

• For the GF T(q, t;x, y) ≡ T(x, y) of properly q-oloured triangulations:

T(x, y) = xy2q(q−1)+
xt

yq
T(1, y)T(x, y)+xt

T(x, y)− y2T2(x)

y
−x2yt

T(x, y)− T(1, y)

x− 1where T2(x) is the oe�ient of y2 in T(x, y).

[Tutte 73℄ Chromati sums for rooted planar triangulations: the ases λ = 1 and λ = 2[Tutte 73℄ Chromati sums for rooted planar triangulations, II : the ase λ = τ + 1[Tutte 73℄ Chromati sums for rooted planar triangulations, III : the ase λ = 3[Tutte 73℄ Chromati sums for rooted planar triangulations, IV : the ase λ = ∞[Tutte 74℄ Chromati sums for rooted planar triangulations, V : speial equations[Tutte 78℄ On a pair of funtional equations of ombinatorial interest[Tutte 82℄ Chromati solutions[Tutte 82℄ Chromati solutions II[Tutte 84℄ Map-olourings and di�erential equations
⊳ ⊳ ⋄ ⊲ ⊲[Tutte 95℄: Chromati sums revisited



In the footsteps of W. Tutte

• For the GF T(q, t;x, y) ≡ T(x, y) of properly q-oloured triangulations:
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In the footsteps of W. Tutte

• For the GF T(q, t;x, y) ≡ T(x, y) of properly q-oloured triangulations:

T(x, y) = xy2q(q−1)+
xt

yq
T(1, y)T(x, y)+xt

T(x, y)− y2T2(x)

y
−x2yt

T(x, y)− T(1, y)

x− 1where T2(x) is the oe�ient of y2 in T(x, y).

Theorem [Tutte℄
• For q = 2+2cos 2πm , q 6= 4, the series T(1, y) ≡ T(t; 1, y) satis�es a polynomialequation with one atalyti variable y.
• When q is generi, the generating funtion of properly q-oloured planartriangulations is di�erentially algebrai:

2q2(1− q)t+ (qt+10H − 6tH ′)H ′′ + q(4− q)(20H − 18tH ′ +9t2H ′′) = 0with H(t) = t2T2(q,
√
t; 1)/q.



Adapt this to other equations!

[Tutte 73℄ Chromati sums for rooted planar triangulations: the ases λ = 1 and λ = 2[Tutte 73℄ Chromati sums for rooted planar triangulations, II : the ase λ = τ + 1[Tutte 73℄ Chromati sums for rooted planar triangulations, III : the ase λ = 3[Tutte 73℄ Chromati sums for rooted planar triangulations, IV : the ase λ = ∞[Tutte 74℄ Chromati sums for rooted planar triangulations, V : speial equations[Tutte 78℄ On a pair of funtional equations of ombinatorial interest[Tutte 82℄ Chromati solutions[Tutte 82℄ Chromati solutions II[Tutte 84℄ Map-olourings and di�erential equations
⊳ ⊳ ⋄ ⊲ ⊲[Tutte 95℄: Chromati sums revisited



Our results

• Let M(q, ν, t;x, y) be the Potts generating funtion of planar maps:

M(x, y) ≡ M(q, ν, t;x, y) =
1

q

∑

M

ZM(q, ν)te(M)xdv(M)ydf(M),where dv(M) (resp. df(M)) is the degree of the root-vertex (resp. root-fae).

Theorem

• For q = 2 + 2cos
jπ
m , q 6= 0,4, the series M(q, ν, t; 1, y) ≡ M(1, y) satis�esa polynomial equation with one atalyti variable y, and the omplete Pottsgenerating funtion M(q, ν, t;x, y) is algebrai.

• When q is generi, M(q, ν, t; 1,1) is di�erentially algebrai:(an expliit system of di�erential equations)[mbm-Bernardi 09℄ Counting olored planar maps: algebraiity results. Arxiv:0909:1695[mbm-Bernardi 11℄ Counting olored planar maps: di�erential equations



Example: The Ising model on planar maps (q = 2)

Let A be the series in t, with polynomial oe�ients in ν, de�ned by

A = t

(

1+ 3 ν A− 3 ν A2 − ν2A3
)2

1− 2A+2 ν2A3 − ν2A4
.Then the Ising generating funtion of planar maps is

M(2, ν, t; 1,1) =
1+ 3 ν A− 3 ν A2 − ν2A3

(

1− 2A+2 ν2A3 − ν2A4
)2

P(ν, A)where

P(ν, A) = ν3A6 +2 ν2(1− ν)A5 + ν (1− 6 ν)A4

− ν (1− 5 ν)A3 + (1+ 2 ν)A2 − (3 + ν)A+1.

 Asymptotis: Phase transition at νc =
3+

√
5

2 , ritial exponents...



Example: properly 3-oloured planar maps (q = 3, ν = 0)

Let A be the quarti series in t de�ned by

A = t
(1 + 2A)3

(1− 2A3)
.Then the generating funtion of properly 3-oloured planar maps is

M(3,0, t; 1,1) =
(1+ 2A)(1− 2A2 − 4A3 − 4A4)

(1− 2A3)2

 Asymptotis: A random loopless planar map with n edges has approximately

(1.42...)n proper 3-olourings



Our results: when q is generi

• Let M(q, ν, t;x, y) be the Potts generating funtion of planar maps:

M(x, y) ≡ M(q, ν, t;x, y) =
1

q

∑

M

ZM(q, ν)te(M)xdv(M)ydf(M),where dv(M) (resp. df(M)) is the degree of the root-vertex (resp. root-fae).

Theorem

• For q = 2 + 2cos
jπ
m , q 6= 4, the series M(q, ν, t; 1, y) ≡ M(1, y) satis�esa polynomial equation with one atalyti variable y, and the omplete Pottsgenerating funtion M(q, ν, t;x, y) is algebrai.

• When q is generi, M(q, ν, t; 1,1) is di�erentially algebrai:(an expliit system of di�erential equations)



An expliit system of di�erential equations

Let D(t, v) = qν + (ν − 1)2 − q(ν +1)v +
(

q + t(ν − 1)(q − 4)(q + ν − 1)
)

v2.

• There exists a unique 8-tuple (P1(t), . . . , P4(t), Q1(t), Q2(t), R1(t), R2(t)) ofseries in t with polynomial oe�ients in q and ν suh that

1

v2R

∂

∂v

(

v4R2

PD2

)

=
1

Q

∂

∂t

(

Q2

PD2

)

,where

P(t, v) = P4(t)v
4 + P3(t)v

3 + P2(t)v
2 + P1(t)v +1,

Q(t, v) = Q2(t)v
2 +Q1(t)v +1,

R(t, v) = R2(t)v
2 +R1(t)v + q + ν − 3,with the initial onditions (at t = 0):

P(0, v) = (1− v)2 and Q(0, v) = 1− v.



An expliit system of di�erential equations (ont'd)

• The Potts generating funtion of planar maps, M(1,1) ≡ M(q, ν, t; 1,1), sat-is�es
12 t2

(

qν + (ν − 1)2
)

M(q, ν, t; 1,1) =

8 t(q+ν−3)Q1(t)−Q1(t)
2+P2(t)−2Q2(t)−4 t (2− 3 ν − q)−12 t2 (q + ν − 3)2 .

Questions1. Use the struture of
1

v2R

∂

∂v

(

v4R2

PD2

)

=
1

Q

∂

∂t

(

Q2

PD2

)

,to obtain a single di�erential equation (or an expression?) for M(q, ν, t; 1,1).2. Relate this to ellipti funtions, and to the papers of [Bonnet & Eynard 99℄,and [Guionnet, Jones, Shlyakhtenko & Zinn-Justin 10℄



An analogous system for triangulationsLet D(t, v) = qν2 + (ν − 1) (4(ν − 1) + q) v +
(

qν(ν − 1)(q − 4)t+ (ν − 1)2
)

v2.

• There exists a unique 7-tuple (P1(t), . . . , P3(t), Q1(t), Q2(t), R0(t), R1(t)) ofseries in t with polynomial oe�ients in q and ν suh that

1

v2R

∂

∂v

(

v5R2

PD2

)

=
1

Q

∂

∂t

(

Q2

PD2

)

,where

P(t, v) = P3(t)v
3 + P2(t)v

2 + P1(t)v +1,

Q(t, v) = Q2(t)v
2 +Q1(t)v +2ν,

R(t, v) = R1(t)v +R0(t),with the initial onditions (at t = 0):
P(0, v) = 1+ v/4 and Q(0, v) = 2ν + v.

• Expression of the Potts GF of triangulations in terms of the Pi and Qi



... and for properly q-oloured triangulations (ν = 0)Let D(v) = v +4− q.

• There exists a unique 4-tuple (P1, P2, P3, Q1) of zeries in t with polynomialoe�ients in q suh that
−4t

v

∂

∂v

(

v3

P

)

=
1

Q

∂

∂t

(

Q2

PD

)

.where

P(t, v) = P3(t)v
3 + P2(t) + P1(t)v +1,

Q(t, v) = Q1(t)v +1,with the initial onditions (at t = 0):
P(0, v) = 1+ v/4 and Q(0, v) = 1.

• From the system, one an derive Tutte's di�erential equation,

2q2(1− q)t+ (qt+10H − 6tH ′)H ′′ + q(4− q)(20H − 18tH ′ +9t2H ′′) = 0with H(t) = t2T2(q,
√
t; 1)/q.



II.2. Coloured enumeration:bijetions?

Some bijetions exist in speial ases... but most remain to be found



Some existing bijetions

• Maps equipped with a spanning tree (TM(1,1))[Mullin 67℄, [Bernardi 07℄
•Maps equipped with a bipolar orientation ((−1)v(M)χ′

M(1))[Felsner-Fusy-Noy-Orden 08℄,[Fusy-Poulalhon-Shae�er 08℄,[Bonihon-mbm-Fusy 08℄
• The Ising model on planar maps (ase q = 2)[MBM-Shae�er 02℄, [Bouttier et al.℄

ν

ν
ν



Bijetive ounting of maps equipped with a spanning tree

n edges, k +1 verties (⇒ k edges in the tree)



Bijetive ounting of maps equipped with a spanning tree

n edges, k +1 verties (⇒ k edges in the tree)



Bijetive ounting of maps equipped with a spanning tree

n edges, k +1 verties (⇒ k edges in the tree)



Bijetive ounting of maps equipped with a spanning tree

n edges, k +1 verties (⇒ k edges in the tree)A shu�e of two plane trees
(2n

2k

)

CkCn−kwith Ck =
(

2k
k

)

/(k +1) ounts rooted trees with k edges.



Many questions are left...A. More ombinatoris
• Understand algebrai series, e.g., for 3-oloured planar maps:

M(3,0, t; 1,1) =
(1+ 2A)(1− 2A2 − 4A3 − 4A4)

(1− 2A3)2

with A = t
(1 + 2A)3

(1− 2A3)

• Understand di�erential equations, e.g., for properly q-oloured triangulations:

2q2(1− q)t+ (qt+10H − 6tH ′)H ′′ + q(4− q)(20H − 18tH ′ +9t2H ′′) = 0

B. Equations with two atalyti variables
• Elimination in the systems of di�erential equations

• Connetions with ellipti funtions
• Connetions with [Eynard-Bonnet 99℄ and [Guionnet et al. 10℄C. Asymptotis

• Asymptoti number of properly q-oloured maps?(done for triangulations q ∈ (28/11, 4) ∪ [5,∞) [Odlyzko-Rihmond 83℄)

• More generally, phase transitions and ritial exponents of the Potts model


