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Triangulations

Every face has degree 3.

Loops and multiple edges are allowed.



Quasi-triangulations

Every finite face has degree 3.

Loops and multiple edges are allowed.



Colourings

Proper

Non-proper (general)

Monochromatic edge



Combinatorial enumeration

Let A be a set of discrete objects equipped with an integer size, a 7→ |a|.
Assume that for all n, the number of objects of A of size n is finite.

Let a(n) be this number.

• Objective: determine the sequence a(n)

a(n) = · · · or A(t) :=
∑

n≥0

a(n)tn = · · ·

where A(t) is the generating function of the objects of A.

• Asymptotics: the position and nature of the singularities of A(t) (often) give

asymptotic estimates of the numbers a(n), as n → ∞

a(n) ∼ · · ·

• Multi-parameter enumeration:

a(n, k) = · · · or A(t, u) :=
∑

n≥0

a(n, k)tnuk = · · ·



Examples

• The generating function of planar maps, counted by edges, is

M(t) =
∑

M

te(M) =
∑

n≥0

2.3n

n(n + 1)

(2n

n

)

tn =
(1 − 12t)3/2 − 1 + 18 t

54t2

[Tutte 60’s]

• The generating function of planar triangulations, counted by vertices, is

T(t) =
∑

T

tv(T) =
∑

n≥2

2.4n−2 (3n − 6)!!

n!(n − 2)!!
tn

with k!! = k(k − 2)(k − 4) · · · , and satisfies the cubic equation

64T(t)3 + (1 − 96 t)T(t)2 − t (1 − 30 t)T(t) + t3 (1 − 27 t) = 0

[Mullin, Nemeth, Schellenberg 70]
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Objectives

A. Count proper q-colourings of some family M of planar maps:

∑

M prop. q−coloured

t|M | =
∑

M∈M
χM(q) t|M | = · · ·

B1. Count all q-colourings of some family M of planar maps, keeping track of

the number m(M) of monochromatic edges:

∑

M q−coloured

t|M | zm(M) = · · ·

B2. Equivalently, find
∑

M∈M
TM(x, y) t|M | = · · ·

where TM(x, y) is the Tutte polynomial of M .

(x − 1)(y − 1)v(M)TM(x, y) =
∑

q−colourings of M

(y − 1)m(M)

with q = (x − 1)(y − 1)



Some motivations

A. Count proper q-colourings of some family M of planar maps:

∑

M prop. q−coloured

t|M | =
∑

M∈M
χM(q)t|M | = · · ·

• How many q-colourings has a random map of size n?

q = 4: quantitative (and averaged) version of the 4-colour theorem

B1. Count all q-colourings of some family M of planar maps, keeping track of

the number m(M) of monochromatic edges:

∑

M q−coloured

t|M | zm(M) = · · ·

• Solution of the Potts model on planar maps ([Eynard-Bonnet 99], [Baxter

01])

• A rich problem, hard but not completely out of reach



I. Problems in uncoloured enumeration

The generating functions counting (uncoloured) families of planar maps

are in general algebraic



Planar maps (tend to) have algebraic generating functions

M(t1, . . . , tk) map GF: there exists a polynomial Q such that

Q(t1, . . . , tk;M(t1, . . . , tk)) = 0.

Example:

M(t) =
(1 − 12t)3/2 − 1 + 18 t

54t2
⇒

(

54t2M(t) + 1 − 18t
)2

= (1 − 12t)3

Arquès Bauer Bédard Bender Bernardi Bessis Bodirsky Bousquet-Mélou

Boulatov Bouttier Brézin Brown Canfield Chauve Cori Di Francesco

Duplantier Fusy Gao Goupil Goulden Guitter t’Hooft Itzykson Jackson

Jacquard Kazakov Kostov Krikun Labelle Lehman Leroux Liskovets Liu Machì

Mehta Mullin Parisi Poulalhon Richmond Robinson

Schaeffer Schellenberg Strehl Tutte Vainshtein Vauquelin Visentin Walsh

Wanless Wormald Zinn-Justin Zuber Zvonkine...



Three approaches for counting maps

• [Tutte 60’s]: recursive description of maps

⇒ functional equations for the GF

⇒ algebraic solution

• [Schaeffer 97]: bijection with trees

• [Brézin-Itzykson-Parisi-Zuber 78]: matrix integrals

lim
N→∞

1

N2
log

∫

dHe
Ntr

(

−H2

2
+ t

H3

3

)

.

H: hermitian N × N matrix



Recursive description of planar maps: deleting the root-edge

Let

F(t, u) ≡ F(u) =
∑

M

te(M)ud(M) =
∑

d≥0

Fd(t)u
d

where e(M) is the number of edges and d(M) the degree of the outer face.
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Recursive description of planar maps: deleting the root-edge

Let

F(t, u) ≡ F(u) =
∑

M

te(M)ud(M) =
∑

d≥0

Fd(t)u
d

where e(M) is the number of edges and d(M) the degree of the outer face.

M M’ 

F(u) = 1 + tu2F(u)2 + t
∑

d≥0

Fd(t)
(

ud+1 + ud + · · · + u
)

= 1 + tu2F(u)2 + tu
uF(u) − F(1)

u − 1

[Tutte 68]



Recursive description of planar maps: contracting the root-edge

Let

F(t, v) ≡ F(v) =
∑

M

te(M)vδ(M) =
∑

d≥0

Fd(t)v
d

where e(M) is the number of edges and δ(M) the degree of the root vertex.

F(v) = 1 + tv2F(v)2 + t
∑

d≥0

Fd(t)
(

vd+1 + vd + · · · + v
)

= 1 + tv2F(v)2 + tv
vF(v) − F(1)

v − 1

The same equation... (duality)



Not so bad!

F(t; u) ≡ F(u) = 1 + tu2F(u)2 + tu
uF(u) − F(1)

u − 1

• Gives the number of n-edge maps in polynomial time

• The method is extremely robust (maps with prescribed degrees, triangula-

tions, bipartite maps...)

• Question: Asymptotics of the number of n-edge maps from the equation?



But not so good either...

F(t; u) ≡ F(u) = 1 + tu2F(u)2 + tu
uF(u) − F(1)

u − 1
(1)

should be compared to

F(t; 1) ≡ F(1) =
(1 − 12t)3/2 − 1 + 18 t

54t2
=

∑

n≥0

2.3n

n(n + 1)

(2n

n

)

tn

In particular, F(t; u) and F(t; 1) are algebraic, and F(t; 1) has a nice expansion.

How does it follow from (1)?

• Guess and check [Tutte 60’s]

• Brown’s quadratic method [Brown 65]

• A generalization to polynomial equations with one catalytic variable

[mbm-Jehanne 06]



Polynomial equations with one catalytic variable

• General framework: A polynomial equation:

P(F(u), F1, . . . , Fk, t, u) = 0 (1) (1)

where F(u) ≡ F(t, u) is a series in t with polynomial coefficients in u, and

Fi ≡ Fi(t) does not depend on u.

• Example

F(u) = 1+tuF(u)3+tu(2F(u)+F(1))
F(u) − F(1)

u − 1
+tu

F(u) − F(1) − (u − 1)F ′(1)
(u − 1)2

• Results

1. The solution of every proper equation of this type is algebraic.

2. A practical (but heavy) strategy allows to solve specific examples (that is,

to derive from (1) an algebraic equation for F(u), or F1, . . . , Fk).

[MBM-Jehanne 06]



Example

F(t; u) ≡ F(u) = 1 + tu2F(u)2 + tu
uF(u) − F(1)

u − 1

⇓

F(t; 1) =
(1 − 12t)3/2 − 1 + 18 t

54t2
=

∑

n≥0

2.3n

n(n + 1)

(2n

n

)

tn

Polynomial equations with one catalytic variable

[mbm-Jehanne 06]



Interlude: A proof from The Book?

Algebraic series usually arise from tree enumeration:

n nodes

a(n) = +

= 1 +A(t) tA(t)2

ε

Are there correspondences between maps and trees?



Interlude: A proof from The Book?

• Bijection between 4-valent planar maps (n vertices) and balanced blossoming

trees (n nodes) [Schaeffer 97]

A planar map (GF M) A blossoming tree (GF A = 1 + 3tA2)

• An unbalanced blossoming tree is, in essence,

A AA

a 3-tuple of blossoming subtrees [Bouttier et al.

02]:

⇒ M = A − tA3.



II. "Easy" problems in coloured enumeration

(sketched)

Some coloured problems belong, in a more or less hidden way,

to the world of un-coloured questions,

and in particular, give rise to algebraic generating functions



3-Colourings of triangulations

1 

2

3

2

A triangulation has a proper 3-colouring iff it is face-bicolourable (i.e. Eulerian).

In this case it admits exactly six 3-colourings.

Counting proper 3-colourings of triangulations

m

Counting Eulerian triangulations

[Di Francesco-Eynard-Guitter 98], [Eynard-Kristjansen 98]



Face-bicolored (quasi)-triangulations

Let

F(t, u) ≡ F(u) =
∑

M

t|M |ud(M) =
∑

d≥0

Fd(t)u
d

where |M | is the number of black faces and 3d(M) the degree of the outer face.

F(u) = 1 + tuF(u)3 + 2tF(u)(F(u) − 1) + t(F(u) − 1) + t
F(u) − 1 − uF1

u

⇒ Polynomial equation with one catalytic variable



More generally...

Theorem: Given two finite sets D◦ ⊂ N and D• ⊂ N, the generating function of

face-bicolored planar maps such that all white (resp. black) faces have their

degree in D◦ (resp. D•) is algebraic.

[mbm-Schaeffer 02], [Bouttier et al. 05], [mbm-Jehanne 06]

Corollary: The Ising model on planar maps

The generating function of 2-coloured planar maps of bounded vertex-degree,

counted by their size and by the number of monochromatic edges, is algebraic.

z9



III. The real thing: coloured enumeration

The enumeration of coloured planar maps is inherently harder (and richer)

that the enumeration of uncoloured maps

(joint work with Olivier Bernardi)



Forget algebraicity!

Theorem [Tutte 73]: For planar triangulations,

∑

T

χ′
T (1) tv(T) =

∑

n
(−1)nb(n)tn+2

where

b(n) =
2 (3n)!

n!(n + 1)!(n + 2)!
∼ 27n

n4

This series is not algebraic.

However, it satisfies a linear differential equation.



Catalytic variables

The q-chromatic generating function, being transcendental, cannot be de-

scribed with one catalytic variable
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Catalytic variables

The q-chromatic generating function, being transcendental, cannot be de-

scribed with one catalytic variable

HOWEVER

it can be described with two catalytic variables

WHY IS THAT SO?

• The recursive description of the chromatic (or Tutte) polynomial,

χM(q) = χM\e(q) − χM/e(q)

calls for a recursive description of maps by contraction and deletion of edges.

• This is possible if one keeps track of the degree of the outer face, and the

degree of the root-vertex.



Equations with two catalytic variables

• q-Coloured (quasi-)triangulations:

T(t, q;u, v) ≡ T(u, v) =
∑

M

χM(q) tf(M)ud(M)−2vδ(M)

T(u, v) = q(q−1)vt+
uv

q
T(u, v)T(u,1)+vt

T(u, v) − T(0, v)

u
−uv2t

T(u, v) − T(u,1)

v − 1

[Tutte 73]

• Planar maps weighted by their Tutte polynomial (≃ q-colourings counted by

monochromatic edges)

M(t, x, y;u, v) ≡ M(u, v) =
∑

M

TM(x, y) te(M)ud(M)vδ(M)

M(u, v) = 1 + uvt(ux − 1)M(u, v)M(u,1) + uvt(vy − 1)M(u, v)M(1, v)

+ uvt
uM(u, v) − M(1, v)

u − 1
+ uvt

vM(u, v) − M(u,1)

v − 1

[Tutte 68]



Not so bad!

T(u, v) = q(q−1)vt+
uv

q
T(u, v)T(u,1)+vt

T(u, v) − T(0, v)

u
−uv2t

T(u, v) − T(u,1)

v − 1

• Gives the number of q-coloured triangulations of size n in polynomial time

• The method is robust [Liu 84], [Bernardi 06]

• Question: Asymptotics of the number of q-coloured triangulations of size n

from the equation?



But not so good either...

T(u, v) = q(q−1)vt+
uv

q
T(u, v)T(u,1)+vt

T(u, v) − T(0, v)

x
−uv2t

T(u, v) − T(u,1)

y − 1

A polynomial (quadratic) equation with two catalytic variables

• The series T(t; 0,1), which counts q-coloured triangulations by their size, is

not algebraic. But does satisfy a linear differential equation? a non-linear one?

(yes)



What tools do we have?

• A systematic method for solving polynomial equations with one catalytic

variable [mbm-Jehanne 06]

F(t; u) ≡ F(u) = 1 + tu2F(u)2 + tu
uF(u) − F(1)

u − 1

• An [almost] systematic method for solving linear equations with two catalytic

variables

[mbm-Petkovšek 03], [mbm 05], [Mishna 07 ], [Rechnitzer et al. 08]...

T (u, v) = v +
vt (T (u, v) − T (0, v))

u
− tuv2 (T (u, v) − T (u,1))

v − 1

T(u, v) = q(q−1)vt+
uv

q
T(u, v)T(u,1)+vt

T(u, v) − T(0, v)

x
−uv2t

T(u, v) − T(u,1)

y − 1

???



1. From polynomial to linear equations: differentiation w.r.t. q

• The tricky non-linear terms: T(t, q;u, v)T(t, q;u,1)

• Differentiate w.r.t. q:

T ′(t, q;u, v)T(t, q;u,1) + T(t, q;u, v)T ′(t, q;u,1)

• Specialize at some trivial value of q, for instance q = 1, using:

T(t, 1;u, v) = 0 or 1



Example: the derivative of the chromatic polynomial, for

(quasi)-triangulations

Let

T ′(t; u, v) =
∑

T

χ′
T (1) tv(T)ud(M)−2vδ(M)

Then

T ′ (u, v) = v +
vt
(

T ′ (u, v) − T ′ (0, v)
)

u
− tuv2 (T ′ (u, v) − T ′ (u,1)

)

v − 1

A linear equation with two catalytic variables

⇒ [almost] systematic machinery



Example: bipolar orientations of triangulations

Theorem [Tutte 73]: For planar triangulations,

∑

T

χ′
T (1)tv(T) =

∑

n
(−1)nb(n)tn+2

where

b(n) =
2 (3n)!

n!(n + 1)!(n + 2)!
∼ 27n

n4

In particular, this series is not algebraic. However, it satisfies a linear differential

equation

Remarks

• More systematic proof [mbm]

• b(n) counts bipolar orientations of triangulations [Zaslavsky-Greene 83]

• Bijective proof via Young tableaux [Bonichon-mbm-Fusy 08]



Bipolar orientations of general planar maps

Theorem [Baxter 01]:

M ′(t; 1,1) =
∑

M

(−1)v(M)χ′
M(1)te(M) =

∑

n≥0

b(n)tn+1

with

b(n) =
2

n(n + 1)2

n−1
∑

m=0

(n + 1

m

)(n + 1

m + 1

)(n + 1

m + 2

)

∼ κ
8n

n4

Again, this series is not algebraic. However, it satisfies a linear differential

equation.

Remarks

• Systematic proof [mbm 03]

• Bijections with Baxter permutations and lattice paths configurations

[Felsner-Fusy-Noy-Orden 08], [Fusy-Poulalhon-Schaeffer 08]

[Bonichon-mbm-Fusy 08] — See next talk!



2. From two to one catalytic variable: Tutte’s invariants

For q-coloured (quasi)-triangulations:

T(u, v) = q(q−1)vt+
uv

q
T(u, v)T(u,1)+vt

T(u, v) − T(0, v)

x
−uv2t

T(u, v) − T(u,1)

y − 1

One is interested in T(0,1)

Theorem: For q = 2 + 2cos 2π
m , q 6= 4, the series T(0, v) ≡ T(t; 0, v) satisfies a

polynomial equation with one catalytic variable v

The proof is long!

[Tutte 73]: Chromatic sums for rooted planar triangulations: the cases λ = 1 and λ = 2
[Tutte 73]: Chromatic sums for rooted planar triangulations, II : the case λ = τ + 1
[Tutte 73]: Chromatic sums for rooted planar triangulations, III : the case λ = 3
[Tutte 73]: Chromatic sums for rooted planar triangulations, IV : the case λ = ∞
[Tutte 74]: Chromatic sums for rooted planar triangulations, V : special equations
[Tutte 78]: On a pair of functional equations of combinatorial interest
[Tutte 82]: Chromatic solutions



2. From two to one catalytic variable: Tutte’s invariants

For q-coloured (quasi)-triangulations:

T(u, v) = q(q−1)vt+
uv

q
T(u, v)T(u,1)+vt

T(u, v) − T(0, v)

x
−uv2t

T(u, v) − T(u,1)

y − 1

One is interested in T(0,1)

Theorem: For q = 2 + 2cos
pπ
m , q 6= 4, the series T(0, v) ≡ T(t; 0, v) satisfies a

polynomial equation with one catalytic variable v

+[mbm-Jehanne 06] on such equations

 For these values of q, the chromatic generating function of triangulations is

algebraic.

Examples: q = 0, 1, 2, 3, 2 +
√

2, 2 +
√

3...

[Bernardi-mbm]



What about general planar maps?

For q-coloured planar maps:

M(u, v) = 1 + uvt(u(q − 1) + 1)M(u, v)M(u,1) +
uvt(uM(u, v) − M(1, v))

u − 1

− uvtM(u, v)M(1, v) − uvt(vM(u, v) − M(u,1))

v − 1

One is interested in M(1,1)

Theorem: For q = 2 + 2cos
pπ
m , q 6= 4, the series M(1, v) ≡ M(t; 1, v) satisfies

a polynomial equation with one catalytic variable v

+[mbm-Jehanne 06] on such equations

 For these values of q, the chromatic generating function of planar maps is

algebraic.

Examples: q = 0, 1, 2, 3, 2 +
√

2, 2 +
√

3...

[Bernardi-mbm]



Example: 3-coloured planar maps are “algebraic”

Theorem: the generating function of 3-coloured planar maps is

M(t; 1,1) =
(1 + 2A)(1 − 2A2 − 4A3 − 4A4)

(1 − 2A3)2

where A ≡ A(t) is the quartic series in t defined by

A = t
(1 + 2A)3

(1 − 2A3)

 Asymptotics: A random loopless planar map with n edges has approximately

(1.42...)n 3-colourings

[Bernardi-mbm]



3. Going further: a differential equation for coloured triangulations

Theorem [Tutte 84]: The generating function of q-coloured planar triangula-

tions is differentially algebraic:

2q2(1 − q)t + (qt + 10H − 6tH ′)H ′′ + q(4 − q)(20H − 18tH ′ + 9t2H ′′) = 0

with

H(t) = t2T(
√

t; 0,1)/q.

Idea: from the polynomial equation with one catalytic variable satisfied by

T(t; 0, v), work out a differential equation instead of an algebraic one.

[Tutte 73]: Chromatic sums for rooted planar triangulations: the cases λ = 1 and λ = 2
[Tutte 73]: Chromatic sums for rooted planar triangulations, II : the case λ = τ + 1
[Tutte 73]: Chromatic sums for rooted planar triangulations, III : the case λ = 3
[Tutte 73]: Chromatic sums for rooted planar triangulations, IV : the case λ = ∞
[Tutte 74]: Chromatic sums for rooted planar triangulations, V : special equations
[Tutte 78]: On a pair of functional equations of combinatorial interest
[Tutte 82]: Chromatic solutions
[Tutte 82]: Chromatic solutions II
[Tutte 84]: Map-colourings and differential equations



What about general planar maps?

Theorem: The generating function of q-coloured planar maps is differentially

algebraic.

 A system of 6 differential equations...

For q = 4, a single differential equation, of order 3, and degree 11...

Idea: from the polynomial equation with one catalytic variable satisfied by

M(t; 1, v), work out a differential equation instead of an algebraic one.

[Bernardi-mbm]



More questions

A. Equations with two catalytic variables

• A simpler differential equation for q-coloured planar maps?

• Extend the “chromatic” results to the Tutte polynomial

• A better understanding of [Eynard-Bonnet 99]...

B. More combinatorics

• Understand the algebraicity of 3-coloured planar maps:

M(t; 1,1) =
(1 + 2A)(1 − 2A2 − 4A3 − 4A4)

(1 − 2A3)2
with A = t

(1 + 2A)3

(1 − 2A3)

• Understand the combinatorics of Tutte’s differential equation for q-coloured

triangulations:

2q2(1 − q)t + (qt + 10H − 6tH ′)H ′′ + q(4 − q)(20H − 18tH ′ + 9t2H ′′) = 0

C. Asymptotic analysis

• Asymptotic number of q-coloured triangulations?

(done for q ∈ (28/11,4) ∪ [5,∞) [Odlyzko-Richmond 83])


