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Warning

The Tutte polynomial is often called a graph invariant.

But this talk does not deal with the Tutte polynomial (or not much).



Enumerative combinatorics: an example [Tutte 62]

• The number of triangulations with n + 3 vertices is

a(n + 3) =
2

n(n + 1)

(
4n + 1
n − 1

)
• The generating function of triangulations, counted by vertices, is

A(t) :=
∑
n

a(n)tn =
∑

T triangulation
tv(T )

v(T ) = 6
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• The generating function of triangulations, counted by vertices, is
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∑
n
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∑

T triangulation
tv(T )

It is an algebraic series:

16 t10− t9− t6(20 t−1)A(t) + t4 (8 t + 3)A(t)2 +3 t2A(t)3 +A(t)4 = 0.

v(T ) = 6



Enumerative combinatorics: an example [Tutte 62]

• The number of triangulations with n + 3 vertices is

a(n + 3) =
2

n(n + 1)

(
4n + 1
n − 1

)
• The generating function of triangulations, counted by vertices, is

A(t) :=
∑
n

a(n)tn =
∑

T triangulation
tv(T )

• Refine the enumeration by recording the degree of the root:

A(x , t) :=
∑

T triangulation
xd(T )tv(T )

d(T ) = 4

v(T ) = 6



[Tutte, 1973] “Chromatic sums for rooted planar
triangulations: the cases λ = 1 and λ = 2”

• Let T (x , y ; t) ≡ T (x , y) be the unique formal power series in t, with
polynomial coefficients in q, x and y , satisfying

T (x , y) = xq(q − 1) +
xyt
q

T (x , y)T (1, y)

+ xt
T (x , y)− T (x , 0)

y
− x2yt

T (x , y)− T (1, y)

x − 1
A quadratic equation with two catalytic variables x and y [Zeilberger 00]



[Tutte, 1973] “Chromatic sums for rooted planar
triangulations: the cases λ = 1 and λ = 2”

• Let T (x , y ; t) ≡ T (x , y) be the unique formal power series in t, with
polynomial coefficients in q, x and y , satisfying

T (x , y) = xq(q − 1) +
xyt
q

T (x , y)T (1, y)

+ xt
T (x , y)− T (x , 0)

y
− x2yt

T (x , y)− T (1, y)

x − 1
• Then T (1, 0; t) counts properly q-coloured triangulations by the
number of triangles.



[Tutte, 1984] “Map-colourings and differential equations”

• The number c(n) of q-coloured triangulations with 2n triangles satisfies:

q(n + 1)(n + 2)c(n) = q(q − 4)(3n − 1)(3n − 2)c(n − 1)

+ 2
n∑

i=1

i(i + 1)(3n − 3i + 1)c(i − 1)c(n − i),

with c(0) = q(q − 1).

• The associated generating function

C (t) =
∑
n

c(n)tn+2

is differentially algebraic, and satisfies

2q2(1−q)t + (qt + 10C − 6tC ′)C ′′+q(4−q)(20C − 18tC ′+ 9t2C ′′) = 0
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What happened inbetween?

[Tutte 73] Chromatic sums for rooted planar triangulations: the cases λ = 1 and
λ = 2
[Tutte 73] Chromatic sums for rooted planar triangulations, II : the case
λ = τ + 1
[Tutte 73] Chromatic sums for rooted planar triangulations, III : the case λ = 3
[Tutte 73] Chromatic sums for rooted planar triangulations, IV : the case λ =∞
[Tutte 74] Chromatic sums for rooted planar triangulations, V : special equations
[Tutte 78] On a pair of functional equations of combinatorial interest
[Tutte 82] Chromatic solutions
[Tutte 82] Chromatic solutions II
[Tutte 84] Map-colourings and differential equations

[Tutte 95] Chromatic sums revisited

invariants



What happened inbetween?

[Tutte 73] Chromatic sums for rooted planar triangulations: the cases λ = 1 and
λ = 2
[Tutte 73] Chromatic sums for rooted planar triangulations, II : the case
λ = τ + 1
[Tutte 73] Chromatic sums for rooted planar triangulations, III : the case λ = 3
[Tutte 73] Chromatic sums for rooted planar triangulations, IV : the case λ =∞
[Tutte 74] Chromatic sums for rooted planar triangulations, V : special equations
[Tutte 78] On a pair of functional equations of combinatorial interest
[Tutte 82] Chromatic solutions
[Tutte 82] Chromatic solutions II
[Tutte 84] Map-colourings and differential equations

[Tutte 95] Chromatic sums revisited

invariants



More equations of this type

• Planar maps weighted by their... Tutte polynomial TM(µ, ν) [Tutte 68]

M(x , y) = 1+xyt(yµ−1)M(x , y)M(1, y) +xyt(xν−1)M(x , y)M(x , 1)

+ xyt
xM(x , y)−M(1, y)

x − 1
+ xyt

yM(x , y)−M(x , 1)

y − 1
.

• One has:
M(1, 1) ≡ M(1, 1; t, µ, ν) =

∑
M planar map

te(M) TM(µ, ν)

TM(µ, ν) = µ2 + ν2 + µν + µ+ ν

• The Potts model: This is equivalent to counting maps coloured in q
colours with a weight ν per monochromatic edge (q = (µ− 1)(ν − 1)).
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More equations of this type

• Planar maps weighted by their... Tutte polynomial TM(µ, ν) [Tutte 68]

• Walks confined to a quadrant with steps NE, W, S

Q(x , y) = 1 + txyQ(x , y) + t
Q(x , y)− Q(0, y)

x
+ t

Q(x , y)− Q(x , 0)

y

One has:

Q(x , y) ≡ Q(x , y ; t) =
∑

w in the quadrant
x i(w)y j(w)t`(w)

j

i

x3y 1t11
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A simple functional equation

Q(x , y) = 1 + txyQ(x , y) + t
Q(x , y)− Q(0, y)

x
+ t

Q(x , y)− Q(x , 0)

y

Q(x , y) =
∑

w in the quadrant
x i(w)y j(w)t`(w)

or(
1− t(xy + x̄ + ȳ)

)
xyQ(x , y) = xy − tyQ(0, y)− txQ(x , 0)

• The polynomial 1− t(xy + x̄ + ȳ) is the kernel of this equation

• The equation is linear, with two catalytic variables x and y (tautological
at x = 0 or y = 0)
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or (
1− t(xy + x̄ + ȳ)
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A simple functional equation
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Q(x , y)− Q(0, y)

x
+ t

Q(x , y)− Q(x , 0)

y
or, with x̄ = 1/x and ȳ = 1/y ,(

1− t(xy + x̄ + ȳ)
)
Q(x , y) = 1− tx̄Q(0, y)− tȳQ(x , 0),

or (
1− t(xy + x̄ + ȳ)

)
xyQ(x , y) = xy − tyQ(0, y)− txQ(x , 0)

• The polynomial 1− t(xy + x̄ + ȳ) is the kernel of this equation

• The equation is linear, with two catalytic variables x and y (tautological
at x = 0 or y = 0)



More equations with two catalytic variables

• Planar maps weighted by their... Tutte polynomial TM(µ, ν) [Tutte 68]

M(x , y) = 1+xyt(yµ−1)M(x , y)M(1, y) +xyt(xν−1)M(x , y)M(x , 1)

+ xyt
xM(x , y)−M(1, y)

x − 1
+ xyt

yM(x , y)−M(x , 1)

y − 1
.

• Walks confined to a quadrant

(1− t(x̄ + ȳ + xy))xyQ(x , y) = xy − tyQ(0, y)− txQ(x , 0)

(
1− t(y + x̄ + xȳ)

)
xyQ(x , y) = xy − tyQ(0, y)− tx2Q(x , 0)

(1− t(x + x̄ + ȳ + xy))xyQ(x , y) = xy − tyQ(0, y)− txQ(x , 0)

• And more! (e.g. permutations classes)
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Equations with ONE catalytic variable abund in map
enumeration

[Tutte 62]

Ψ(y) = 1 +
t
y

(
Ψ(y)

1− yΨ(y)
−Ψ(0)

)
[Brown 65]

U(y) = (1+y2U(y))3+2tU(y)(1+y2U(y))−t2U(0)U(y)+t2
U(y)− U(0)

y2

[Tutte 68] Planar maps:

F (y) = 1 + ty2F (y)2 + ty
yF (y)− F (1)

y − 1
[Mullin, Nemeth, Schellenberg 70]

T (y) = y(1 + yT (y))2 + t
T (y)− T (0)

y

→ Algebraic solutions! (Guess-and-check, Brown’s quadratic method)
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Equations with ONE catalytic variable

Theorem [mbm-Jehanne 06]
Let P(t, y , S(y ; t),A1(t), . . . ,Ak(t)) be a proper polynomial equation in
one catalytic variable y (it defines uniquely S(y ; t),A1(t), . . . ,Ak(t) as
formal power series in t). Then each of these series is algebraic.

The proof is constructive, and generalizes Brown’s quadratic method.

Example 1: planar maps

S(y ; t) = 1 + ty2S(y ; t)2 + ty
yS(y ; t)− A1(t)

y − 1



Equations with ONE catalytic variable

Theorem [mbm-Jehanne 06]
Let P(t, y , S(y ; t),A1(t), . . . ,Ak(t)) be a proper polynomial equation in
one catalytic variable y (it defines uniquely S(y ; t),A1(t), . . . ,Ak(t) as
formal power series in t). Then each of these series is algebraic.

The proof is constructive, and generalizes Brown’s quadratic method.

Example 1: planar maps

S(y ; t) = 1 + ty2S(y ; t)2 + ty
yS(y ; t)− A1(t)

y − 1
implies A1(t) = S(1; t)



Equations with ONE catalytic variable

Theorem [mbm-Jehanne 06]
Let P(t, y , S(y ; t),A1(t), . . . ,Ak(t)) be a proper polynomial equation in
one catalytic variable y (it defines uniquely S(y ; t),A1(t), . . . ,Ak(t) as
formal power series in t). Then each of these series is algebraic.

The proof is constructive, and generalizes Brown’s quadratic method.

Example 2: for S(y ; t) = Q(0, y ; t) and A1(t) = Q(0, 0; t),

t
y2 −

1
y
− ty = t

(
tyS(y ; t) +

1
y

)2

−
(
tyS(y ; t) +

1
y

)
− 2t2A1(t).



Equations with ONE catalytic variable

Theorem [mbm-Jehanne 06]
Let P(t, y , S(y ; t),A1(t), . . . ,Ak(t)) be a proper polynomial equation in
one catalytic variable y (it defines uniquely S(y ; t),A1(t), . . . ,Ak(t) as
formal power series in t). Then each of these series is algebraic.

The proof is constructive, and generalizes Brown’s quadratic method.

⇒ A special case of an Artin approximation theorem with “nested”
conditions [Popescu 86], [Swan 98]



But what about TWO catalytic variables?

• Properly q-coloured triangulations [Tutte 73]

T (x , y) = xq(q − 1) +
xyt
q

T (x , y)T (1, y)

+ xt
T (x , y)− T (x , 0)

y
− x2yt

T (x , y)− T (1, y)

x − 1
• Planar maps weighted by their... Tutte polynomial TM(µ, ν) [Tutte 68]

M(x , y) = 1+xyt(yµ−1)M(x , y)M(1, y) +xyt(xν−1)M(x , y)M(x , 1)

+ xyt
xM(x , y)−M(1, y)

x − 1
+ xyt

yM(x , y)−M(x , 1)

y − 1
.

• Walks confined to a quadrant [mbm-Mishna 10]

(1− t(x̄ + ȳ + xy))xyQ(x , y) = xy − tyQ(0, y)− txQ(x , 0)(
1− t(y + x̄ + xȳ)

)
xyQ(x , y) = xy − tyQ(0, y)− tx2Q(x , 0)

(1− t(x + x̄ + ȳ + xy))xyQ(x , y) = xy − tyQ(0, y)− txQ(x , 0)



A hierarchy of formal power series

• Rational series

A(t) =
P(t)

Q(t)

• Algebraic series

P(t,A(t)) = 0

• Differentially finite series (D-finite)
d∑

i=0

Pi (t)A(i)(t) = 0

• D-algebraic series
P(t,A(t),A′(t), . . . ,A(d)(t)) = 0

Multi-variate series: one DE per variable
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A hierarchy of formal power series

Alg.

Rat.

D-alg.

3-coloured triangs.

triangulations

q-coloured triangs.

D-finite

not DA

quadrant walks



II. Tutte’s invariants are, primarily, a
tool for proving the algebraicity of
solutions of functional equations

(1− t(x̄ + ȳ + xy))xyQ(x , y) = xy − tyQ(0, y)− txQ(x , 0)



Kreweras’ model

• The equation (with x̄ = 1/x and ȳ = 1/y):(
1− t(x̄ + ȳ + xy)

)
xyQ(x , y) = xy − txQ(x , 0)− tyQ(0, y)

= xy − R(x)− S(y)

with Q(x , y) ≡ Q(x , y ; t).

Theorem [Kreweras 65]
• The number of walks of length 3n + 2j ending at (0, j) is

q(0, j ; 3n + 2j) =
4n(2j + 1)

(n + j + 1)(2n + 2j + 1)

(
2j
j

)(
3n + 2j

n

)
• The associated generating function Q(0, y ; t) is algebraic [Gessel 86].
• So is Q(x , y ; t)



Kreweras’ model

• The equation (with x̄ = 1/x and ȳ = 1/y):(
1− t(x̄ + ȳ + xy)

)
xyQ(x , y) = xy − txQ(x , 0)− tyQ(0, y)

= xy − R(x)− S(y)

• Cancel the kernel: If we take x = t + ut2, both roots of the kernel,

Y0,1 =
x − t ±

√
(x − t)2 − 4t2x3

2tx2

are (Laurent) series in t with rational coefficients in u, and can be legally
substituted for y in Q(x , y).

This gives four equations:

Kernel RHS

xY0 = t(Y0 + x + x2Y 2
0 ) xY0 = R(x) + S(Y0)

xY1 = t(Y1 + x + x2Y 2
1 ) xY1 = R(x) + S(Y1)
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Kreweras’ model

• Four equations relating x ,R(x),Y0,Y1, S(Y0), S(Y1) and t:

Kernel RHS

xY0 = t(Y0 + x + x2Y 2
0 ) xY0 = R(x) + S(Y0)

xY1 = t(Y1 + x + x2Y 2
1 ) xY1 = R(x) + S(Y1)

• Eliminate x from the kernel equations:
t
Y 2

0
− 1

Y0
− tY0 =

t
Y 2

1
− 1

Y1
− tY1

• Eliminate R(x) from the RHS equations, and then x :

S(Y0) +
1
Y0

= S(Y1) +
1
Y1

The

two

following function

s

invariant

s

:

I (y) =
t
y2 −

1
y
− ty

and J(y) = S(y) +
1
y
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Expanding at y = 0 gives the value of c .

Polynomial equation with one catalytic variable ⇒ Q(0, y ; t) is algebraic
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What invariants are good for

start with an equation with two catalytic variables x and y (degree 1
in the main series Q(x , y))
cancel the kernel ⇒ Y0,Y1

find a pair of invariants in y
relate them algebraically (the invariant lemma)
obtain an equation with one catalytic variable only ⇒ algebraicity



Other equations: are there invariants?

from kernel × × − −

from RHS × − × −

Thm. [Bernardi, mbm, Raschel 15(a)]
Exactly 4 quadrant models with small steps have two invariants ⇒
uniform algebraic solution via the solution of an equation with one
catalytic variable
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Other equations: are there invariants?

Thm. [Bernardi, mbm, Raschel 15(a)]
Exactly 4 quadrant models with small steps have two invariants ⇒
uniform algebraic solution via the solution of an equation with one
catalytic variable

Gessel’s model
conjecture for the number q(0, 0; n) of excursions [Gessel ' 00]
proof of this conjecture [Kauers, Koutschan & Zeilberger 08]
Q(x , y ; t) are algebraic! [Bostan & Kauers 09a]
new proof via complex analysis [Bostan, Kurkova & Raschel 13(a)]
an elementary and constructive proof [mbm 15(a)]



Other equations: are there invariants?

Thm. [Bernardi, mbm, Raschel 15(a)]
Exactly 4 quadrant models with small steps have two invariants ⇒
uniform algebraic solution via the solution of an equation with one
catalytic variable

Thm. [Tutte 74], [Bernardi-mbm 11]
For q-coloured triangulations (or Potts on planar maps, or on
triangulations), there is one invariant for any q, and a second one if
q = 4 cos2 kπ

m , with q 6= 0, 4. ⇒ Algebraicity



Example: Properly 3-coloured planar maps

• Two catalytic variables [Tutte 68]

M(x , y) = 1 + xyt (1 + 2y)M(x , y)M(1, y)− xytM(x , y)M(x , 1)

− xyt
xM(x , y)−M(1, y)

x − 1
+ xyt

yM(x , y)−M(x , 1)

y − 1
• One catalytic variable [Bernardi-mbm 11]

P(M(1, y),M0,M1,M2, t, y) = 0



Example: Properly 3-coloured planar maps

P(M(1, y),M0,M1,M2, t, y) = 0
= 36 y6t3(2 y+1)(y−1)3M(y)4+2 t2y4(y−1)2(42 ty3+12 y2t−26 y3−39 y2+39 y+26)M(y)3

+(−36 y6t3(y−1)2M0+(y−1)y2t(32 t2y5+4 y4t2+2 ty5−120 ty4+8 y5+78 ty3+38 y4

+40 y2t−25 y3−71 y2+25 y+25))M(y)2+(−36 y5t3(y−1)2M0
2−6 t2(y−1)y4(6 y2t−2 yt

−9 y2+5 y+4)M0−12 M1 t3y7+24 M1 t3y6+4 y7t3−12 y5t3M1+10 t2y7−42 t2y6−26 ty7

+28 t2y5+52 ty6+4 y4t2+32 ty5−4 y6−94 ty4−2 y5+14 ty3+16 y4+22 y2t−16 y2+2 y+4)M

−36 y4t3(y−1)2M0
3−2 t2(y−1)y3(22 y2t−16 yt−33 y2+27 y+6)M0

2−2 y2t(18 M1 t2y4

−36 M1 t2y3+6 y4t2+18 M1 t2y2−6 y3t2−4 ty4+2 y2t2−7 ty3+16 y4+13 y2t−23 y3−2 yt

+5 y+2)M0−(y−1)(12 y5t3M1+2 M2 t3y5−8 y4t3M1−22 M1 t2y5−2 y4t3M2

+18 M1 t2y4+4 M1 t2y3−11 ty5+21 ty4−4 y5−9 ty3−6 y4−y2t+10 y3+10 y2−6 y−4).



Two map examples [Bernardi-mbm 11]

• Properly 3-coloured planar maps
Let A be the quartic series in t defined by A(0) = 0 and

A = t
(1 + 2A)3

1− 2A3 .

Then the generating function of properly 3-coloured planar maps is∑
M prop. 3-coloured

te(M) =
(1 + 2A)(1− 2A2 − 4A3 − 4A4)

(1− 2A3)2

• The Ising model on planar maps (q = 2)
Let A be the series in t, with polynomial coefficients in ν, defined by

A = t

(
1 + 3 ν A− 3 ν A2 − ν2A3)2
1− 2A + 2 ν2A3 − ν2A4 .

Then the Ising generating function of planar maps is rational in ν and A:∑
M 2-coloured

te(M)νmonochr(M) = Rat(ν,A)
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III. An analytic version of Tutte’s
invariants
Applications to differential algebraicity of quadrant walks

[Bernardi, mbm, Raschel]



Classification of quadrant walks with small steps

non-D-finiteD-finite

transcendentalalgebraic

quadrant models: 79

194

23 56

non-D-finiteD-finite

transcendentalalgebraic

quadrant models: 79

Theorem
The series Q(x , y ; t) is D-finite for 23 models, and algebraic for 4 of them.

[mbm-Mishna 10], [Bostan-Kauers 10] D-finite
[Kurkova-Raschel 12] non-singular non-D-finite
[Mishna-Rechnitzer 07], [Melczer-Mishna 13] singular non-D-finite
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A weaker (and analytic) notion of invariants

• Still require that I (Y0) = I (Y1), where Y0(x),Y1(x) are the roots of
the kernel
... but only for some values of x (and t).
• meromorphicity condition in a domain

[Fayolle, Iasnogorodski, Malyshev 99], [Kurkova, Raschel 12]
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the kernel
... but only for some values of x (and t).
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Can we find weak invariants?

Theorem [Fayolle et al. 99, Raschel 12]
For each non-singular model, there exists an (explicit) weak invariant of
the form

I (y ; t) = ℘ (Z(y ; t), ω1(t), ω3(t))

where
℘ is Weierstrass elliptic function
its periods ω1 and ω3 are elliptic integrals
its argument Z is also an elliptic integral



Can we find weak invariants?

Theorem [Fayolle et al. 99, Raschel 12]
For each non-singular model, there exists an (explicit) weak invariant of
the form

I (y ; t) = ℘ (Z(y ; t), ω1(t), ω3(t))

where
℘ is Weierstrass elliptic function
its periods ω1 and ω3 are elliptic integrals
its argument Z is also an elliptic integral

Proposition [Bernardi-mbm-Raschel]
I (y ; t) is D-algebraic in y and t.



The invariant lemma

For appropriate values of x , we have:

I (Y0) = I (Y1) and J(Y0) = J(Y1)

where I (y) is the weak invariant and J(y) = t(1 + y)Q(0, y) + 1/y .

The invariant lemma [Litvinchuk 00]
There are few invariants: J(y) must be a rational function in I (y). The
value of this rational function is found by looking at the poles and zeroes
of J(y).
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I (−1)− I (0)
− 1



The invariant lemma

For appropriate values of x , we have:

I (Y0) = I (Y1) and J(Y0) = J(Y1)

where I (y) is the weak invariant and J(y) = t(1 + y)Q(0, y) + 1/y .

The invariant lemma [Litvinchuk 00]
There are few invariants: J(y) must be a rational function in I (y). The
value of this rational function is found by looking at the poles and zeroes
of J(y).

J(y) = t(1 + y)Q(0, y) +
1
y

=
I ′(0)

I (y)− I (0)
− I ′(0)

I (−1)− I (0)
− 1

Expression of Q(0, y ; t) in terms of the (explicit) weak invariant I (y)



The invariant lemma

For appropriate values of x , we have:

I (Y0) = I (Y1) and J(Y0) = J(Y1)

where I (y) is the weak invariant and J(y) = t(1 + y)Q(0, y) + 1/y .

The invariant lemma [Litvinchuk 00]
There are few invariants: J(y) must be a rational function in I (y). The
value of this rational function is found by looking at the poles and zeroes
of J(y).

Corollary [Bernardi-mbm-Raschel 15(a)]
For the 9 models having no K-invariant but a RHS-invariant, the series
Q(x , y ; t) is D-algebraic.



Completed classification of quadant walks with small steps

∃ K-inv: 23

non-D-finite

∃ RHS-inv: 9

D-finite

no RHS-inv:19

transcendental D-algebraic

no K-inv: 56

∃ RHS-inv: 4

algebraic ???

no RHS-inv: 47

quadrant models: 79

Not DA in y for 42 models

[Dreyfus, Hardouin, Roques, Singer 17(a)]



Completed classification of quadant walks with small steps

∃ K-inv: 23

non-D-finite

∃ RHS-inv: 9

D-finite

no RHS-inv:19

transcendental D-algebraic

no K-inv: 56

∃ RHS-inv: 4

algebraic ???

no RHS-inv: 47

quadrant models: 79

Not DA in y for 42 models

[Dreyfus, Hardouin, Roques, Singer 17(a)]



Conclusion: Invariants are back!

Used once by Tutte to count q-coloured triangulations
Apply to more equations (Potts model on maps, quadrant walks...)
Extension to prove D-algebraicity for quadrant walks
Prove more algebraicity or D-algebraicity results with them? (e.g.
conjectures on lattice walks confined to/avoiding a quadrant)




