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The Tutte polynomial is often called a graph invariant.

But this talk does not deal with the Tutte polynomial (or not much).



Enumerative combinatorics: an example [Tutte 62]

e The number of triangulations with n + 3 vertices is
2 4n+1
3)=_°
a(n+3) n(n+1)<n—1>
e The generating function of triangulations, counted by vertices, is

A=Y ame = S e

n T triangulation



Enumerative combinatorics: an example [Tutte 62]

e The number of triangulations with n + 3 vertices is
2 4n+1
3)= —F—
a(n+3) n(n+1)<n—1>
e The generating function of triangulations, counted by vertices, is
Alt) =) a(n)t" = > V(7

n T triangulation

It is an algebraic series:

16 110 — £ — 19(20 t — 1)A(t) + £* (8 ¢ + 3) A(£) +3 £2A(t)* + A(£)* = 0.



Enumerative combinatorics: an example [Tutte 62]

e The number of triangulations with n + 3 vertices is
2 4n+1
a(n+3) = n(n+1)<n—1>
e The generating function of triangulations, counted by vertices, is
Alt) =) a(n)t" = > V(7

n T triangulation

e Refine the enumeration by recording the degree of the root:
A(x,t) := Z xd(T) pv(T)

T triangulation



e Let T(x,y;t) = T(x,y) be the unique formal power series in t, with
polynomial coefficients in g, x and y, satisfying

T(x.y) = xq(q — 1) + %yt T(x,y)T(Ly)

Ty) = T(x0) - " T(x, y)z - 1T(1, y)

+ xt

A quadratic equation with two catalytic variables x and y [Zeilberger 00]



e Let T(x,y;t) = T(x,y) be the unique formal power series in t, with
polynomial coefficients in g, x and y, satisfying

T(x.y) = xq(q — 1) + %yt T(x,y)T(Ly)

T(X’y) — T(X70) —X2yt T(va) — T(lay)

t
+ X 1

e Then T(1,0;t) counts properly g-coloured triangulations by the
number of triangles.

—



e The number c(n) of g-coloured triangulations with 2n triangles satisfies:
q(n+1)(n+2)c(n) = q(qg —4)(3n - 1)(3n = 2)c(n — 1)
+2 Z i(i+1)(3n—3i+1)c(i — 1)c(n— i),

with ¢(0) = g(q — 1). =



[Tutte, 1984] “Map-colourings and differential equations”
e The number c(n) of g-coloured triangulations with 2n triangles satisfies:
q(n+1)(n+2)c(n) = q(g — 4)(3n — 1)(3n — 2)c(n — 1)
+2Z (i +1)(3n — 3i 4+ 1)c(i — 1)c(n — i),
with ¢(0) = g(q — 1).

e The associated generating function /
C(t) =) c(nt"? \
is differentially algebraic, and satisfies \

2¢*(1 — q)t+ (gt +10C —6tC")C" + q(4 — q)(20C — 18tC’ +9t2C") = 0



What happened inbetween?

[Tutte 73] Chromatic sums for rooted planar triangulations: the cases A = 1 and
A=2

[Tutte 73] Chromatic sums for rooted planar triangulations, Il : the case
A=7+1
[Tutte 73] Chromatic sums for rooted planar triangulations, 1l : the case A = 3

[Tutte 73] Chromatic sums for rooted planar triangulations, IV : the case A = oo
[Tutte 74] Chromatic sums for rooted planar triangulations, V : special equations
[Tutte 78] On a pair of functional equations of combinatorial interest

[Tutte 82] Chromatic solutions

[Tutte 82] Chromatic solutions I

[Tutte 84] Map-colourings and differential equations

[Tutte 95] Chromatic sums revisited
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e Planar maps weighted by their... Tutte polynomial Ty (p,v) [Tutte 68]

M(x,y) = 1+xyt(yu—1)M(x,y)M(1, y) +xyt(xv —1)M(x, y)M(x, 1)

XM(Xv)/) - M(]-vy) +thyM(Xay) - M(X71)
x—1 y—1

+ xyt



More equations of this type

e Planar maps weighted by their... Tutte polynomial Tpy(,v) [Tutte 68]

M(x,y) = 14+xyt(ypu—1)M(x, y)M(1,y)+ xyt(xv — 1)M(x, y)M(x, 1)
xM(x.y) = M(L,y) , yM(x,y) = M(x,1)

t
+ xy 1 + xy v 1

e One has:

M1, 1) =ML, Lt py)= > M Ty )
M planar map

Tm(p,v) = p* + 2 + v+ p+v



More equations of this type

e Planar maps weighted by their... Tutte polynomial Tpy(,v) [Tutte 68]

M(x,y) = 14+xyt(ypu—1)M(x, y)M(1,y)+ xyt(xv — 1)M(x, y)M(x, 1)
xM(x.y) = M(L,y) , yM(x,y) = M(x,1)

+ xyt <1 + xy v 1
e One has:
M(1,1) = M(1,1; t, u,v) = > M) Ty, v)
M planar map

Tm(p,v) = p* + 2 + v+ p+v

e The Potts model: This is equivalent to counting maps coloured in g
colours with a weight v per monochromatic edge (¢ = (1 — 1)(v — 1)).



e Planar maps weighted by their... Tutte polynomial Tpy(u,v) [Tutte 68]

e Walks confined to a quadrant with steps NE, W, S
Q(X7y)_Q(O7y) Q(Xay)_Q(X70)
X

Q(x,y) =1+ txyQ(x,y) + t "

+t



More equations of this type

e Planar maps weighted by their... Tutte polynomial Ty (u,v) [Tutte 68]

o Walks confined to a quadrant with steps NE, W, S

14 bvO(x Qlx,y) = Q(0,y) , . Qlx,y) — Q(x,0)
Qlx,y) =1+ txyQ(x,y) +t . +t "

One has:
Q(x,y) = Qx,y; t) = Z X"(W)yj(W) #(w)

w in the quadrant

—( . x3y1t11




Q(x, y) QO.y)  , Qx, y) Q(x,0)

Qlx,y) =14+ tyQ(x,y) +t

SYREN!

Qey)= Y xyie

w in the quadrant




Q(x,y) = Q0. y) (x,y) = Q(x,0)

y

Q(x,y) =1+ txyQ(x,y) +t +t Q

or, with x=1/xand y =1/y,
(1—tly +x47))Qx.y) =1—txQ(0,y) — tyQ(x,0),



A simple functional equation nd

Q(x,y) =1+ txyQ(x,y) + t Q(x,y) = Q0. y) Ly Q(x,y) — Q(x,0)

X y

or, with x =1/xand y =1/y,
(1 -ty +x+7))Qx.y) =1 - txQ(0. y) — tyQ(x,0),

or

(1 =ty +x+7))xyQ(x,y) = xy — tyQ(0,y) — txQ(x,0)

e The polynomial 1 — t(xy + X + ¥) is the kernel of this equation

e The equation is linear, with two catalytic variables x and y (tautological
atx=0o0ry=0)



e Planar maps weighted by their... Tutte polynomial Tp(p,v) [Tutte 68]

M(x,y) = 14+xyt(yu—1)M(x, y)M(1,y) + xyt(xv — 1)M(x, y)M(x, 1)

xM(x,y) — M(1,y) n thyM(X, y) = M(x,1)

t
T x—1 y—1

e Walks confined to a quadrant

%

(1= t(x+y+xy)xyQ(x,y) = xy — tyQ(0,y) — txQ(x, 0)



More equations with two catalytic variables

e Planar maps weighted by their... Tutte polynomial Ty (u,v) [Tutte 68]

M(x,y) = 14+xyt(ypu—1)M(x, y)M(1,y)+ xyt(xv — 1)M(x, y)M(x, 1)
+ thXM(X7};)__1M(17)/) + thyM(Xv}}//)__lM(Xﬂ 1).

e Walks confined to a quadrant [mbm-Mishna 10]

(1= t(x+y+xy)xyQ(x,y) = xy — tyQ(0,y) — txQ(x, 0)

(1—tly +X+x7))xyQ(x,y) = xy — tyQ(0,y) — tx*Q(x,0)

j/
K
jé

(1 —t(x +Xx+y+x7))xyQ(x,y) = xy — tyQ(0,y) — txQ(x,0)



More equations with two catalytic variables

e Planar maps weighted by their... Tutte polynomial Ty (u,v) [Tutte 68]

M(x,y) = 14+xyt(ypu—1)M(x, y)M(1,y)+ xyt(xv — 1)M(x, y)M(x, 1)

+thXM(X7y) _1M(17y) +thyM(X7y) _1M(X7 1)
X — y —

e Walks confined to a quadrant [mbm-Mishna 10]

j/
K
jé

(1= t(x+y+xy)xyQ(x,y) = xy — tyQ(0,y) — txQ(x, 0)

(1—tly +X+x7))xyQ(x,y) = xy — tyQ(0,y) — tx*Q(x,0)

(1 —t(x +Xx+y+x7))xyQ(x,y) = xy — tyQ(0,y) — txQ(x,0)

e And more! (e.g. permutations classes)



Tutte 62
[Tutte 62] \Il(y):1+£( V(y) _w(o))
y \1-yW¥(y)

[Brown 65]

U(y) = (1+y2U(y))*+2tU(y) (1452 U(y))—tzu(o)‘f(ﬂ“Qw

[Tutte 68] Planar maps:

Fly)=1+ty°F(y)* + tyw
[Mullin, Nemeth, Schellenberg 70]
T(y) = y(1 +yT()? + e2 =T

y



[Tutte 62]

ot Viy)
v =1+ y (1 —yV(y) w(o))

[Brown 65]
U) = (L2 U)) 200 (142Ul -2 U0 Uy )+ 2 U0
[Tutte 68] Planar maps:
FO) =1+ 02F( ) + o =0
[Mullin, Nemeth, Schellenberg 70]

T(y)=y(1+yT(y

— Algebraic solutions! (Guess-and-check, Brown's quadratic method)

))2 +t T(y) — T(O)
y



Let P(t,y,S(y;t), A1(t),...,Ak(t)) be a proper polynomial equation in
one catalytic variable y (it defines uniquely S(y;t), A1(t) A(t) as
formal power series in t). Then each of these series is algebraic.

The proof is constructive, and generalizes Brown's quadratic method.

Example 1: planar maps

S(y; t) — Ai(t
S(yit) =1+ ty?S(y; t)? + ty” (yy)_l 1(t)




Let P(t,y,S(y;t), A1(t),...,Ak(t)) be a proper polynomial equation in
one catalytic variable y (it defines uniquely S(y;t), A1(t) A(t) as
formal power series in t). Then each of these series is algebraic.

The proof is constructive, and generalizes Brown's quadratic method.

Example 1: planar maps

yS(y; t) — Au(t)
1

S(yit) =1+ 1y°S(yit)* + ty

implies A;(t) = S(1;t)



Let P(t,y,S(y;t), A1(t),...,Ak(t)) be a proper polynomial equation in
one catalytic variable y (it defines uniquely S(y;t), A1(t) A(t) as
formal power series in t). Then each of these series is algebraic.

The proof is constructive, and generalizes Brown's quadratic method.

Example 2: for S(y; t) = Q(0,y;t) and A;(t) = Q(0,0; t),

i—l—t—t(tS(-t)+1>2—(t5(-1.“)+1>—21-“2A(1“)
27, y yoy; % yoly: y (1)

{




Let P(t,y,S(y;t), A1(t),...,Ak(t)) be a proper polynomial equation in
one catalytic variable y (it defines uniquely S(y;t), A1(t) A(t) as
formal power series in t). Then each of these series is algebraic.

The proof is constructive, and generalizes Brown's quadratic method.

= A special case of an Artin approximation theorem with “nested”
conditions [Popescu 86|, [Swan 98]



But what about TWO catalytic variables?

e Properly g-coloured triangulations [Tutte 73]
xyt
T(x,y) =xq(q—1) + % T(x,y)T(Ly)

T(x,y) =T T(x.y) — T(L,
4 xt (X7y) (X’O)—Xzyt (Xy) ( y)
y x—1
e Planar maps weighted by their... Tutte polynomial Tpy(,v) [Tutte 68|

M(x,y) = 14+xyt(yu—1)M(x, y)M(1,y)+ xyt(xv — 1)M(x, y)M(x, 1)

M — M(1 M — M(x.1
oyt (x,¥) 1 (,y)+xyty (X7f/) 1 (x, )_
X_ —

e Walks confined to a quadrant [mbm-Mishna 10]

(1—t(x+7+xy))xyQ(x,y) = xy — tyQ(0,y) — txQ(x, 0)

(1= t(y +x+x7))xyQ(x,y) = xy — tyQ(0,y) — tx*Q(x,0)

j/
K
%

(1—t(x+x+7+xy))xyQ(x,y) = xy — tyQ(0,y) — txQ(x,0)



A hierarchy of formal power series

e Rational series "
P(t
A =40

e Algebraic series
P(t,A(t)) =0

e Differentially finite series (D-finite)

d
> Pi(t)A(r) =0
i=0

e D-algebraic series
P(t, At), A(t), ..., A (t)) =0




A hierarchy of formal power series

o Rational series

_ P(1)
A(t) = A0
e Algebraic series
P(t,A(t)) =0

e Differentially finite series (D-finite)
d
> Pi(t)A(r) =0
i=0

e D-algebraic series
P(t, At), A(t), ..., A (t)) =0

Multi-variate series: one DE per variable




A hierarchy of formal power series




A hierarchy of formal power series

triangulations




A hierarchy of formal power series

triangulations

g-coloured triangs.



A hierarchy of formal power series

triangulations

3-coloured triangs.

g-coloured triangs.



A hierarchy of formal power series

quadrant walks

4

triangulations

3-coloured triangs.

g-coloured triangs. not DA

¥ H R




(1—t(x+y+xy))xyQ(x,y) = xy — tyQ(0, y) — txQ(x, 0)

{




e The equation (with x =1/x and y = 1/y):
(1—t(x+7 +x))xQ(x,y) = xy — txQ(x,0) — tyQ(0, y)
— xy = R(x) - S(»)
with Q(x,y) = Q(x, y; t).

e The number of walks of length 3n + 2/ ending at (0, /) is

q(0.ji3n+2)) = — I D (21') <3n % 2j>

(n+j+1)2n+2/+1)\J n

e The associated generating function Q(0, y; t) is algebraic [Gessel 86].
e Sois Q(x,y;t)




e The equation (with x =1/x and y = 1/y):
(1 t(x+7 +x))xQ(x,y) = xy — txQ(x,0) — tyQ(0, y)
=xy = R(x) = 5(y)



Kreweras' model

e The equation (with x =1/x and y = 1/y):
(1= t(x+ 7 +x9)0Q(x,y) = xy — txQ(x,0) — tyQ(0, )
=xy — R(x) = 5(y)
e Cancel the kernel: If we take x = t + ut?, both roots of the kernel,
x —t 4 /(x — t)2 — 4t2x3
2tx2

are (Laurent) series in t with rational coefficients in u, and can be legally
substituted for y in Q(x,y).

Yo1 =




Kreweras' model

e The equation (with x =1/x and y = 1/y):
(1= t(x+ 7 +x9)0Q(x,y) = xy — txQ(x,0) — tyQ(0, )
=xy — R(x) = 5(y)
e Cancel the kernel: If we take x = t + ut?, both roots of the kernel,
x —t 4 /(x — t)2 — 4t2x3
2tx?

are (Laurent) series in t with rational coefficients in u, and can be legally
substituted for y in Q(x,y). This gives four equations:

Kernel ‘ RHS
xYo = t(Yo + x + x*3Y§) | xYo = R(x) + S(Yo)
XY1=Z‘(Y1 +X+X2Y12) XY1:R(X)+S(Y1)

Yo1 =




e Four equations relating x, R(x), Yo, Y1,5(Y0),S(Y1) and t:
Kernel | RHS

xYo = R(x) + S(Yo)

xY1 = R(x) + S("1)

xYo = t(Yo +x—|—x2Y02)

xY1 =t"1 +x+x2Y12)



e Four equations relating x, R(x), Yo, Y1,5(Y0),S(Y1) and t:
Kernel | RHS

xYo = R(x) + S(Yo)

xY1 = R(x) + S("1)

xYo = t(Yo + x + x*Y§)
xY1 = t(Y1 + x + x2Y?)

e Eliminate x from the kernel equations:
t 1 t 1

Yy = — — — — tY
A 7R TR



e Four equations relating x, R(x), Yo, Y1,5(Y0),S(Y1) and t:
Kernel | RHS

xYo = R(x) + S(Y0)

xY1 = R(x) + S("1)

xYo = t(Yo + x + x*Y§)
xY1 = t(Y1 + x + x2Y})

e Eliminate x from the kernel equations:
t 1 t 1
Y2 Yo

tYy = —tY]

Y2 n




e Four equations relating x, R(x), Yo, Y1,5(Y0), S(Y1) and t:
Kernel | RHS

xYo = R(x) + S(Y0)

xY1 = R(x)+ S("1)

xYo = t(Yo + x + x*Y§)

xY1 = t(Y1 + x + x2Y})
e Eliminate x from the kernel equations:

t 1 t 1

Yy = — — — — tY
A 7R TR

e Eliminate R(x) from the RHS equations, and then x:




We have
I(Yo) = 1(Y1) and J(Yo) = J(Y1)
with
t 1

1
I(y) = Ty ty and  J(y)=tyQ(0,y) + I



We have
(Vo) = I(Yv1) and  J(Yo) = J(V2)
with
in="-1"4  and  Jy) =00y +
=g,y y)=1Q0.y) + .

There are few invariants: /(y) must be a polynomial in J(y) whose
coefficients are series in t.




We have
(Vo) = I(Yv1) and  J(Yo) = J(V2)
with
in="-1"4  and  Jy) =00y +
=g,y y)=1Q0.y) + .

There are few invariants: /(y) must be a polynomial in J(y) whose
coefficients are series in t.

) = Sty = ¢ (tyQ(O,y) + 1>2— (tyQ(O,y) + l) +c
y2 y y y

Expanding at y = 0 gives the value of c.



We have
(Vo) = I(Yv1) and  J(Yo) = J(V2)
with
in="-1"4  and  Jy) =00y +
=g,y y)=1Q0.y) + .

There are few invariants: /(y) must be a polynomial in J(y) whose
coefficients are series in t.

t 1 1)2 1
I(y)= ——=—ty = 0, g - 0, =) —2t2Q(0,0).
() i,y t(tyQ( y)+y> (tyQ( y)+y) t°Q(0,0)

Expanding at y = 0 gives the value of c.



We have
(Vo) = I(Yv1) and  J(Yo) = J(V2)
with
in="-1"4  and  Jy) =00y +
=g,y y)=1Q0.y) + .

There are few invariants: /(y) must be a polynomial in J(y) whose
coefficients are series in t.

t 1 1)2 1
I(y)= ——=—ty = 0, g - 0, =) —2t2Q(0,0).
() i,y t(tyQ( y)+y> (tyQ( y)+y) t°Q(0,0)

Expanding at y = 0 gives the value of c.
Polynomial equation with one catalytic variable = Q(0, y; t) is algebraic



What invariants are good for

@ start with an equation with two catalytic variables x and y (degree 1
in the main series Q(x, y))

cancel the kernel = Y, V1
find a pair of invariants in y

relate them algebraically (the invariant lemma)

obtain an equation with one catalytic variable only = algebraicity



M EER

from kernel

from RHS




Exactly 4 quadrant models with small steps have two invariants =

uniform algebraic solution via the solution of an equation with one

catalytic variable

< A




Exactly 4 quadrant models with small steps have two invariants =

uniform algebraic solution via the solution of an equation with one

catalytic variable

< A
74 Gessel's model

@ conjecture for the number g(0,0; n) of excursions [Gessel ~ 00]
@ proof of this conjecture [Kauers, Koutschan & Zeilberger 08]

@ Q(x,y;t) are algebraic! [Bostan & Kauers 09a]
°
°

new proof via complex analysis [Bostan, Kurkova & Raschel 13(a)]
an elementary and constructive proof [mbm 15(a)]



Exactly 4 quadrant models with small steps have two invariants =
uniform algebraic solution via the solution of an equation with one
catalytic variable

< A

For g-coloured triangulations (or Potts on planar maps, or on
triangulations), there is one invariant for any g, and a second one if
q=4cos? & with g #£0,4. = Algebraicity

m




e Two catalytic variables [Tutte 68]

M(x,y) =1+ xyt (1 +2y) M(x,y)M(1,y) — xytM(x, y)M(x,1)

xM(x,y) — M(1,y) yM(x,y) — M(x,1)
Xyt 1 + xyt y—1

e One catalytic variable [Bernardi-mbm 11]
P(M(lay)a M07 Mla M2; tay) =0



Example: Properly 3-coloured planar maps

P(/\/I(l,y), Moy, My, My, t,y) =0
=36y0t3(2y+1)(y—1)>M(y)*+2 t2y*(y—1)* (42 ty3+12 y2t—26 y3—39 y2+30 y+26 ) M(y)*
+(=36 Y53 (y—1)*Mo+(y—1)y2t(32 t2y5+4 y*£242 ty5—120 ty*+8 y5+ 78 ty>+ 38 y *
+40y2t—25y3—71y24+25y+25) )M (y)2+(—36 y®t3(y—1)*Mo?—6 t2(y—1)y* (6 y2t—2 yt
—9y245 y+4)l\/lo—12 My t3y7 424 My t3y05+4 yTt3-12 y5t3 M +10 t2y 7 —42 t2y0 26 ty7
+2812y5+52ty0+4 y 12432 1y5—4 Y004 ty4—2 5+ 14 ty3+16 y4 422 y2t—16 y2+2 y+4)M
=36 y*t3(y—1)°Mo®~2 £3(y—1)y3(22 y2t—16 yt—33 y24+27 y+6 ) Mo —2 y2 (18 My t2y*
—36 My t2y3+6 y*t2+18 My t2y?2—6 y3t2—4 ty* 42 y2t2—7 ty34+16 y*+13 y2t—23 y3 -2yt
+5 y+2)M07(y71)(12 yPt3M1+2 My t3y®—8 y*t3 My —22 My t2y5 -2 y*t3 M,

+18 My t2y44+4 My t2y3—11 ty®+21 ty*—4 y5—91ty3—6 y*—y2t+10 y3+10 y2—6 y—4).



e Properly 3-coloured planar maps
Let A be the quartic series in t defined by A(0) =0 and

(14 2A)3
A=t~ "7
1-—2A3
Then the generating function of properly 3-coloured planar maps is
Z (M) _ (1+2A)(1—2A2_4A3_4A4)
(1 _ 2A3)2

M prop. 3-coloured



Two map examples [Bernardi-mbm 11]

e Properly 3-coloured planar maps
Let A be the quartic series in t defined by A(0) =0 and

3
ECEEY)]
1—2A3
Then the generating function of properly 3-coloured planar maps is
Z (M) _ (1+2A)(1—2A2_4A3_4A4)
(1 —2A3)2

M prop. 3-coloured

e The Ising model on planar maps (g = 2)
Let A be the series in t, with polynomial coefficients in v, defined by
(1 +3vA—3VA%— V2A3)2
1—-2A+202A3 — 2A4
Then the Ising generating function of planar maps is rational in v and A:
Z te(M)Vmonochr(M) = Rat(v, A)
M 2-coloured

A=t




Applications to differential algebraicity of quadrant walks

[Bernardi, mbm, Raschel]
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o Still require that /(Yp) = /( Y1), where Yp(x), Y1(x) are the roots of
the kernel

... but only for some values of x (and t).

e meromorphicity condition in a domain



A weaker (and analytic) notion of invariants

o Still require that /(Yp) = /(Y1), where Yp(x), Y1(x) are the roots of
the kernel

... but only for some values of x (and t).

e meromorphicity condition in a domain

Probability Theory and Stochastic Modelling 40

Guy Fayolle
Roudolf fasnogorodski
Vadim Malyshev

Random
Walks in the
Quarter Plane
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&) Springer
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[Fayolle, lasnogorodski, Malyshev 99], [Kurkova, Raschel 12]



For each non-singular model, there exists an (explicit) weak invariant of
the form

I(y;t) = p(2(y; t),w1(t),ws(t))

where
© is Weierstrass elliptic function
its periods wy and w3 are elliptic integrals

its argument Z is also an elliptic integral




For each non-singular model, there exists an (explicit) weak invariant of
the form

I(y;t) = p(2(y; t),w1(t),ws(t))

where
© is Weierstrass elliptic function
its periods wy and w3 are elliptic integrals

its argument Z is also an elliptic integral

I(y; t) is D-algebraic in y and t.




For appropriate values of x, we have:
I(Yo) = /(Yl) and J(Yo) = J(Yl)
where /(y) is the weak invariant and J(y) = t(1 + y)Q(0,y) + 1/y.
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There are few invariants: J(y) must be a rational function in /(y). The

value of this rational function is found by looking at the poles and zeroes

of J(y).
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For appropriate values of x, we have:
/(Yo) = /(Yl) and J(Yo) = J(Yl)
where /(y) is the weak invariant and J(y) = t(1 + y)Q(0,y) + 1/y.

There are few invariants: J(y) must be a rational function in /(y). The

value of this rational function is found by looking at the poles and zeroes

of J(y).

B 1 (o) I(0)
Jy) = t(1+y)Q(0,y) + y T =10 (=) - i@ !

Expression of Q(0,y;t) in terms of the (explicit) weak invariant /(y)




For appropriate values of x, we have:
/(Yo) = /(Yl) and J(Yo) = J(Yl)
where /(y) is the weak invariant and J(y) = t(1 + y)Q(0,y) + 1/y.

There are few invariants: J(y) must be a rational function in /(y). The
value of this rational function is found by looking at the poles and zeroes

of J(y).

For the 9 models having no K-invariant but a RHS-invariant, the series
Q(x, y; t) is D-algebraic.

A RFA TR
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Completed classification of quadant walks with small steps

quadrant models: 79
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algebraic transcendental D-algebraic 77

Not DA in y for 42 models

[Dreyfus, Hardouin, Roques, Singer 17(a)]



Conclusion: Invariants are back!

@ Used once by Tutte to count g-coloured triangulations
@ Apply to more equations (Potts model on maps, quadrant walks...)
@ Extension to prove D-algebraicity for quadrant walks

@ Prove more algebraicity or D-algebraicity results with them? (e.g.
conjectures on lattice walks confined to/avoiding a quadrant)





