Tutte's invariants in enumerative combinatorics

Mireille Bousquet-Mélou, CNRS, Université de Bordeaux, France

with

Olivier Bernardi, Brandeis University, Boston, US
Kilian Raschel, CNRS, Université de Tours, F

Tutte's invariants in enumerative combinatorics

Mireille Bousquet-Mélou, CNRS, Université de Bordeaux, France

The Tutte polynomial is often called a graph invariant.
But this talk does not deal with the Tutte polynomial (or not much).

Enumerative combinatorics: an example

- The number of triangulations with $n+3$ vertices is

$$
a(n+3)=\frac{2}{n(n+1)}\binom{4 n+1}{n-1}
$$

- The generating function of triangulations, counted by vertices, is

$$
A(t):=\sum_{n} a(n) t^{n}=\sum_{T \text { triangulation }} t^{v(T)}
$$

Enumerative combinatorics: an example

- The number of triangulations with $n+3$ vertices is

$$
a(n+3)=\frac{2}{n(n+1)}\binom{4 n+1}{n-1}
$$

- The generating function of triangulations, counted by vertices, is

$$
A(t):=\sum_{n} a(n) t^{n}=\sum_{T \text { triangulation }} t^{v(T)}
$$

It is an algebraic series:

$$
16 t^{10}-t^{9}-t^{6}(20 t-1) A(t)+t^{4}(8 t+3) A(t)^{2}+3 t^{2} A(t)^{3}+A(t)^{4}=0
$$

$$
v(T)=6
$$

Enumerative combinatorics: an example

- The number of triangulations with $n+3$ vertices is

$$
a(n+3)=\frac{2}{n(n+1)}\binom{4 n+1}{n-1}
$$

- The generating function of triangulations, counted by vertices, is

$$
A(t):=\sum_{n} a(n) t^{n}=\sum_{T \text { triangulation }} t^{v(T)}
$$

- Refine the enumeration by recording the degree of the root:

$$
A(x, t):=\sum_{T \text { triangulation }} x^{\mathrm{d}(T)} t^{v(T)}
$$

$$
\begin{aligned}
& \mathrm{d}(T)=4 \\
& \mathrm{v}(T)=6
\end{aligned}
$$

[Tutte, 1973] "Chromatic sums for rooted planar

 triangulations: the cases $\lambda=1$ and $\lambda=2^{\prime \prime}$- Let $T(x, y ; t) \equiv T(x, y)$ be the unique formal power series in t, with polynomial coefficients in q, x and y, satisfying

$$
\begin{aligned}
T(x, y)=x q(q-1) & +\frac{x y t}{q} T(x, y) T(1, y) \\
& +x t \frac{T(x, y)-T(x, 0)}{y}-x^{2} y t \frac{T(x, y)-T(1, y)}{x-1}
\end{aligned}
$$

A quadratic equation with two catalytic variables x and y [Zeilberger 00]

[Tutte, 1973] "Chromatic sums for rooted planar

 triangulations: the cases $\lambda=1$ and $\lambda=2^{\prime \prime}$- Let $T(x, y ; t) \equiv T(x, y)$ be the unique formal power series in t, with polynomial coefficients in q, x and y, satisfying

$$
\begin{aligned}
T(x, y)=x q(q-1) & +\frac{x y t}{q} T(x, y) T(1, y) \\
& +x t \frac{T(x, y)-T(x, 0)}{y}-x^{2} y t \frac{T(x, y)-T(1, y)}{x-1}
\end{aligned}
$$

- Then $T(1,0 ; t)$ counts properly q-coloured triangulations by the number of triangles.

[Tutte, 1984] "Map-colourings and differential equations"

- The number $c(n)$ of q-coloured triangulations with $2 n$ triangles satisfies:

$$
\begin{aligned}
q(n+1)(n+2) c(n)= & q(q-4)(3 n-1)(3 n-2) c(n-1) \\
& +2 \sum_{i=1}^{n} i(i+1)(3 n-3 i+1) c(i-1) c(n-i)
\end{aligned}
$$

with $c(0)=q(q-1)$.

[Tutte, 1984] "Map-colourings and differential equations"

- The number $c(n)$ of q-coloured triangulations with $2 n$ triangles satisfies:

$$
q(n+1)(n+2) c(n)=q(q-4)(3 n-1)(3 n-2) c(n-1)
$$

with $c(0)=q(q-1)$.

$$
+2 \sum_{i=1}^{n} i(i+1)(3 n-3 i+1) c(i-1) c(n-i)
$$

- The associated generating function

$$
C(t)=\sum_{n} c(n) t^{n+2}
$$

is differentially algebraic, and satisfies

$$
2 q^{2}(1-q) t+\left(q t+10 C-6 t C^{\prime}\right) C^{\prime \prime}+q(4-q)\left(20 C-18 t C^{\prime}+9 t^{2} C^{\prime \prime}\right)=0
$$

What happened inbetween?

[Tutte 73] Chromatic sums for rooted planar triangulations: the cases $\lambda=1$ and $\lambda=2$
[Tutte 73] Chromatic sums for rooted planar triangulations, II : the case
$\lambda=\tau+1$
[Tutte 73] Chromatic sums for rooted planar triangulations, III : the case $\lambda=3$
[Tutte 73] Chromatic sums for rooted planar triangulations, IV : the case $\lambda=\infty$
[Tutte 74] Chromatic sums for rooted planar triangulations, V : special equations
[Tutte 78] On a pair of functional equations of combinatorial interest
[Tutte 82] Chromatic solutions
[Tutte 82] Chromatic solutions II
[Tutte 84] Map-colourings and differential equations
[Tutte 95] Chromatic sums revisited

What happened inbetween?

[Tutte 73] Chromatic sums for rooted planar triangulations: the cases $\lambda=1$ and $\lambda=2$
[Tutte 73] Chromatic sums for rooted planar triangulations, II : the case $\lambda=\tau+1$
[Tutte 73] Chromatic sums for rooted planar triangulations, III : the case $\lambda=3$
[Tutte 73] Chromatic sums for rooted planar triangulations, IV : the case $\lambda=\infty$
[Tutte 74] Chromatic sums for rooted planar triangulations, V : special equations
[Tutte 78] On a pair of functional equations of combinatorial interest
[Tutte 82] Chromatic solutions
[Tutte 82] Chromatic solutions II
[Tutte 84] Map-colourings and differential equations
[Tutte 95] Chromatic sums revisited

More equations of this type

- Planar maps weighted by their... Tutte polynomial $T_{M}(\mu, \nu)$ [Tutte 68]

$$
\begin{aligned}
& M(x, y)=1+x y t(y \mu-1) M(x, y) M(1, y)+x y t(x \nu-1) M(x, y) M(x, 1) \\
& +x y t \frac{x M(x, y)-M(1, y)}{x-1}+x y t \frac{y M(x, y)-M(x, 1)}{y-1}
\end{aligned}
$$

More equations of this type

- Planar maps weighted by their... Tutte polynomial $T_{M}(\mu, \nu)$ [Tutte 68]

$$
\begin{aligned}
& M(x, y)=1+x y t(y \mu-1) M(x, y) M(1, y)+x y t(x \nu-1) M(x, y) M(x, 1) \\
& +x y t \frac{x M(x, y)-M(1, y)}{x-1}+x y t \frac{y M(x, y)-M(x, 1)}{y-1}
\end{aligned}
$$

- One has:

$$
M(1,1) \equiv M(1,1 ; t, \mu, \nu)=\sum_{M \text { planar map }} t^{\mathrm{e}(M)} \mathrm{T}_{M}(\mu, \nu)
$$

$$
T_{M}(\mu, \nu)=\mu^{2}+\nu^{2}+\mu \nu+\mu+\nu
$$

More equations of this type

- Planar maps weighted by their... Tutte polynomial $T_{M}(\mu, \nu)$ [Tutte 68]

$$
\begin{aligned}
& M(x, y)=1+x y t(y \mu-1) M(x, y) M(1, y)+x y t(x \nu-1) M(x, y) M(x, 1) \\
& +x y t \frac{x M(x, y)-M(1, y)}{x-1}+x y t \frac{y M(x, y)-M(x, 1)}{y-1}
\end{aligned}
$$

- One has:

$$
M(1,1) \equiv M(1,1 ; t, \mu, \nu)=\sum_{M \text { planar map }} t^{\mathrm{e}(M)} \mathrm{T}_{M}(\mu, \nu)
$$

$$
T_{M}(\mu, \nu)=\mu^{2}+\nu^{2}+\mu \nu+\mu+\nu
$$

- The Potts model: This is equivalent to counting maps coloured in q colours with a weight ν per monochromatic edge $(q=(\mu-1)(\nu-1))$.

More equations of this type

- Planar maps weighted by their... Tutte polynomial $T_{M}(\mu, \nu)$ [Tutte 68]
- Walks confined to a quadrant with steps NE, W, S

$$
Q(x, y)=1+\operatorname{txy} Q(x, y)+t \frac{Q(x, y)-Q(0, y)}{x}+t \frac{Q(x, y)-Q(x, 0)}{y}
$$

More equations of this type

- Planar maps weighted by their... Tutte polynomial $T_{M}(\mu, \nu)$ [Tutte 68]
- Walks confined to a quadrant with steps NE, W, S

$$
Q(x, y)=1+\operatorname{txy} Q(x, y)+t \frac{Q(x, y)-Q(0, y)}{x}+t \frac{Q(x, y)-Q(x, 0)}{y}
$$

One has:

$$
Q(x, y) \equiv Q(x, y ; t)=\quad \sum \quad x^{i(w)} y^{j(w)} t^{\ell(w)}
$$

w in the quadrant

$$
x^{3} y^{1} t^{11}
$$

A simple functional equation

$$
Q(x, y)=1+t x y Q(x, y)+t \frac{Q(x, y)-Q(0, y)}{x}+t \frac{Q(x, y)-Q(x, 0)}{y}
$$

$$
Q(x, y)=\sum_{w \text { in the quadrant }} x^{i(w)} y^{j(w)} t^{\ell(w)}
$$

A simple functional equation

$$
Q(x, y)=1+t x y Q(x, y)+t \frac{Q(x, y)-Q(0, y)}{x}+t \frac{Q(x, y)-Q(x, 0)}{y}
$$

or, with $\bar{x}=1 / x$ and $\bar{y}=1 / y$,

$$
(1-t(x y+\bar{x}+\bar{y})) Q(x, y)=1-t \bar{x} Q(0, y)-t \bar{y} Q(x, 0)
$$

A simple functional equation

$$
Q(x, y)=1+t x y Q(x, y)+t \frac{Q(x, y)-Q(0, y)}{x}+t \frac{Q(x, y)-Q(x, 0)}{y}
$$

or, with $\bar{x}=1 / x$ and $\bar{y}=1 / y$,

$$
(1-t(x y+\bar{x}+\bar{y})) Q(x, y)=1-t \bar{x} Q(0, y)-t \bar{y} Q(x, 0)
$$

or

$$
(1-t(x y+\bar{x}+\bar{y})) x y Q(x, y)=x y-t y Q(0, y)-t x Q(x, 0)
$$

- The polynomial $1-t(x y+\bar{x}+\bar{y})$ is the kernel of this equation
- The equation is linear, with two catalytic variables x and y (tautological at $x=0$ or $y=0$)

More equations with two catalytic variables

- Planar maps weighted by their... Tutte polynomial $T_{M}(\mu, \nu)$ [Tutte 68]

$$
\begin{aligned}
& M(x, y)=1+x y t(y \mu-1) M(x, y) M(1, y)+x y t(x \nu-1) M(x, y) M(x, 1) \\
& +x y t \frac{x M(x, y)-M(1, y)}{x-1}+x y t \frac{y M(x, y)-M(x, 1)}{y-1}
\end{aligned}
$$

- Walks confined to a quadrant

$$
(1-t(\bar{x}+\bar{y}+x y)) x y Q(x, y)=x y-t y Q(0, y)-t x Q(x, 0)
$$

More equations with two catalytic variables

- Planar maps weighted by their... Tutte polynomial $T_{M}(\mu, \nu)$ [Tutte 68]

$$
\begin{aligned}
& M(x, y)=1+x y t(y \mu-1) M(x, y) M(1, y)+x y t(x \nu-1) M(x, y) M(x, 1) \\
& +x y t \frac{x M(x, y)-M(1, y)}{x-1}+x y t \frac{y M(x, y)-M(x, 1)}{y-1}
\end{aligned}
$$

- Walks confined to a quadrant [mbm-Mishna 10]
\square

$$
\begin{aligned}
& (1-t(\bar{x}+\bar{y}+x y)) x y Q(x, y)=x y-t y Q(0, y)-t x Q(x, 0) \\
& (1-t(y+\bar{x}+x \bar{y})) x y Q(x, y)=x y-t y Q(0, y)-t x^{2} Q(x, 0) \\
& (1-t(x+\bar{x}+\bar{y}+x y)) x y Q(x, y)=x y-t y Q(0, y)-t x Q(x, 0)
\end{aligned}
$$

More equations with two catalytic variables

- Planar maps weighted by their... Tutte polynomial $T_{M}(\mu, \nu)$ [Tutte 68]

$$
\begin{aligned}
& M(x, y)=1+x y t(y \mu-1) M(x, y) M(1, y)+x y t(x \nu-1) M(x, y) M(x, 1) \\
& +x y t \frac{x M(x, y)-M(1, y)}{x-1}+x y t \frac{y M(x, y)-M(x, 1)}{y-1}
\end{aligned}
$$

- Walks confined to a quadrant [mbm-Mishna 10]
\square

$$
\begin{aligned}
& (1-t(\bar{x}+\bar{y}+x y)) x y Q(x, y)=x y-t y Q(0, y)-t x Q(x, 0) \\
& (1-t(y+\bar{x}+x \bar{y})) x y Q(x, y)=x y-t y Q(0, y)-t x^{2} Q(x, 0) \\
& (1-t(x+\bar{x}+\bar{y}+x y)) x y Q(x, y)=x y-t y Q(0, y)-t x Q(x, 0)
\end{aligned}
$$

- And more! (e.g. permutations classes)

Equations with ONE catalytic variable abund in map

 enumeration[Tutte 62]

$$
\Psi(y)=1+\frac{t}{y}\left(\frac{\Psi(y)}{1-y \Psi(y)}-\Psi(0)\right)
$$

[Brown 65]

$$
U(y)=\left(1+y^{2} U(y)\right)^{3}+2 t U(y)\left(1+y^{2} U(y)\right)-t^{2} U(0) U(y)+t^{2} \frac{U(y)-U(0)}{y^{2}}
$$

[Tutte 68] Planar maps:

$$
F(y)=1+t y^{2} F(y)^{2}+t y \frac{y F(y)-F(1)}{y-1}
$$

[Mullin, Nemeth, Schellenberg 70]

$$
T(y)=y(1+y T(y))^{2}+t \frac{T(y)-T(0)}{y}
$$

Equations with ONE catalytic variable abund in map

 enumeration[Tutte 62]

$$
\Psi(y)=1+\frac{t}{y}\left(\frac{\Psi(y)}{1-y \Psi(y)}-\Psi(0)\right)
$$

[Brown 65]

$$
U(y)=\left(1+y^{2} U(y)\right)^{3}+2 t U(y)\left(1+y^{2} U(y)\right)-t^{2} U(0) U(y)+t^{2} \frac{U(y)-U(0)}{y^{2}}
$$

[Tutte 68] Planar maps:

$$
F(y)=1+t y^{2} F(y)^{2}+t y \frac{y F(y)-F(1)}{y-1}
$$

[Mullin, Nemeth, Schellenberg 70]

$$
T(y)=y(1+y T(y))^{2}+t \frac{T(y)-T(0)}{y}
$$

\rightarrow Algebraic solutions! (Guess-and-check, Brown's quadratic method)

Equations with ONE catalytic variable

Theorem [mbm-Jehanne 06]
Let $P\left(t, y, S(y ; t), A_{1}(t), \ldots, A_{k}(t)\right)$ be a proper polynomial equation in one catalytic variable y (it defines uniquely $S(y ; t), A_{1}(t), \ldots, A_{k}(t)$ as formal power series in t). Then each of these series is algebraic.

The proof is constructive, and generalizes Brown's quadratic method.
Example 1: planar maps

$$
S(y ; t)=1+t y^{2} S(y ; t)^{2}+t y \frac{y S(y ; t)-A_{1}(t)}{y-1}
$$

Equations with ONE catalytic variable

Theorem [mbm-Jehanne 06]
Let $P\left(t, y, S(y ; t), A_{1}(t), \ldots, A_{k}(t)\right)$ be a proper polynomial equation in one catalytic variable y (it defines uniquely $S(y ; t), A_{1}(t), \ldots, A_{k}(t)$ as formal power series in t). Then each of these series is algebraic.

The proof is constructive, and generalizes Brown's quadratic method.
Example 1: planar maps

$$
S(y ; t)=1+t y^{2} S(y ; t)^{2}+t y \frac{y S(y ; t)-A_{1}(t)}{y-1}
$$

implies $A_{1}(t)=S(1 ; t)$

Equations with ONE catalytic variable

Theorem [mbm-Jehanne 06]

Let $P\left(t, y, S(y ; t), A_{1}(t), \ldots, A_{k}(t)\right)$ be a proper polynomial equation in one catalytic variable y (it defines uniquely $S(y ; t), A_{1}(t), \ldots, A_{k}(t)$ as formal power series in t). Then each of these series is algebraic.

The proof is constructive, and generalizes Brown's quadratic method.
Example 2: for $S(y ; t)=Q(0, y ; t)$ and $A_{1}(t)=Q(0,0 ; t)$,

$$
\frac{t}{y^{2}}-\frac{1}{y}-t y=t\left(t y S(y ; t)+\frac{1}{y}\right)^{2}-\left(t y S(y ; t)+\frac{1}{y}\right)-2 t^{2} A_{1}(t)
$$

Equations with ONE catalytic variable

Theorem [mbm-Jehanne 06]
Let $P\left(t, y, S(y ; t), A_{1}(t), \ldots, A_{k}(t)\right)$ be a proper polynomial equation in one catalytic variable y (it defines uniquely $S(y ; t), A_{1}(t), \ldots, A_{k}(t)$ as formal power series in t). Then each of these series is algebraic.

The proof is constructive, and generalizes Brown's quadratic method.
\Rightarrow A special case of an Artin approximation theorem with "nested" conditions [Popescu 86], [Swan 98]

But what about TWO catalytic variables?

- Properly q-coloured triangulations [Tutte 73]

$$
\begin{aligned}
T(x, y)=x q(q-1) & +\frac{x y t}{q} T(x, y) T(1, y) \\
& +x t \frac{T(x, y)-T(x, 0)}{y}-x^{2} y t \frac{T(x, y)-T(1, y)}{x-1}
\end{aligned}
$$

- Planar maps weighted by their... Tutte polynomial $T_{M}(\mu, \nu)$ [Tutte 68]

$$
\begin{aligned}
& M(x, y)=1+x y t(y \mu-1) M(x, y) M(1, y)+x y t(x \nu-1) M(x, y) M(x, 1) \\
& +x y t \frac{x M(x, y)-M(1, y)}{x-1}+x y t \frac{y M(x, y)-M(x, 1)}{y-1}
\end{aligned}
$$

- Walks confined to a quadrant [mbm-Mishna 10]
\square

$$
(1-t(\bar{x}+\bar{y}+x y)) x y Q(x, y)=x y-t y Q(0, y)-t x Q(x, 0)
$$

$$
(1-t(y+\bar{x}+x \bar{y})) x y Q(x, y)=x y-t y Q(0, y)-t x^{2} Q(x, 0)
$$

\square

$$
(1-t(x+\bar{x}+\bar{y}+x y)) x y Q(x, y)=x y-t y Q(0, y)-t x Q(x, 0)
$$

A hierarchy of formal power series

- Rational series

$$
A(t)=\frac{P(t)}{Q(t)}
$$

- Algebraic series

$$
P(t, A(t))=0
$$

- Differentially finite series (D-finite)

$$
\sum_{i=0}^{d} P_{i}(t) A^{(i)}(t)=0
$$

- D-algebraic series

$$
P\left(t, A(t), A^{\prime}(t), \ldots, A^{(d)}(t)\right)=0
$$

A hierarchy of formal power series

- Rational series

$$
A(t)=\frac{P(t)}{Q(t)}
$$

- Algebraic series

$$
P(t, A(t))=0
$$

- Differentially finite series (D-finite)

$$
\sum_{i=0}^{d} P_{i}(t) A^{(i)}(t)=0
$$

- D-algebraic series

$$
P\left(t, A(t), A^{\prime}(t), \ldots, A^{(d)}(t)\right)=0
$$

Multi-variate series: one DE per variable

A hierarchy of formal power series

A hierarchy of formal power series

quadrant walks

II. Tutte's invariants are, primarily, a tool for proving the algebraicity of solutions of functional equations

$$
(1-t(\bar{x}+\bar{y}+x y)) x y Q(x, y)=x y-t y Q(0, y)-t x Q(x, 0)
$$

Kreweras' model

- The equation (with $\bar{x}=1 / x$ and $\bar{y}=1 / y$):

$$
\begin{aligned}
(1-t(\bar{x}+\bar{y}+x y)) x y Q(x, y) & =x y-t x Q(x, 0)-t y Q(0, y) \\
& =x y-R(x)-S(y)
\end{aligned}
$$

with $Q(x, y) \equiv Q(x, y ; t)$.
Theorem [Kreweras 65]

- The number of walks of length $3 n+2 j$ ending at $(0, j)$ is

$$
q(0, j ; 3 n+2 j)=\frac{4^{n}(2 j+1)}{(n+j+1)(2 n+2 j+1)}\binom{2 j}{j}\binom{3 n+2 j}{n}
$$

- The associated generating function $Q(0, y ; t)$ is algebraic [Gessel 86].
- So is $Q(x, y ; t)$

Kreweras' model

- The equation (with $\bar{x}=1 / x$ and $\bar{y}=1 / y$):

$$
\begin{aligned}
(1-t(\bar{x}+\bar{y}+x y)) x y Q(x, y) & =x y-t x Q(x, 0)-t y Q(0, y) \\
& =x y-R(x)-S(y)
\end{aligned}
$$

Kreweras' model

- The equation (with $\bar{x}=1 / x$ and $\bar{y}=1 / y$):

$$
\begin{aligned}
(1-t(\bar{x}+\bar{y}+x y)) x y Q(x, y) & =x y-t x Q(x, 0)-t y Q(0, y) \\
& =x y-R(x)-S(y)
\end{aligned}
$$

- Cancel the kernel: If we take $x=t+u t^{2}$, both roots of the kernel,

$$
Y_{0,1}=\frac{x-t \pm \sqrt{(x-t)^{2}-4 t^{2} x^{3}}}{2 t x^{2}}
$$

are (Laurent) series in t with rational coefficients in u, and can be legally substituted for y in $Q(x, y)$.

Kreweras' model

- The equation (with $\bar{x}=1 / x$ and $\bar{y}=1 / y$):

$$
\begin{aligned}
(1-t(\bar{x}+\bar{y}+x y)) x y Q(x, y) & =x y-t x Q(x, 0)-t y Q(0, y) \\
& =x y-R(x)-S(y)
\end{aligned}
$$

- Cancel the kernel: If we take $x=t+u t^{2}$, both roots of the kernel,

$$
Y_{0,1}=\frac{x-t \pm \sqrt{(x-t)^{2}-4 t^{2} x^{3}}}{2 t x^{2}}
$$

are (Laurent) series in t with rational coefficients in u, and can be legally substituted for y in $Q(x, y)$. This gives four equations:

Kernel	RHS
$x Y_{0}=t\left(Y_{0}+x+x^{2} Y_{0}^{2}\right)$	$x Y_{0}=R(x)+S\left(Y_{0}\right)$
$x Y_{1}=t\left(Y_{1}+x+x^{2} Y_{1}^{2}\right)$	$x Y_{1}=R(x)+S\left(Y_{1}\right)$

Kreweras' model

- Four equations relating $x, R(x), Y_{0}, Y_{1}, S\left(Y_{0}\right), S\left(Y_{1}\right)$ and t :

Kernel	RHS
$x Y_{0}=t\left(Y_{0}+x+x^{2} Y_{0}^{2}\right)$	$x Y_{0}=R(x)+S\left(Y_{0}\right)$
$x Y_{1}=t\left(Y_{1}+x+x^{2} Y_{1}^{2}\right)$	$x Y_{1}=R(x)+S\left(Y_{1}\right)$

Kreweras' model

- Four equations relating $x, R(x), Y_{0}, Y_{1}, S\left(Y_{0}\right), S\left(Y_{1}\right)$ and t :

Kernel	RHS
$x Y_{0}=t\left(Y_{0}+x+x^{2} Y_{0}^{2}\right)$	$x Y_{0}=R(x)+S\left(Y_{0}\right)$
$x Y_{1}=t\left(Y_{1}+x+x^{2} Y_{1}^{2}\right)$	$x Y_{1}=R(x)+S\left(Y_{1}\right)$

- Eliminate x from the kernel equations:

$$
\frac{t}{Y_{0}^{2}}-\frac{1}{Y_{0}}-t Y_{0}=\frac{t}{Y_{1}^{2}}-\frac{1}{Y_{1}}-t Y_{1}
$$

Kreweras' model

- Four equations relating $x, R(x), Y_{0}, Y_{1}, S\left(Y_{0}\right), S\left(Y_{1}\right)$ and t :

$$
\begin{array}{c|c}
\text { Kernel } & \text { RHS } \\
\hline x Y_{0}=t\left(Y_{0}+x+x^{2} Y_{0}^{2}\right) & x Y_{0}=R(x)+S\left(Y_{0}\right) \\
x Y_{1}=t\left(Y_{1}+x+x^{2} Y_{1}^{2}\right) & x Y_{1}=R(x)+S\left(Y_{1}\right)
\end{array}
$$

- Eliminate x from the kernel equations:

$$
\frac{t}{Y_{0}^{2}}-\frac{1}{Y_{0}}-t Y_{0}=\frac{t}{Y_{1}^{2}}-\frac{1}{Y_{1}}-t Y_{1}
$$

The following function is an invariant :

$$
I(y)=\frac{t}{y^{2}}-\frac{1}{y}-t y
$$

Kreweras' model

- Four equations relating $x, R(x), Y_{0}, Y_{1}, S\left(Y_{0}\right), S\left(Y_{1}\right)$ and t :

Kernel	RHS
$x Y_{0}=t\left(Y_{0}+x+x^{2} Y_{0}^{2}\right)$	$x Y_{0}=R(x)+S\left(Y_{0}\right)$
$x Y_{1}=t\left(Y_{1}+x+x^{2} Y_{1}^{2}\right)$	$x Y_{1}=R(x)+S\left(Y_{1}\right)$

- Eliminate x from the kernel equations:

$$
\frac{t}{Y_{0}^{2}}-\frac{1}{Y_{0}}-t Y_{0}=\frac{t}{Y_{1}^{2}}-\frac{1}{Y_{1}}-t Y_{1}
$$

- Eliminate $R(x)$ from the RHS equations, and then x :

$$
S\left(Y_{0}\right)+\frac{1}{Y_{0}}=S\left(Y_{1}\right)+\frac{1}{Y_{1}}
$$

The two following functions are invariants:

$$
I(y)=\frac{t}{y^{2}}-\frac{1}{y}-t y \quad \text { and } \quad J(y)=S(y)+\frac{1}{y}
$$

The invariant lemma

\square
We have

$$
I\left(Y_{0}\right)=I\left(Y_{1}\right) \quad \text { and } \quad J\left(Y_{0}\right)=J\left(Y_{1}\right)
$$

with

$$
I(y)=\frac{t}{y^{2}}-\frac{1}{y}-t y \quad \text { and } \quad J(y)=t y Q(0, y)+\frac{1}{y}
$$

The invariant lemma

We have

$$
I\left(Y_{0}\right)=I\left(Y_{1}\right) \quad \text { and } \quad J\left(Y_{0}\right)=J\left(Y_{1}\right)
$$

with

$$
I(y)=\frac{t}{y^{2}}-\frac{1}{y}-t y \quad \text { and } \quad J(y)=t y Q(0, y)+\frac{1}{y}
$$

The invariant lemma
There are few invariants: I(y) must be a polynomial in $J(y)$ whose coefficients are series in t.

The invariant lemma

\square
We have

$$
I\left(Y_{0}\right)=I\left(Y_{1}\right) \quad \text { and } \quad J\left(Y_{0}\right)=J\left(Y_{1}\right)
$$

with

$$
I(y)=\frac{t}{y^{2}}-\frac{1}{y}-t y \quad \text { and } \quad J(y)=t y Q(0, y)+\frac{1}{y} .
$$

The invariant lemma
There are few invariants: $I(y)$ must be a polynomial in $J(y)$ whose coefficients are series in t.

$$
I(y)=\frac{t}{y^{2}}-\frac{1}{y}-t y=t\left(\operatorname{ty} Q(0, y)+\frac{1}{y}\right)^{2}-\left(\operatorname{ty} Q(0, y)+\frac{1}{y}\right)+c
$$

Expanding at $y=0$ gives the value of c.

The invariant lemma

\square
We have

$$
I\left(Y_{0}\right)=I\left(Y_{1}\right) \quad \text { and } \quad J\left(Y_{0}\right)=J\left(Y_{1}\right)
$$

with

$$
I(y)=\frac{t}{y^{2}}-\frac{1}{y}-t y \quad \text { and } \quad J(y)=t y Q(0, y)+\frac{1}{y} .
$$

The invariant lemma
There are few invariants: I(y) must be a polynomial in $J(y)$ whose coefficients are series in t.

$$
I(y)=\frac{t}{y^{2}}-\frac{1}{y}-t y=t\left(t y Q(0, y)+\frac{1}{y}\right)^{2}-\left(t y Q(0, y)+\frac{1}{y}\right)-2 t^{2} Q(0,0)
$$

Expanding at $y=0$ gives the value of c.

The invariant lemma

We have

$$
I\left(Y_{0}\right)=I\left(Y_{1}\right) \quad \text { and } \quad J\left(Y_{0}\right)=J\left(Y_{1}\right)
$$

with

$$
I(y)=\frac{t}{y^{2}}-\frac{1}{y}-t y \quad \text { and } \quad J(y)=t y Q(0, y)+\frac{1}{y} .
$$

The invariant lemma

There are few invariants: $I(y)$ must be a polynomial in $J(y)$ whose coefficients are series in t.

$$
I(y)=\frac{t}{y^{2}}-\frac{1}{y}-t y=t\left(t y Q(0, y)+\frac{1}{y}\right)^{2}-\left(t y Q(0, y)+\frac{1}{y}\right)-2 t^{2} Q(0,0)
$$

Expanding at $y=0$ gives the value of c.
Polynomial equation with one catalytic variable $\Rightarrow Q(0, y ; t)$ is algebraic

What invariants are good for

- start with an equation with two catalytic variables x and y (degree 1 in the main series $Q(x, y))$
- cancel the kernel $\Rightarrow Y_{0}, Y_{1}$
- find a pair of invariants in y
- relate them algebraically (the invariant lemma)
- obtain an equation with one catalytic variable only \Rightarrow algebraicity

Other equations: are there invariants?

	\square	$\boxed{-}$	$\boxed{+}$	$\boxed{+}$
from kernel	\times	\times	-	-
from RHS	\times	-	\times	-

Other equations: are there invariants?

Thm. [Bernardi, mbm, Raschel 15(a)]
Exactly 4 quadrant models with small steps have two invariants \Rightarrow uniform algebraic solution via the solution of an equation with one catalytic variable

Other equations: are there invariants?

Thm. [Bernardi, mbm, Raschel 15(a)]
Exactly 4 quadrant models with small steps have two invariants \Rightarrow uniform algebraic solution via the solution of an equation with one catalytic variable

Gessel's model

- conjecture for the number $q(0,0 ; n)$ of excursions [Gessel $\simeq 00$]
- proof of this conjecture [Kauers, Koutschan \& Zeilberger 08]
- $Q(x, y ; t)$ are algebraic! [Bostan \& Kauers 09a]
- new proof via complex analysis [Bostan, Kurkova \& Raschel 13(a)]
- an elementary and constructive proof [mbm 15(a)]

Other equations: are there invariants?

Thm. [Bernardi, mbm, Raschel 15(a)]
Exactly 4 quadrant models with small steps have two invariants \Rightarrow uniform algebraic solution via the solution of an equation with one catalytic variable

Thm. [Tutte 74], [Bernardi-mbm 11]
For q-coloured triangulations (or Potts on planar maps, or on triangulations), there is one invariant for any q, and a second one if $q=4 \cos ^{2} \frac{\mathrm{k} \pi}{\mathrm{m}}$, with $q \neq 0,4 . \quad \Rightarrow$ Algebraicity

Example: Properly 3-coloured planar maps

- Two catalytic variables [Tutte 68]

$$
\begin{aligned}
& M(x, y)=1+x y t(1+2 y) M(x, y) M(1, y)-x y t M(x, y) M(x, 1) \\
& -x y t \frac{x M(x, y)-M(1, y)}{x-1}+x y t \frac{y M(x, y)-M(x, 1)}{y-1}
\end{aligned}
$$

- One catalytic variable [Bernardi-mbm 11]

$$
P\left(M(1, y), M_{0}, M_{1}, M_{2}, t, y\right)=0
$$

Example: Properly 3-coloured planar maps

$P\left(M(1, y), M_{0}, M_{1}, M_{2}, t, y\right)=0$
$=36 y^{6} t^{3}(2 y+1)(y-1)^{3} M(y)^{4}+2 t^{2} y^{4}(y-1)^{2}\left(42 t y^{3}+12 y^{2} t-26 y^{3}-39 y^{2}+39 y+26\right) M(y)^{3}$
$+\left(-36 y^{6} t^{3}(y-1)^{2} M_{0}+(y-1) y^{2} t\left(32 t^{2} y^{5}+4 y^{4} t^{2}+2 t y^{5}-120 t y^{4}+8 y^{5}+78 t y^{3}+38 y^{4}\right.\right.$
$\left.\left.+40 y^{2} t-25 y^{3}-71 y^{2}+25 y+25\right)\right) M(y)^{2}+\left(-36 y^{5} t^{3}(y-1)^{2} M_{0}^{2}-6 t^{2}(y-1) y^{4}\left(6 y^{2} t-2 y t\right.\right.$
$\left.-9 y^{2}+5 y+4\right) M_{0}-12 M_{1} t^{3} y^{7}+24 M_{1} t^{3} y^{6}+4 y^{7} t^{3}-12 y^{5} t^{3} M_{1}+10 t^{2} y^{7}-42 t^{2} y^{6}-26 t y^{7}$ $\left.+28 t^{2} y^{5}+52 t y^{6}+4 y^{4} t^{2}+32 t y^{5}-4 y^{6}-94 t y^{4}-2 y^{5}+14 t y^{3}+16 y^{4}+22 y^{2} t-16 y^{2}+2 y+4\right) M$
$-36 y^{4} t^{3}(y-1)^{2} M_{0}^{3}-2 t^{2}(y-1) y^{3}\left(22 y^{2} t-16 y t-33 y^{2}+27 y+6\right) M_{0}{ }^{2}-2 y^{2} t\left(18 M_{1} t^{2} y^{4}\right.$
$-36 M_{1} t^{2} y^{3}+6 y^{4} t^{2}+18 M_{1} t^{2} y^{2}-6 y^{3} t^{2}-4 t y^{4}+2 y^{2} t^{2}-7 t y^{3}+16 y^{4}+13 y^{2} t-23 y^{3}-2 y t$ $+5 y+2) M_{0}-(y-1)\left(12 y^{5} t^{3} M_{1}+2 M_{2} t^{3} y^{5}-8 y^{4} t^{3} M_{1}-22 M_{1} t^{2} y^{5}-2 y^{4} t^{3} M_{2}\right.$
$\left.+18 M_{1} t^{2} y^{4}+4 M_{1} t^{2} y^{3}-11 t y^{5}+21 t y^{4}-4 y^{5}-9 t y^{3}-6 y^{4}-y^{2} t+10 y^{3}+10 y^{2}-6 y-4\right)$.

Two map examples

[Bernardi-mbm 11]

- Properly 3-coloured planar maps

Let A be the quartic series in t defined by $A(0)=0$ and

$$
A=t \frac{(1+2 A)^{3}}{1-2 A^{3}}
$$

Then the generating function of properly 3 -coloured planar maps is

$$
\sum_{M \text { prop. 3-coloured }} t^{\mathrm{e}(M)}=\frac{(1+2 A)\left(1-2 A^{2}-4 A^{3}-4 A^{4}\right)}{\left(1-2 A^{3}\right)^{2}}
$$

Two map examples

[Bernardi-mbm 11]

- Properly 3-coloured planar maps

Let A be the quartic series in t defined by $A(0)=0$ and

$$
A=t \frac{(1+2 A)^{3}}{1-2 A^{3}}
$$

Then the generating function of properly 3 -coloured planar maps is

$$
\sum_{M \text { prop. 3-coloured }} t^{\mathrm{e}(M)}=\frac{(1+2 A)\left(1-2 A^{2}-4 A^{3}-4 A^{4}\right)}{\left(1-2 A^{3}\right)^{2}}
$$

- The Ising model on planar maps $(q=2)$

Let A be the series in t, with polynomial coefficients in ν, defined by

$$
A=t \frac{\left(1+3 \nu A-3 \nu A^{2}-\nu^{2} A^{3}\right)^{2}}{1-2 A+2 \nu^{2} A^{3}-\nu^{2} A^{4}}
$$

Then the Ising generating function of planar maps is rational in ν and A :

$$
\sum \quad t^{\mathrm{e}(M)} \nu^{\operatorname{monochr}(M)}=\operatorname{Rat}(\nu, A)
$$

M 2-coloured

III. An analytic version of Tutte's invariants

Applications to differential algebraicity of quadrant walks
[Bernardi, mbm, Raschel]

Classification of quadrant walks with small steps

Theorem
The series $Q(x, y ; t)$ is D-finite for 23 models, and algebraic for 4 of them.
[mbm-Mishna 10], [Bostan-Kauers 10]
D-finite
[Kurkova-Raschel 12] non-singular non-D-finite
[Mishna-Rechnitzer 07], [Melczer-Mishna 13] singular non-D-finite

Classification of quadrant walks with small steps

quadrant models: 79

\exists K-inv: 23

4
19
transcendental
no K-inv: 56
।
non-D-finite
algebraic
Theorem
The series $Q(x, y ; t)$ is D-finite for 23 models, and algebraic for 4 of them.
[mbm-Mishna 10], [Bostan-Kauers 10]
D-finite
[Kurkova-Raschel 12] non-singular non-D-finite
[Mishna-Rechnitzer 07], [Melczer-Mishna 13] singular non-D-finite

Classification of quadrant walks with small steps

quadrant models: 79

Theorem
The series $Q(x, y ; t)$ is D-finite for 23 models, and algebraic for 4 of them.
[mbm-Mishna 10], [Bostan-Kauers 10]
D-finite
[Kurkova-Raschel 12] non-singular non-D-finite
[Mishna-Rechnitzer 07], [Melczer-Mishna 13] singular non-D-finite

Classification of quadrant walks with small steps

quadrant models: 79
\exists K-inv: 23

\exists RHS-inv: 4 no RHS-inv:19
transcendental

Theorem
The series $Q(x, y ; t)$ is D-finite for 23 models, and algebraic for 4 of them.
[mbm-Mishna 10], [Bostan-Kauers 10]
D-finite
[Kurkova-Raschel 12] non-singular non-D-finite
[Mishna-Rechnitzer 07], [Melczer-Mishna 13] singular non-D-finite

A weaker (and analytic) notion of invariants

- Still require that $I\left(Y_{0}\right)=I\left(Y_{1}\right)$, where $Y_{0}(x), Y_{1}(x)$ are the roots of the kernel
... but only for some values of x (and t).
- meromorphicity condition in a domain

A weaker (and analytic) notion of invariants

- Still require that $I\left(Y_{0}\right)=I\left(Y_{1}\right)$, where $Y_{0}(x), Y_{1}(x)$ are the roots of the kernel
... but only for some values of x (and t).
- meromorphicity condition in a domain

[Fayolle, lasnogorodski, Malyshev 99], [Kurkova, Raschel 12]

Can we find weak invariants?

Theorem [Fayolle et al. 99, Raschel 12]

For each non-singular model, there exists an (explicit) weak invariant of the form

$$
I(y ; t)=\wp\left(\mathcal{Z}(y ; t), \omega_{1}(t), \omega_{3}(t)\right)
$$

where

- \wp is Weierstrass elliptic function
- its periods ω_{1} and ω_{3} are elliptic integrals
- its argument \mathcal{Z} is also an elliptic integral

Can we find weak invariants?

Theorem [Fayolle et al. 99, Raschel 12]
For each non-singular model, there exists an (explicit) weak invariant of the form

$$
I(y ; t)=\wp\left(\mathcal{Z}(y ; t), \omega_{1}(t), \omega_{3}(t)\right)
$$

where

- \wp is Weierstrass elliptic function
- its periods ω_{1} and ω_{3} are elliptic integrals
- its argument \mathcal{Z} is also an elliptic integral

Proposition [Bernardi-mbm-Raschel]

 $I(y ; t)$ is D-algebraic in y and t.
The invariant lemma

\square
For appropriate values of x, we have:

$$
I\left(Y_{0}\right)=I\left(Y_{1}\right) \quad \text { and } \quad J\left(Y_{0}\right)=J\left(Y_{1}\right)
$$

where $I(y)$ is the weak invariant and $J(y)=t(1+y) Q(0, y)+1 / y$.

The invariant lemma

\square
For appropriate values of x, we have:

$$
I\left(Y_{0}\right)=I\left(Y_{1}\right) \quad \text { and } \quad J\left(Y_{0}\right)=J\left(Y_{1}\right)
$$

where $I(y)$ is the weak invariant and $J(y)=t(1+y) Q(0, y)+1 / y$.
The invariant lemma [Litvinchuk 00]
There are few invariants: $J(y)$ must be a rational function in $I(y)$. The value of this rational function is found by looking at the poles and zeroes of $J(y)$.

The invariant lemma

\square
For appropriate values of x, we have:

$$
I\left(Y_{0}\right)=I\left(Y_{1}\right) \quad \text { and } \quad J\left(Y_{0}\right)=J\left(Y_{1}\right)
$$

where $I(y)$ is the weak invariant and $J(y)=t(1+y) Q(0, y)+1 / y$.
The invariant lemma [Litvinchuk 00]
There are few invariants: $J(y)$ must be a rational function in $I(y)$. The value of this rational function is found by looking at the poles and zeroes of $J(y)$.

$$
J(y)=t(1+y) Q(0, y)+\frac{1}{y}=\frac{I^{\prime}(0)}{I(y)-l(0)}-\frac{I^{\prime}(0)}{l(-1)-I(0)}-1
$$

The invariant lemma

For appropriate values of x, we have:

$$
I\left(Y_{0}\right)=I\left(Y_{1}\right) \quad \text { and } \quad J\left(Y_{0}\right)=J\left(Y_{1}\right)
$$

where $I(y)$ is the weak invariant and $J(y)=t(1+y) Q(0, y)+1 / y$.
The invariant lemma [Litvinchuk 00]
There are few invariants: $J(y)$ must be a rational function in $I(y)$. The value of this rational function is found by looking at the poles and zeroes of $J(y)$.

$$
J(y)=t(1+y) Q(0, y)+\frac{1}{y}=\frac{I^{\prime}(0)}{I(y)-I(0)}-\frac{I^{\prime}(0)}{I(-1)-I(0)}-1
$$

Expression of $Q(0, y ; t)$ in terms of the (explicit) weak invariant $I(y)$

The invariant lemma

\square
For appropriate values of x, we have:

$$
I\left(Y_{0}\right)=I\left(Y_{1}\right) \quad \text { and } \quad J\left(Y_{0}\right)=J\left(Y_{1}\right)
$$

where $I(y)$ is the weak invariant and $J(y)=t(1+y) Q(0, y)+1 / y$.
The invariant lemma [Litvinchuk 00]
There are few invariants: $J(y)$ must be a rational function in $I(y)$. The value of this rational function is found by looking at the poles and zeroes of $J(y)$.

Corollary [Bernardi-mbm-Raschel 15(a)]

For the 9 models having no K-invariant but a RHS-invariant, the series $Q(x, y ; t)$ is D-algebraic.

\leftrightarrows

Completed classification of quadant walks with small steps

quadrant models: 79

Completed classification of quadant walks with small steps

 quadrant models: 79

Not DA in y for 42 models
[Dreyfus, Hardouin, Roques, Singer 17(a)]

Conclusion: Invariants are back!

- Used once by Tutte to count q-coloured triangulations
- Apply to more equations (Potts model on maps, quadrant walks...)
- Extension to prove D-algebraicity for quadrant walks
- Prove more algebraicity or D-algebraicity results with them? (e.g. conjectures on lattice walks confined to/avoiding a quadrant)

