Walks in the quadrant: Tutte’s invariant method

Mireille Bousquet-Mélou, LaBRI, CNRS, Université de Bordeaux

with

Olivier Bernardi, Brandeis University, Boston
Kilian Raschel, CNRS, Université de Tours
Counting quadrant walks

Let S be a finite subset of \mathbb{Z}^2 (set of steps) and $p_0 \in \mathbb{N}^2$ (starting point).

Example. $S = \{10, \bar{1}0, 1\bar{1}, \bar{1}1\}$, $p_0 = (0, 0)$
Counting quadrant walks

Let S be a finite subset of \mathbb{Z}^2 (set of steps) and $p_0 \in \mathbb{N}^2$ (starting point).

- What is the number $q(n)$ of n-step walks starting at p_0 and contained in \mathbb{N}^2?
- For $(i, j) \in \mathbb{N}^2$, what is the number $q(i, j; n)$ of such walks that end at (i, j)?

Example. $S = \{10, \overline{10}, 1\overline{1}, \overline{1}1\}$, $p_0 = (0, 0)$
Counting quadrant walks

Let S be a finite subset of \mathbb{Z}^2 (set of steps) and $p_0 \in \mathbb{N}^2$ (starting point).

- What is the number $q(n)$ of n-step walks starting at p_0 and contained in \mathbb{N}^2?
- For $(i, j) \in \mathbb{N}^2$, what is the number $q(i, j; n)$ of such walks that end at (i, j)?

The associated generating function:

$$Q(x, y; t) = \sum_{n \geq 0} \sum_{i, j \geq 0} q(i, j; n)x^i y^j t^n.$$

What is the nature of this series?
A hierarchy of formal power series

- Rational series
 \[A(t) = \frac{P(t)}{Q(t)} \]

- Algebraic series
 \[P(t, A(t)) = 0 \]

- Differentially finite series (D-finite)
 \[\sum_{i=0}^{d} P_i(t) A^{(i)}(t) = 0 \]

- D-algebraic series
 \[P(t, A(t), A'(t), \ldots, A^{(d)}(t)) = 0 \]

Multi-variate series: one DE per variable
The case of half-plane walks

Example: steps $S = \{01, \bar{1}0, 1\bar{1}\}$, upper half plane

- Generating function:

$$H(y; t) \equiv H(y) = \sum_{n \geq 0} \sum_{j \geq 0} h(j; n)y^j t^n$$

$h(j; n)$: number of n-step walks in the half plane ending at ordinate j
The case of half-plane walks

Example: steps $S = \{01, \bar{1}0, 1\bar{1}\}$, upper half plane

- Generating function:

$$H(y; t) \equiv H(y) = \sum_{n \geq 0} \sum_{j \geq 0} h(j; n)y^j t^n$$

- Step-by-step construction:

$$H(y) = 1 + t(y + 1 + \bar{y})H(y) - t\bar{y}H(0)$$

with $\bar{y} = 1/y$.
Example: steps $S = \{01, \bar{1}0, 1\bar{1}\}$, upper half plane

- Generating function:

$$H(y; t) \equiv H(y) = \sum_{n \geq 0} \sum_{j \geq 0} h(j; n)y^j t^n$$

- Step-by-step construction:

$$H(y) = 1 + t(y + 1 + \bar{y})H(y) - t\bar{y}H(0)$$

or

$$(1 - t(y + 1 + \bar{y}))H(y) = 1 - t\bar{y}H(0),$$
The case of half-plane walks

Example: steps \(S = \{01, \bar{0}1, 1\bar{1}\} \), upper half plane

- Generating function:

\[
H(y; t) \equiv H(y) = \sum_{n \geq 0} \sum_{j \geq 0} h(j; n)y^j t^n
\]

- Step-by-step construction:

\[
H(y) = 1 + t(y + 1 + \bar{y})H(y) - t\bar{y}H(0)
\]

or

\[
(1 - t(y + 1 + \bar{y}))y H(y) = y - tH(0).
\]
The case of half-plane walks

Example: steps \(S = \{01, \bar{1}0, 1\bar{1}\} \), upper half plane

- Generating function:

\[
H(y; t) \equiv H(y) = \sum_{n \geq 0} \sum_{j \geq 0} h(j; n)y^j t^n
\]

- Step-by-step construction:

\[
H(y) = 1 + t(y + 1 + \bar{y})H(y) - t\bar{y}H(0)
\]

or

\[
(1 - t(y + 1 + \bar{y}))yH(y) = y - tH(0).
\]

- The polynomial \(1 - t(y + \bar{x} + x\bar{y}) \) is the kernel of this equation

- The equation is linear, with one catalytic variable \(y \) (tautological at \(y = 0 \)) [Zeilberger 00]
The case of half-plane walks: the kernel method

- The equation (with $\bar{y} = 1/y$):

$$\left(1 - t(y + 1 + \bar{y})\right)y H(y) = y - tH(0),$$

The right-hand side also vanishes:

$$H(0) = H(0; t) = Y_0 t.$$
The case of half-plane walks: the kernel method

- The equation (with $\bar{y} = 1/y$):
 \[(1 - t(y + 1 + \bar{y}))y \, H(y) = y - tH(0),\]
- **Cancel the kernel** by an appropriate choice of y:

 \[Y_0 = \frac{1 - t - \sqrt{(1 - t)^2 - 4t^2}}{2t} = t + t^2 + 2t^3 + O(t^4)\]

 The right-hand side also vanishes:
 \[H(0) = H(0; t) = \frac{Y_0}{t}.\]
The case of half-plane walks: the kernel method

- The equation (with $\bar{y} = 1/y$):
 \[(1 - t(y + 1 + \bar{y}))y \, H(y) = y - tH(0), \]

- **Cancel the kernel** by an appropriate choice of y:
 \[Y_0 = \frac{1 - t - \sqrt{(1 - t)^2 - 4t^2}}{2t} = t + t^2 + 2t^3 + \mathcal{O}(t^4) \]
 The right-hand side also vanishes:
 \[H(0) = H(0; t) = \frac{Y_0}{t}. \]

Theorem

The generating function of walks in the upper half-plane is an algebraic series (for any step set and any starting point).

[Gessel 80, Duchon 00, mbm-Petkovšek 00, Banderier & Flajolet 02...]
Polynomial equations with one catalytic variable

Theorem [mbm-Jehanne 06]

Let $P(t, y, S(y; t), A_1(t), \ldots, A_k(t))$ be a proper polynomial equation in one catalytic variable y (it defines uniquely $S(y; t), A_1(t), \ldots, A_k(t)$ as formal power series in t). Then each of these series is algebraic.

The proof is constructive.

Example 1: for $S(y; t) = H(y; t)$, and $A_1 = S(0; t) = H(0; t)$,

$$(1 - t(y + 1 + \tilde{y}))yS(y; t) = y - tA_1(t).$$
Polynomial equations with one catalytic variable

Theorem [mbm-Jehanne 06]

Let \(P(t, y, S(y; t), A_1(t), \ldots, A_k(t)) \) be a proper polynomial equation in one catalytic variable \(y \) (it defines uniquely \(S(y; t), A_1(t), \ldots, A_k(t) \) as formal power series in \(t \)). Then each of these series is algebraic.

The proof is constructive.

Example 2: for \(S(y; t) = Q(0, y; t) \) and \(A_1(t) = Q(0, 0; t) \),

\[
\frac{t}{y^2} - \frac{1}{y} - ty = t \left(tyS(y; t) + \frac{1}{y} \right)^2 - \left(tyS(y; t) + \frac{1}{y} \right) - 2t^2 A_1(t).
\]
Polynomial equations with one catalytic variable

Theorem [mbm-Jehanne 06]

Let $P(t, y, S(y; t), A_1(t), \ldots, A_k(t))$ be a proper polynomial equation in one catalytic variable y (it defines uniquely $S(y; t), A_1(t), \ldots, A_k(t)$ as formal power series in t). Then each of these series is algebraic.

The proof is constructive.

\Rightarrow Algebraicity follows from (a special case of) an Artin approximation theorem with “nested” conditions [Popescu 86, Swan 98]
Example: $S = \{01, \bar{1}0, 1\bar{1}\}$

$$Q(x, y; t) = 1 + t(y + \bar{x} + x\bar{y})Q(x, y) - t\bar{x}Q(0, y) - tx\bar{y}Q(x, 0)$$

with $\bar{x} = 1/x$ and $\bar{y} = 1/y$.

\[Q(x, y; t) \equiv Q(x, y) = \sum_{n \geq 0} \sum_{i, j \geq 0} q(i, j; n)x^i y^j t^n\]
Example: $S = \{01, \bar{1}0, 1\bar{1}\}$

$$Q(x, y; t) = 1 + t(y + \bar{x} + x\bar{y})Q(x, y) - t\bar{x}Q(0, y) - tx\bar{y}Q(x, 0)$$

or

$$\left(1 - t(y + \bar{x} + x\bar{y})\right)Q(x, y) = 1 - t\bar{x}Q(0, y) - tx\bar{y}Q(x, 0),$$
Example: $S = \{01, \bar{1}0, 1\bar{1}\}$

$Q(x, y; t) = 1 + t(y + \bar{x} + x\bar{y})Q(x, y) - t\bar{x}Q(0, y) - tx\bar{y}Q(x, 0)$

or

$$(1 - t(y + \bar{x} + x\bar{y}))Q(x, y) = 1 - t\bar{x}Q(0, y) - tx\bar{y}Q(x, 0),$$

or

$$(1 - t(y + \bar{x} + x\bar{y}))xyQ(x, y) = xy - tyQ(0, y) - tx^2Q(x, 0)$$
Back to quadrant walks: a functional equation

Example: \(S = \{01, 0\bar{1}, 1\bar{1}\} \)

\[
Q(x, y; t) = 1 + t(y + \bar{x} + x\bar{y})Q(x, y) - t\bar{x}Q(0, y) - tx\bar{y}Q(x, 0)
\]

or

\[
(1 - t(y + \bar{x} + x\bar{y}))Q(x, y) = 1 - t\bar{x}Q(0, y) - tx\bar{y}Q(x, 0),
\]

or

\[
(1 - t(y + \bar{x} + x\bar{y}))xyQ(x, y) = xy - tyQ(0, y) - tx^2Q(x, 0)
\]

- The polynomial \(1 - t(y + \bar{x} + x\bar{y}) \) is the kernel of this equation
- The equation is linear, with two catalytic variables \(x \) and \(y \) (tautological at \(x = 0 \) or \(y = 0 \))
Equations with **two** catalytic variables are harder...

- **Algebraic** [Kreweras 65, Gessel 86]
 \[(1 - t(\bar{x} + \bar{y} + xy))xyQ(x, y) = xy - tyQ(0, y) - txQ(x, 0)\]

- **D-finite, but transcendental** [Gessel 90]
 \[(1 - t(y + \bar{x} + x\bar{y}))xyQ(x, y) = xy - tyQ(0, y) - tx^2Q(x, 0)\]

- **Not D-finite, but D-algebraic** [Bernardi, mbm & Raschel 17]
 \[(1 - t(x + \bar{x} + y + x\bar{y}))xyQ(x, y) = xy - tyQ(0, y) - tx^2Q(x, 0)\]

- **Not D-algebraic (in \(y\))** [Dreyfus, Hardouin & Singer 17]
 \[(1 - t(x\bar{y} + \bar{x} + \bar{y} + y))xyQ(x, y) = xy - tyQ(0, y) - tx(1 + x)Q(x, 0)\]
Properly coloured triangulations (q colours):

$$T(x, y; t) \equiv T(x, y) = x(q - 1) + xyt T(x, y) T(1, y) + xt \frac{T(x, y) - T(x, 0)}{y} - x^2yt \frac{T(x, y) - T(1, y)}{x - 1}.$$
An old equation [Tutte 73]

- Properly coloured triangulations (q colours):

$$T(x, y; t) \equiv T(x, y) = x(q - 1) + xyt T(x, y) T(1, y)$$

$$+ xt \frac{T(x, y) - T(x, 0)}{y} - x^2 yt \frac{T(x, y) - T(1, y)}{x - 1}$$

Isn’t this reminiscent of quadrant equations?

$$Q(x, y; t) \equiv Q(x, y) = 1 + txy Q(x, y)$$

$$+ t \frac{Q(x, y) - Q(0, y)}{x} + t \frac{Q(x, y) - Q(x, 0)}{y}$$
An old equation [Tutte 73]

- Properly coloured triangulations (q colours):

\[T(x, y; t) \equiv T(x, y) = x(q - 1) + xyt T(x, y) T(1, y) + xt \frac{T(x, y) - T(x, 0)}{y} - x^2yt \frac{T(x, y) - T(1, y)}{x - 1} \]

Theorem [Tutte 73-84]

- For \(q = 4 \cos^2 \frac{\pi}{m} \), \(q \neq 0, 4 \), the series \(T(1, y) \) satisfies an equation with one catalytic variable \(y \).
An old equation [Tutte 73]

- Properly coloured triangulations (q colours):
 \[T(x, y; t) \equiv T(x, y) = x(q - 1) + yxt T(x, y)T(1, y) + xt \frac{T(x, y) - T(x, 0)}{y} - x^2yt \frac{T(x, y) - T(1, y)}{x - 1} \]

Theorem [Tutte 73-84]

- For \(q = 4 \cos^2 \frac{\pi}{m} \), \(q \neq 0, 4 \), the series \(T(1, y) \) satisfies an equation with one catalytic variable \(y \). This implies that it is algebraic [mbm-Jehanne 06].
An old equation [Tutte 73]

- Properly coloured triangulations (q colours):

$$T(x, y; t) \equiv T(x, y) = x(q - 1) + xyt T(x, y) T(1, y)$$
$$+ xt \frac{T(x, y) - T(x, 0)}{y} - x^2 yt \frac{T(x, y) - T(1, y)}{x - 1}$$

Theorem [Tutte 73-84]

- For $q = 4 \cos^2 \frac{\pi}{m}$, $q \neq 0, 4$, the series $T(1, y)$ satisfies an equation with one catalytic variable y. This implies that it is algebraic [mbm-Jehanne 06].
- For any q, the generating function of properly q-coloured planar triangulations is differentially algebraic:

$$2(1 - q)w + (w + 10H - 6wH')H'' + (4 - q)(20H - 18wH' + 9w^2 H'') = 0$$

with $H(w) = w T(1, 0; \sqrt{w})$.
In this talk

I. Adapt Tutte’s method to quadrant walks: new and uniform proofs of algebraicity.

II. Extension to an analytic context: some walks with an infinite group (hence not D-finite) are still D-algebraic.
In this talk

I. Adapt Tutte’s method to quadrant walks: new and uniform proofs of algebraicity.

II. Extension to an analytic context: some walks with an infinite group (hence not D-finite) are still D-algebraic.

quadrant models: 79

\[|G| < \infty: 23 \quad \text{D-finite} \quad \text{OS} = 0: 4 \quad \text{algebraic} \]

\[|G| = \infty: 56 \quad \text{Not D-finite} \quad \text{OS} \neq 0: 19 \quad \text{transcendental} \]
In this talk

I. Adapt Tutte’s method to quadrant walks: new and uniform proofs of algebraicity.

II. Extension to an analytic context: some walks with an infinite group (hence not D-finite) are still D-algebraic.

| quadrant models: 79 |

| $|G| < \infty$: 23 |
| \begin{align*}
|G| = \infty: 56
| \end{align*} |

| D-finite |
| \begin{align*}
\text{dec. 4} & \quad \text{no dec. 19} \\
\text{algebraic} & \quad \text{transcendental}
\end{align*} |

| Not D-finite |
| \begin{align*}
\text{dec. 9} & \quad \text{no dec. 47} \\
\text{D-algebraic} & \quad ???
\end{align*} |
I. New proofs for algebraic models
Kreweras’ model

- The equation (with $\bar{x} = 1/x$ and $\bar{y} = 1/y$):

\[
(1 - t(\bar{x} + \bar{y} + xy))xyQ(x, y) = xy - txQ(x, 0) - tyQ(0, y)
= xy - R(x) - S(y)
\]
Kreweras’ model

- The equation (with $\bar{x} = 1/x$ and $\bar{y} = 1/y$):
 \[
 (1 - t(\bar{x} + \bar{y} + xy))xyQ(x, y) = xy - txQ(x, 0) - tyQ(0, y)
 = xy - R(x) - S(y)
 \]

- If we take $x = t + ut^2$, both roots of the kernel
 \[
 Y_{0,1} = \frac{x - t \pm \sqrt{(x - t)^2 - 4t^2x^3}}{2tx^2}
 \]
 are (Laurent) series in t with rational coefficients in u, and can be legally substituted for y in $Q(x, y)$.

Kreweras’ model

- The equation (with $\bar{x} = 1/x$ and $\bar{y} = 1/y$):
 \[
 (1 - t(\bar{x} + \bar{y} + xy))xyQ(x, y) = xy - txQ(x, 0) - tyQ(0, y) = xy - R(x) - S(y)
 \]

- If we take $x = t + ut^2$, both roots of the kernel
 \[
 Y_{0,1} = \frac{x - t \pm \sqrt{(x - t)^2 - 4t^2x^3}}{2tx^2}
 \]
 are (Laurent) series in t with rational coefficients in u, and can be legally substituted for y in $Q(x, y)$. This gives four equations:

<table>
<thead>
<tr>
<th>Kernel</th>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$xY_0 = t(Y_0 + x + x^2Y_0^2)$</td>
<td>$xY_0 = R(x) + S(Y_0)$</td>
</tr>
<tr>
<td>$xY_1 = t(Y_1 + x + x^2Y_1^2)$</td>
<td>$xY_1 = R(x) + S(Y_1)$</td>
</tr>
</tbody>
</table>
Kreweras’ model

- Four equations relating x, $R(x)$, Y_0, Y_1, $S(Y_0)$, $S(Y_1)$ and t:

<table>
<thead>
<tr>
<th>Kernel</th>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$xY_0 = t(Y_0 + x + x^2Y_0^2)$</td>
<td>$xY_0 = R(x) + S(Y_0)$</td>
</tr>
<tr>
<td>$xY_1 = t(Y_1 + x + x^2Y_1^2)$</td>
<td>$xY_1 = R(x) + S(Y_1)$</td>
</tr>
</tbody>
</table>
Kreweras’ model

- Four equations relating x, $R(x)$, Y_0, Y_1, $S(Y_0)$, $S(Y_1)$ and t:

<table>
<thead>
<tr>
<th>Kernel</th>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$xY_0 = t(Y_0 + x + x^2Y_0^2)$</td>
<td>$xY_0 = R(x) + S(Y_0)$</td>
</tr>
<tr>
<td>$xY_1 = t(Y_1 + x + x^2Y_1^2)$</td>
<td>$xY_1 = R(x) + S(Y_1)$</td>
</tr>
</tbody>
</table>

- Eliminate x from the kernel equations:

$$\frac{t}{Y_0^2} - \frac{1}{Y_0} - tY_0 = \frac{t}{Y_1^2} - \frac{1}{Y_1} - tY_1$$
Kreweras’ model

- Four equations relating x, $R(x)$, Y_0, Y_1, $S(Y_0)$, $S(Y_1)$ and t:

<table>
<thead>
<tr>
<th>Kernel</th>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$xY_0 = t(Y_0 + x + x^2Y_0^2)$</td>
<td>$xY_0 = R(x) + S(Y_0)$</td>
</tr>
<tr>
<td>$xY_1 = t(Y_1 + x + x^2Y_1^2)$</td>
<td>$xY_1 = R(x) + S(Y_1)$</td>
</tr>
</tbody>
</table>

- Eliminate x from the kernel equations:

 $$\frac{t}{Y_0^2} - \frac{1}{Y_0} - tY_0 = \frac{t}{Y_1^2} - \frac{1}{Y_1} - tY_1$$

- Eliminate $R(x)$ from the RHS equations, and then x:

 $$S(Y_0) + \frac{1}{Y_0} = S(Y_1) + \frac{1}{Y_1}$$
Kreweras’ model

- Four equations relating x, $R(x)$, Y_0, Y_1, $S(Y_0)$, $S(Y_1)$ and t:

<table>
<thead>
<tr>
<th>Kernel</th>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$xY_0 = t(Y_0 + x + x^2 Y_0^2)$</td>
<td>$xY_0 = R(x) + S(Y_0)$</td>
</tr>
<tr>
<td>$xY_1 = t(Y_1 + x + x^2 Y_1^2)$</td>
<td>$xY_1 = R(x) + S(Y_1)$</td>
</tr>
</tbody>
</table>

- Eliminate x from the kernel equations:

$$\frac{t}{Y_0^2} - \frac{1}{Y_0} - tY_0 = \frac{t}{Y_1^2} - \frac{1}{Y_1} - tY_1$$

- Eliminate $R(x)$ from the RHS equations, and then x:

$$S(Y_0) + \frac{1}{Y_0} = S(Y_1) + \frac{1}{Y_1}$$

The two following functions are invariants, in the sense of Tutte:

$$I(y) = \frac{t}{y^2} - \frac{1}{y} - ty \quad \text{and} \quad J(y) = S(y) + \frac{1}{y}.$$
The invariant lemma

We have

$$I(Y_0) = I(Y_1) \quad \text{and} \quad J(Y_0) = J(Y_1)$$

with

$$I(y) = \frac{t}{y^2} - \frac{1}{y} - ty \quad \text{and} \quad J(y) = tyQ(0, y) + \frac{1}{y}.$$
The invariant lemma

We have

\[I(Y_0) = I(Y_1) \quad \text{and} \quad J(Y_0) = J(Y_1) \]

with

\[I(y) = \frac{t}{y^2} - \frac{1}{y} - ty \quad \text{and} \quad J(y) = tyQ(0, y) + \frac{1}{y}. \]

The invariant lemma

There are few invariants: \(I(y) \) must be a polynomial in \(J(y) \) whose coefficients are series in \(t \).
The invariant lemma

We have

\[I(Y_0) = I(Y_1) \quad \text{and} \quad J(Y_0) = J(Y_1) \]

with

\[I(y) = \frac{t}{y^2} - \frac{1}{y} - ty \quad \text{and} \quad J(y) = tyQ(0, y) + \frac{1}{y}. \]

The invariant lemma

There are few invariants: \(I(y) \) must be a polynomial in \(J(y) \) whose coefficients are series in \(t \).

\[I(y) = \frac{t}{y^2} - \frac{1}{y} - ty = t \left(tyQ(0, y) + \frac{1}{y} \right)^2 - \left(tyQ(0, y) + \frac{1}{y} \right) + c \]

Expanding at \(y = 0 \) gives the value of \(c \).
The invariant lemma

We have

\[I(Y_0) = I(Y_1) \quad \text{and} \quad J(Y_0) = J(Y_1) \]

with

\[I(y) = \frac{t}{y^2} - \frac{1}{y} - ty \quad \text{and} \quad J(y) = tyQ(0, y) + \frac{1}{y}. \]

The invariant lemma

There are few invariants: \(I(y) \) must be a polynomial in \(J(y) \) whose coefficients are series in \(t \).

\[I(y) = \frac{t}{y^2} - \frac{1}{y} - ty = t \left(tyQ(0, y) + \frac{1}{y} \right)^2 - \left(tyQ(0, y) + \frac{1}{y} \right) - 2t^2 Q(0, 0). \]

Expanding at \(y = 0 \) gives the value of \(c \).
The invariant lemma

We have

\[I(Y_0) = I(Y_1) \quad \text{and} \quad J(Y_0) = J(Y_1) \]

with

\[I(y) = \frac{ty}{y^2} - \frac{1}{y} - ty \quad \text{and} \quad J(y) = tyQ(0, y) + \frac{1}{y}. \]

The invariant lemma

There are few invariants: \(I(y) \) must be a polynomial in \(J(y) \) whose coefficients are series in \(t \).

\[I(y) = \frac{t}{y^2} - \frac{1}{y} - ty = t \left(tyQ(0, y) + \frac{1}{y} \right)^2 - \left(tyQ(0, y) + \frac{1}{y} \right) - 2t^2 Q(0, 0). \]

Expanding at \(y = 0 \) gives the value of \(c \).

Polynomial equation with one catalytic variable \(\Rightarrow Q(0, y; t) \) is algebraic
Other set steps: are there invariants?

<table>
<thead>
<tr>
<th></th>
<th>from kernel</th>
<th>from RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>×</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Other set steps: are there invariants?

<table>
<thead>
<tr>
<th>from kernel</th>
<th>from RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>×</td>
<td>−</td>
</tr>
<tr>
<td>×</td>
<td>−</td>
</tr>
<tr>
<td>−</td>
<td>×</td>
</tr>
<tr>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

High time for the complete picture!
The series $Q(x, y; t)$ is D-finite iff the group G is finite. It is algebraic iff, in addition, the orbit sum is zero.

[D-finite] [mbm-Mishna 10], [Bostan-Kauers 10]
[non-singular non-D-finite] [Kurkova-Raschel 12]
singular non-D-finite [Mishna-Rechnitzer 07], [Melczer-Mishna 13]
The series $Q(x, y; t)$ is D-finite iff the group G is finite. It is algebraic iff, in addition, the orbit sum is zero.
Classification of quadrant walks with small steps

quadrant models: 79

∃ K-invariant no K-invariant

D-finite Not D-finite

∃ RHS-invariant no RHS-invariant

algebraic transcendental

Theorem

The series $Q(x, y; t)$ is D-finite iff the group G is finite. It is algebraic iff, in addition, the orbit sum is zero.

[mbm-Mishna 10], [Bostan-Kauers 10] D-finite
[Kurkova-Raschel 12] non-singular non-D-finite
[Mishna-Rechnitzer 07], [Melczer-Mishna 13] singular non-D-finite
Algebraic models: a uniform approach

All models with a finite group and a zero orbit sum have two invariants \Rightarrow uniform solution via the solution of an equation with one catalytic variable.
All models with a finite group and a zero orbit sum have two invariants \(\Rightarrow \) uniform solution via the solution of an equation with one catalytic variable

This applies as well to weighted algebraic models [Kauers, Yatchak 14(a)]:
II. The non-D-finite case

quadrant models: 79

∃ K-invariant no K-invariant

D-finite

∃ RHS-invariant no RHS-invariant

algebraic transcendental

Not D-finite
II. The non-D-finite case

quadrant models: 79

- ∃ K-invariant
 - D-finite
 - ∃ RHS-invariant
 - algebraic
 - no RHS-invariant
 - no RHS-invariant
 - transcendental

- no K-invariant
 - Not D-finite
 - ∃ RHS-invariant
 - no RHS-invariant
A weaker (and analytic) notion of invariants

- Still require that $I(Y_0) = I(Y_1)$, where Y_0, Y_1 are the roots of the kernel

$$xyK(x, y) = xy - xyt \sum_{(i,j) \in S} x^i y^i = a(x)y^2 + b(x)y + c(x)$$

... but only for some complex values of x (and t).
- Meromorphicity condition in a domain
A weaker (and analytic) notion of invariants

- Still require that $I(Y_0) = I(Y_1)$, where Y_0, Y_1 are the roots of the kernel

$$xyK(x, y) = xy - xyt \sum_{(i,j) \in S} x^i y^j = a(x)y^2 + b(x)y + c(x)$$

... but only for some complex values of x (and t).
- meromorphicity condition in a domain

Fayolle, Iasnogorodski, Malyshev [1999]
A weaker (and analytic) notion of invariants

- Still require that $I(Y_0) = I(Y_1)$, where Y_0, Y_1 are the roots of the kernel

$$xyK(x, y) = xy - xyt \sum_{(i,j) \in S} x^i y^i = a(x)y^2 + b(x)y + c(x)$$

... but only for some complex values of x (and t).

- Meromorphicity condition in a domain
A weaker (and analytic) notion of invariants

- Still require that $I(Y_0) = I(Y_1)$, where Y_0, Y_1 are the roots of the kernel

$$xyK(x, y) = xy - xyt \sum_{(i,j) \in S} x^i y^i = a(x)y^2 + b(x)y + c(x)$$

- Take t in $(0, 1/|S|)$. The discriminant $\delta(x)$ of $xyK(x, \cdot)$ looks like this:
A weaker (and analytic) notion of invariants

- Still require that $I(Y_0) = I(Y_1)$, where Y_0, Y_1 are the roots of the kernel

$$xyK(x, y) = xy - xyt \sum_{(i,j) \in S} x^i y^j = a(x)y^2 + b(x)y + c(x)$$

- Take t in $(0, 1/|S|)$. The discriminant $\delta(x)$ of $xyK(x, \cdot)$ looks like this:

Def. A function $I(y; t)$ is a weak invariant if, for $x \in [x_1, x_2]$, $I(Y_0) = I(Y_1)$.

\[b(x)^2 - 4a(x)c(x) \]
A weaker (and analytic) notion of invariants

- Still require that $I(Y_0) = I(Y_1)$, where Y_0, Y_1 are the roots of the kernel

$$xyK(x, y) = xy - xyt \sum_{(i,j) \in S} x^i y^j = a(x)y^2 + b(x)y + c(x)$$

- Take t in $(0, 1/|S|)$. The discriminant $\delta(x)$ of $xyK(x, \cdot)$ looks like this:

Def. A function $I(y; t)$ is a weak invariant if, for $x \in [x_1, x_2]$, $I(Y_0) = I(Y_1)$. Moreover, $I(y)$ must be meromorphic inside $\mathcal{L} = Y([x_1, x_2])$, with finite limits on \mathcal{L}.
Can we find weak invariants?

Theorem [Fayolle et al. 99, Rasche 12]

For each non-singular model, there exists an (explicit) weak invariant of the form

\[I(y; t) = \wp(R(y; t), \omega_1(t), \omega_3(t)) \]

where

- \(\wp \) is Weierstrass elliptic function
- its periods \(\omega_1 \) and \(\omega_3 \) are elliptic integrals
- its argument \(R \) is also an elliptic integral
Can we find weak invariants?

Theorem [Fayolle et al. 99, Raschel 12]

For each non-singular model, there exists an (explicit) weak invariant of the form

\[I(y; t) = \wp(\mathcal{R}(y; t), \omega_1(t), \omega_3(t)) \]

where

- \(\wp \) is Weierstrass elliptic function
- its periods \(\omega_1 \) and \(\omega_3 \) are elliptic integrals
- its argument \(\mathcal{R} \) is also an elliptic integral

\[
\begin{align*}
\omega_1 &= i \int_{x_1}^{x_2} \frac{dx}{\sqrt{-\delta(x)}}, \\
\omega_2 &= \int_{x_2}^{x_3} \frac{dx}{\sqrt{\delta(x)}}, \\
\omega_3 &= \int_{x_1}^{x(y_1)} \frac{dx}{\sqrt{\delta(x)}}.
\end{align*}
\]

\[
\mathcal{R}(y; t) = \int_{f(y_2)}^{f(y)} \frac{dz}{\sqrt{4z^3 - g_2z - g_3}}
\]

\(g_2, g_3 \) polynomials in \(t \), \(f(y) \) rational in \(y \) and algebraic in \(t \).
Can we find weak invariants?

Theorem [Fayolle et al. 99, Raschel 12]

For each non-singular model, there exists an (explicit) weak invariant of the form

\[I(y; t) = \wp \left(\mathcal{R}(y; t), \omega_1(t), \omega_3(t) \right) \]

where

- \(\wp \) is Weierstrass elliptic function
- its periods \(\omega_1 \) and \(\omega_3 \) are elliptic integrals
- its argument \(\mathcal{R} \) is also an elliptic integral

Proposition [Bernardi-mbm-Raschel 17]

\(I(y; t) \) is D-algebraic in \(y \) and \(t \).
The invariant lemma

For appropriate values of x, we have:

$$I(Y_0) = I(Y_1) \quad \text{and} \quad J(Y_0) = J(Y_1)$$

where $I(y)$ is the weak invariant and $J(y) = t(1 + y)Q(0, y) + 1/y$.

The invariant lemma [Litvinchuk 00]

There are few invariants: $J(y)$ must be a rational function in $I(y)$. The value of this rational function is found by looking at the poles and zeroes of $J(y)$.

The invariant lemma

For appropriate values of x, we have:

$$I(Y_0) = I(Y_1) \quad \text{and} \quad J(Y_0) = J(Y_1)$$

where $I(y)$ is the weak invariant and $J(y) = t(1 + y)Q(0, y) + 1/y$.

The invariant lemma [Litvinchuk 00]

There are few invariants: $J(y)$ must be a rational function in $I(y)$. The value of this rational function is found by looking at the poles and zeroes of $J(y)$.
The invariant lemma

For appropriate values of x, we have:

\[I(Y_0) = I(Y_1) \quad \text{and} \quad J(Y_0) = J(Y_1) \]

where $I(y)$ is the weak invariant and $J(y) = t(1 + y)Q(0, y) + 1/y$.

The invariant lemma [Litvinchuk 00]

There are few invariants: $J(y)$ must be a rational function in $I(y)$. The value of this rational function is found by looking at the poles and zeroes of $J(y)$.

\[J(y) = t(1 + y)Q(0, y) + \frac{1}{y} = \frac{I'(0)}{I(y) - I(0)} - \frac{I'(0)}{I(-1) - I(0)} - 1 \]
The invariant lemma

For appropriate values of x, we have:

\[I(Y_0) = I(Y_1) \quad \text{and} \quad J(Y_0) = J(Y_1) \]

where $I(y)$ is the weak invariant and $J(y) = t(1 + y)Q(0, y) + 1/y$.

The invariant lemma [Litvinchuk 00]

There are few invariants: $J(y)$ must be a rational function in $I(y)$. The value of this rational function is found by looking at the poles and zeroes of $J(y)$.

\[
J(y) = t(1 + y)Q(0, y) + \frac{1}{y} = \frac{I'(0)}{I(y) - I(0)} - \frac{I'(0)}{I(-1) - I(0)} - 1
\]

Explicit expression of $Q(0, y; t)$ in terms of the (explicit) weak invariant $I(y)$
The invariant lemma

For appropriate values of x, we have:

$$I(Y_0) = I(Y_1) \quad \text{and} \quad J(Y_0) = J(Y_1)$$

where $I(y)$ is the weak invariant and $J(y) = t(1 + y)Q(0, y) + 1/y$.

The invariant lemma [Litvinchuk 00]

There are few invariants: $J(y)$ must be a rational function in $I(y)$. The value of this rational function is found by looking at the poles and zeroes of $J(y)$.

Corollary

For the 9 models with an infinite group and a RHS-invariant, the series $Q(x, y; t)$ is D-algebraic.
Final comments

quadrant models: 79

exist K-invariant: 23
no K-invariant: 56

D-finite

exist RHS-invariant
no RHS-invariant

algebraic
transcendental

Not D-finite

exist RHS-invariant
no RHS-invariant

D-algebraic

???

Nature of $Q(x, y; t)$ when no decoupling function exists?

[Dreyfus, Hardouin, Roques, Singer 17(a)]: $Q(0, y)$ is not DA in y.

The existence of decoupling function depends much on the starting point.

To do: find explicit DEs (done for y).
Final comments

quadrant models: 79

∃ K-invariant: 23 no K-invariant: 56

D-finite

∃ RHS-invariant no RHS-invariant

algebraic transcendental

Not D-finite

∃ RHS-invariant no RHS-invariant

D-algebraic ???

- Nature of $Q(x, y; t)$ when no decoupling function exists?
 [Dreyfus, Hardouin, Roques, Singer 17(a)]: $Q(0, y)$ is not DA in y
- The existence of decoupling function depends much on the starting point.
- To do: find explicit DEs (done for y)