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Counting quadrant walks

Let S be a finite subset of Z2 (set of steps) and p0 ∈ N2 (starting point).

What is the number q(n) of n-step walks starting at p0 and
contained in N2?
For , what is the number of such walks that end at ?

Example. S = {10, 1̄0, 11̄, 1̄1}, p0 = (0, 0)
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Counting quadrant walks

Let S be a finite subset of Z2 (set of steps) and p0 ∈ N2 (starting point).

What is the number q(n) of n-step walks starting at p0 and
contained in N2?
For (i , j) ∈ N2, what is the number q(i , j ; n) of such walks that end
at (i , j)?

The associated generating function:

Q(x , y ; t) =
∑
n≥0

∑
i ,j≥0

q(i , j ; n)x iy j tn.

What is the nature of this series?



A hierarchy of formal power series

• Rational series

A(t) =
P(t)

Q(t)

• Algebraic series

P(t,A(t)) = 0

• Differentially finite series (D-finite)
d∑

i=0

Pi (t)A(i)(t) = 0

• D-algebraic series
P(t,A(t),A′(t), . . . ,A(d)(t)) = 0

Multi-variate series: one DE per variable



The case of half-plane walks

Example: steps S = {01, 1̄0, 11̄}, upper half plane
• Generating function:

H(y ; t) ≡ H(y) =
∑
n≥0

∑
j≥0

h(j ; n)y j tn

h(j ; n) : number of n-setp walks in the half plane ending at ordinate j



The case of half-plane walks

Example: steps S = {01, 1̄0, 11̄}, upper half plane
• Generating function:

H(y ; t) ≡ H(y) =
∑
n≥0

∑
j≥0

h(j ; n)y j tn

• Step-by-step construction:

H(y) = 1 + t(y + 1 + ȳ)H(y)− tȳH(0)

with ȳ = 1/y .
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The case of half-plane walks

Example: steps S = {01, 1̄0, 11̄}, upper half plane
• Generating function:

H(y ; t) ≡ H(y) =
∑
n≥0

∑
j≥0

h(j ; n)y j tn

• Step-by-step construction:

H(y) = 1 + t(y + 1 + ȳ)H(y)− tȳH(0)
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• The polynomial 1− t(y + x̄ + xȳ) is the kernel of this equation
• The equation is linear, with one catalytic variable y (tautological at
y = 0) [Zeilberger 00]
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The case of half-plane walks: the kernel method

• The equation (with ȳ = 1/y):(
1− t(y + 1 + ȳ)

)
y H(y) = y − tH(0),

• Cancel the kernel by an appropriate choice of y :

Y0 =
1− t −

√
(1− t)2 − 4t2

2t
= t + t2 + 2t3 +O(t4)

The right-hand side also vanishes:

H(0) = H(0; t) =
Y0

t
.

Theorem
The generating function of walks in the upper half-plane is an algebraic
series (for any step set and any starting point).
[Gessel 80, Duchon 00, mbm-Petkovšek 00, Banderier & Flajolet 02...]
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Polynomial equations with one catalytic variable

Theorem [mbm-Jehanne 06]
Let P(t, y , S(y ; t),A1(t), . . . ,Ak(t)) be a proper polynomial equation in
one catalytic variable y (it defines uniquely S(y ; t),A1(t), . . . ,Ak(t) as
formal power series in t). Then each of these series is algebraic.

The proof is constructive.

Example 1: for S(y ; t) = H(y ; t), and A1 = S(0; t) = H(0; t),(
1− t(y + 1 + ȳ)

)
yS(y ; t) = y − tA1(t).



Polynomial equations with one catalytic variable

Theorem [mbm-Jehanne 06]
Let P(t, y , S(y ; t),A1(t), . . . ,Ak(t)) be a proper polynomial equation in
one catalytic variable y (it defines uniquely S(y ; t),A1(t), . . . ,Ak(t) as
formal power series in t). Then each of these series is algebraic.

The proof is constructive.

Example 2: for S(y ; t) = Q(0, y ; t) and A1(t) = Q(0, 0; t),

t

y2 −
1
y
− ty = t

(
tyS(y ; t) +

1
y

)2

−
(
tyS(y ; t) +

1
y

)
− 2t2A1(t).



Polynomial equations with one catalytic variable

Theorem [mbm-Jehanne 06]
Let P(t, y , S(y ; t),A1(t), . . . ,Ak(t)) be a proper polynomial equation in
one catalytic variable y (it defines uniquely S(y ; t),A1(t), . . . ,Ak(t) as
formal power series in t). Then each of these series is algebraic.

The proof is constructive.

⇒ Algebraicity follows from (a special case of) an Artin approximation
theorem with “nested” conditions [Popescu 86, Swan 98]



Back to quadrant walks: a functional equation

Example: S = {01, 1̄0, 11̄}
Q(x , y ; t) = 1 + t(y + x̄ + xȳ)Q(x , y)− tx̄Q(0, y)− txȳQ(x , 0)

with x̄ = 1/x and ȳ = 1/y .

Q(x , y ; t) ≡ Q(x , y) =
∑
n≥0

∑
i ,j≥0

q(i , j ; n)x iy j tn

or(
1− t(y + x̄ + xȳ)

)
xyQ(x , y) = xy − tyQ(0, y)− tx2Q(x , 0)

• The polynomial 1− t(y + x̄ + xȳ) is the kernel of this equation
• The equation is linear, with two catalytic variables x and y (tautological

at x = 0 or y = 0)
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Equations with two catalytic variables are harder...

Algebraic [Kreweras 65, Gessel 86]

(1− t(x̄ + ȳ + xy))xyQ(x , y) = xy − tyQ(0, y)− txQ(x , 0)

D-finite, but transcendental [Gessel 90](
1− t(y + x̄ + xȳ)

)
xyQ(x , y) = xy − tyQ(0, y)− tx2Q(x , 0)

Not D-finite, but D-algebraic [Bernardi, mbm & Raschel 17]

(1− t(x + x̄ + y + xȳ))xyQ(x , y) = xy − tyQ(0, y)− tx2Q(x , 0)

Not D-algebraic (in y) [Dreyfus, Hardouin & Singer 17]

(1− t(xȳ + x̄ + ȳ + y))xyQ(x , y) = xy − tyQ(0, y)− tx(1 + x)Q(x , 0)



An old equation [Tutte 73]

• Properly coloured triangulations (q colours):

T (x , y ; t) ≡ T (x , y) = x(q − 1) + xytT (x , y)T (1, y)

+ xt
T (x , y)− T (x , 0)

y
− x2yt

T (x , y)− T (1, y)

x − 1
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Isn’t this reminiscent of quadrant equations?

Q(x , y ; t) ≡ Q(x , y) = 1 + txyQ(x , y)

+ t
Q(x , y)− Q(0, y)

x
+ t

Q(x , y)− Q(x , 0)

y



An old equation [Tutte 73]

• Properly coloured triangulations (q colours):

T (x , y ; t) ≡ T (x , y) = x(q − 1) + xytT (x , y)T (1, y)

+ xt
T (x , y)− T (x , 0)

y
− x2yt
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x − 1

Theorem [Tutte 73-84]

• For q = 4 cos2 π
m , q 6= 0, 4, the series T (1, y) satisfies an equation with

one catalytic variable y .

This implies that it is algebraic [mbm-Jehanne
06].

• For any q, the generating function of properly q-coloured planar
triangulations is differentially algebraic:

2(1− q)w + (w + 10H − 6wH ′)H ′′+ (4− q)(20H − 18wH ′+ 9w2H ′′) = 0

with H(w) = wT (1, 0;
√
w).
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(hence not D-finite) are still D-algebraic.
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In this talk

I. Adapt Tutte’s method to quadrant walks: new and uniform proofs of
algebraicity.

II. Extension to an analytic context: some walks with an infinite group
(hence not D-finite) are still D-algebraic.

quadrant models: 79

|G |<∞: 23

D-finite

dec. 4

algebraic

no dec. 19

transcendental

|G |=∞: 56

Not D-finite

dec. 9

D-algebraic

no dec. 47

???



I. New proofs for algebraic models



Kreweras’ model

• The equation (with x̄ = 1/x and ȳ = 1/y):(
1− t(x̄ + ȳ + xy)

)
xyQ(x , y) = xy − txQ(x , 0)− tyQ(0, y)

= xy − R(x)− S(y)

• If we take x = t + ut2, both roots of the kernel

Y0,1 =
x − t ±

√
(x − t)2 − 4t2x3

2tx2

are (Laurent) series in t with rational coefficients in u, and can be legally
substituted for y in Q(x , y).

This gives four equations:

Kernel RHS

xY0 = t(Y0 + x + x2Y 2
0 ) xY0 = R(x) + S(Y0)

xY1 = t(Y1 + x + x2Y 2
1 ) xY1 = R(x) + S(Y1)
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Kreweras’ model

• Four equations relating x ,R(x),Y0,Y1,S(Y0), S(Y1) and t:

Kernel RHS

xY0 = t(Y0 + x + x2Y 2
0 ) xY0 = R(x) + S(Y0)

xY1 = t(Y1 + x + x2Y 2
1 ) xY1 = R(x) + S(Y1)

• Eliminate x from the kernel equations:
t

Y 2
0
− 1

Y0
− tY0 =

t

Y 2
1
− 1

Y1
− tY1

• Eliminate R(x) from the RHS equations, and then x :

S(Y0) +
1
Y0

= S(Y1) +
1
Y1

The two following functions are invariants, in the sense of Tutte:

I (y) =
t

y2 −
1
y
− ty and J(y) = S(y) +

1
y
.
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The invariant lemma

We have
I (Y0) = I (Y1) and J(Y0) = J(Y1)

with

I (y) =
t

y2 −
1
y
− ty and J(y) = tyQ(0, y) +

1
y
.

The invariant lemma
There are few invariants: I (y) must be a polynomial in J(y) whose
coefficients are series in t.

I (y) =
t

y2−
1
y
−ty = t

(
tyQ(0, y) +

1
y

)2

−
(
tyQ(0, y) +

1
y

)

−2t2Q(0, 0)

.

Expanding at y = 0 gives the value of c .

Polynomial equation with one catalytic variable ⇒ Q(0, y ; t) is algebraic
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Classification of quadrant walks with small steps

quadrant models: 79

|G |<∞: 23

D-finite

OS=0: 4

algebraic

OS6=0: 19

transcendental

|G |=∞: 56

Not D-finite

Theorem
The series Q(x , y ; t) is D-finite iff the group G is finite.
It is algebraic iff, in addition, the orbit sum is zero.

[mbm-Mishna 10], [Bostan-Kauers 10] D-finite
[Kurkova-Raschel 12] non-singular non-D-finite
[Mishna-Rechnitzer 07], [Melczer-Mishna 13] singular non-D-finite
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Algebraic models: a uniform approach

All models with a finite group and a zero orbit sum have two invariants ⇒
uniform solution via the solution of an equation with one catalytic variable

This applies as well to weighted algebraic models [Kauers, Yatchak 14(a)]:
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II. The non-D-finite case

quadrant models: 79

∃ K-invariant

D-finite

∃ RHS-invariant

algebraic

no RHS-invariant

transcendental

no K-invariant

Not D-finite

∃ RHS-invariant no RHS-invariant



II. The non-D-finite case

quadrant models: 79

∃ K-invariant

D-finite

∃ RHS-invariant

algebraic

no RHS-invariant

transcendental

no K-invariant

Not D-finite

∃ RHS-invariant no RHS-invariant



A weaker (and analytic) notion of invariants

• Still require that I (Y0) = I (Y1), where Y0,Y1 are the roots of the kernel

xyK (x , y) = xy − xyt
∑

(i ,j)∈S

x iy i = a(x)y2 + b(x)y + c(x)

... but only for some complex values of x (and t).
• meromorphicity condition in a domain

• Take t in (0, 1/|S|). The discriminant δ(x) of xyK (x , ·) looks like this:

1 x−1 x4

b(x)2 − 4a(x)c(x)

x1 x2 x3

=(Yi)

<(Yi)

LY0

Y1

Def. A function I (y ; t) is a weak invariant if, for x ∈ [x1, x2],
I (Y0) = I (Y1).

Moreover, I (y) must be meromorphic inside
L = Y ([x1, x2]), with finite limits on L.
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Can we find weak invariants?

Theorem [Fayolle et al. 99, Raschel 12]
For each non-singular model, there exists an (explicit) weak invariant of
the form

I (y ; t) = ℘ (R(y ; t), ω1(t), ω3(t))

where
℘ is Weierstrass elliptic function
its periods ω1 and ω3 are elliptic integrals
its argument R is also an elliptic integral
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For each non-singular model, there exists an (explicit) weak invariant of
the form

I (y ; t) = ℘ (R(y ; t), ω1(t), ω3(t))

where
℘ is Weierstrass elliptic function
its periods ω1 and ω3 are elliptic integrals
its argument R is also an elliptic integral

ω1 = i

∫ x2

x1

dx√
−δ(x)

, ω2 =

∫ x3

x2

dx√
δ(x)

, ω3 =

∫ x1

X (y1)

dx√
δ(x)

.

R(y ; t) =

∫ f (y)

f (y2)

dz√
4z3 − g2z − g3

g2, g3 polynomials in t, f (y) rational in y and algebraic in t.



Can we find weak invariants?

Theorem [Fayolle et al. 99, Raschel 12]
For each non-singular model, there exists an (explicit) weak invariant of
the form

I (y ; t) = ℘ (R(y ; t), ω1(t), ω3(t))

where
℘ is Weierstrass elliptic function
its periods ω1 and ω3 are elliptic integrals
its argument R is also an elliptic integral

Proposition [Bernardi-mbm-Raschel 17]
I (y ; t) is D-algebraic in y and t.



The invariant lemma

For appropriate values of x , we have:

I (Y0) = I (Y1) and J(Y0) = J(Y1)

where I (y) is the weak invariant and J(y) = t(1 + y)Q(0, y) + 1/y .

The invariant lemma [Litvinchuk 00]
There are few invariants: J(y) must be a rational function in I (y). The
value of this rational function is found by looking at the poles and zeroes
of J(y).
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The invariant lemma

For appropriate values of x , we have:

I (Y0) = I (Y1) and J(Y0) = J(Y1)

where I (y) is the weak invariant and J(y) = t(1 + y)Q(0, y) + 1/y .

The invariant lemma [Litvinchuk 00]
There are few invariants: J(y) must be a rational function in I (y). The
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J(y) = t(1 + y)Q(0, y) +
1
y

=
I ′(0)

I (y)− I (0)
− I ′(0)

I (−1)− I (0)
− 1

Explicit expression of Q(0, y ; t) in terms of the (explicit) weak invariant
I (y)



The invariant lemma

For appropriate values of x , we have:

I (Y0) = I (Y1) and J(Y0) = J(Y1)

where I (y) is the weak invariant and J(y) = t(1 + y)Q(0, y) + 1/y .

The invariant lemma [Litvinchuk 00]
There are few invariants: J(y) must be a rational function in I (y). The
value of this rational function is found by looking at the poles and zeroes
of J(y).

Corollary
For the 9 models with an infinite group and a RHS-invariant, the series
Q(x , y ; t) is D-algebraic.



Final comments
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no RHS-invariant

transcendental
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Not D-finite

∃ RHS-invariant

D-algebraic

no RHS-invariant

???

Nature of Q(x , y ; t) when no decoupling function exists?
[Dreyfus, Hardouin, Roques, Singer 17(a)]: Q(0, y) is not DA in y
The existence of decoupling function depends much on the starting
point.
To do: find explicit DEs (done for y)
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