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Let S be a finite subset of Z? (set of steps) and py € N? (starting point).

Example. S = {10,10, 11,11}, po = (0,0)



Let S be a finite subset of Z? (set of steps) and py € N? (starting point).

- What is the number g(n) of n-step walks starting at py and
contained in N°?

For (i,j) € N, what is the number q(i,j; n) of such walks that end
at (1,/)?

Example. S = {10,10, 11,11}, po = (0,0)




Let S be a finite subset of Z? (set of steps) and py € N? (starting point).

- What is the number g(n) of n-step walks starting at py and
contained in N°?

For (i,j) € N, what is the number q(i,j; n) of such walks that end
at (1,/)?

The associated generating function:
QUx,yit) =Y > qlirjin)x'y/t".
n>0i,j>0

What is the nature of this series?



A hierarchy of formal power series

e Rational series

_ Pt
A= Q0
e Algebraic series
P(t,A(t)) =0

o Differentially finite series (D-finite)
d
> Pi()AD(t) =0
i=0

e D-algebraic series
P(t, A(t), A'(t), ..., A9 (1)) =0

Multi-variate series: one DE per variable




The case of half-plane walks -

Example: steps S = {01,10, 11}, upper half plane
e Generating function:

My = HO) = X3 HGi
n>0 j>0
h(j; n) : number of n-setp walks in the half plane ending at ordinate j




Example: steps S = {01,10, 11}, upper half plane
e Generating function:

Hly:t)= H(y) =Y _ > h(jin)y/t"
n>0 j>0
e Step-by-step construction:
H(y) =1+ t(y + 1+ y)H(y) — tyH(0)
with y =1/y.

o
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e Generating function:

Hly:t)= H(y) =Y _ > h(jin)y/t"
n>0 j>0
e Step-by-step construction:
H(y) =1+ t(y + 1+ y)H(y) — tyH(0)
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Example: steps S = {01,10, 11}, upper half plane
e Generating function:

Hly:t)= H(y) =Y _ > h(jin)y/t"
n>0 j>0
e Step-by-step construction:
H(y) =1+ t(y + 1+ y)H(y) — tyH(0)

or

(1—t(y +1+7))yH(y) =y —tH(0).




The case of half-plane walks -

Example: steps S = {01,10, 11}, upper half plane
e Generating function:

Hy:t) = H(y)=>_> h(jn)
n>0 j>0
e Step-by-step construction:
H(y) =1+ t(y + 1+ y)H(y) — tyH(0)

or

(1—t(y +1+7))yH(y) =y —tH(0).

e The polynomial 1 — t(y + X + xy) is the kernel of this equation
e The equation is linear, with one catalytic variable y (tautological at
y = 0) [Zeilberger 00]



e The equation (with y = 1/y):
(1—tly + 14 7))y H(y) = y — tH(0),



e The equation (with y = 1/y):
(1—tly + 14 7))y H(y) = y — tH(0),

e Cancel the kernel by an appropriate choice of y:
1—t—/(1—1t)%—4¢2
Yo = (2t ) =t+t* 423+ 0O(th
The right-hand side also vanishes:

H(0) = H(0: t) = ?



e The equation (with y = 1/y):
(1—tly + 14 7))y H(y) = y — tH(0),

e Cancel the kernel by an appropriate choice of y:
1—t—/(1—1t)%—4¢2
Yo = (2t ) =t+t* 4 2t3 + O(tY)
The right-hand side also vanishes:

H(0) = H(0: t) = ?

The generating function of walks in the upper half-plane is an algebraic

series (for any step set and any starting point).
[Gessel 80, Duchon 00, mbm-Petkovsek 00, Banderier & Flajolet 02...]




Let P(t,y,S(y; t), Ai(t),...,Ak(t)) be a proper polynomial equation in

one catalytic variable y (it defines uniquely S(y; t), A1(t)
formal power series in t). Then each of these series is algebraic.

The proof is constructive.
Example 1: for S(y;t) = H(y; t), and A; = 5(0;t) = H(0; t),
(1—tly +147))yS(y; t) =y — tAs(t).



Let P(t,y,S(y; t), Ai(t),...,Ak(t)) be a proper polynomial equation in

one catalytic variable y (it defines uniquely S(y; t), A1(t)
formal power series in t). Then each of these series is algebraic.

The proof is constructive.

Example 2: for S(y; t) = Q(0,y; t) and A1(t) = Q(0,0; t),

L }—1/ —ty=t (tyS(y; t) + ;)2 - (tyS(y: t) + )1,) — 262 Ay (1).

{




Let P(t,y,S(y; t), Ai(t),...,Ak(t)) be a proper polynomial equation in

one catalytic variable y (it defines uniquely S(y; t), A1(t)
formal power series in t). Then each of these series is algebraic.

The proof is constructive.

= Algebraicity follows from (a special case of) an Artin approximation
theorem with “nested” conditions [Popescu 86, Swan 98]



Example: S = {01,10,11}
Qlx,yit) =1+ tly + X +x7)Q(x,y) = txQ(0,y) — txy Q(x, 0)
with Xx=1/xand y =1/y.

QUx,yit) = Qx,y) =D Y qlirji n)x'yt”

n>0i,>0



Example: S = {01,10,11}
Qlx,yit) = 14 t(y + X +x7)Q(x,y) = txQ(0,y) — txyQ(x, 0)

(1 -ty +x+ X}7)) Q(x,y) =1—-1txQ(0,y) — txyQ(x,0),



Example: S = {01,10,11}
Qlx,yit) =1+ t(y + X+ x7)Q(x,y) — txQ(0, y) — txyQ(x,0)
or
(1= tly + %+ x7))Qx,y) = 1 — tRQ(0, ) — 67 Q(x,0),
or

(1= t(y + %+ x7))xvQ(x,y) = xy — tyQ(0,y) — tx*Q(x,0)




Back to quadrant walks: a functional equation -

Example: S = {01,10, 11}
Q(X7y; t) =1+ t(y + X +X.)_/)Q(X7y) - t)?Q(an) - tXYQ(X,O)

or
(1—tly + X +x7)) Qx,y) = 1 = txQ(0, y) — txyQ(x,0),
or

(1= tly + X+ x7))0Q(x, ) = xy — tyQ(0,y) — tx*Q(x,0)

e The polynomial 1 — t(y + X + x¥) is the kernel of this equation

e The equation is linear, with two catalytic variables x and y (tautological
atx=0o0ry=0)



% Algebraic [Kreweras 65, Gessel 86|

(1= t(x+7+x))xyQ(x,y) = xy — tyQ(0, y) — txQ(x,0)
& D-finite, but transcendental [Gessel 90]

(1= t(y + %+ x7))xvQ(x,¥) = xy — tyQ(0,y) — tx*Q(x,0)

Ji Not D-finite, but D-algebraic [Bernardi, mbm & Raschel 17]

(1—t(x+X+y+x7)xvQ(x,y) = xy — tyQ(0,y) — tx*Q(x, 0)

Lﬁ Not D-algebraic (in y) [Dreyfus, Hardouin & Singer 17]

(1= t(xy +x+y+y))xyQ(x,y) = xy — tyQ(0, y) — tx(1 + x)Q(x,0)



e Properly coloured triangulations (g colours):

TGyit) =TGy) =x(g—=1) +xytT(x,y)T(1,y)
T(X7y) B T(X7 O) _ x2yt T(Xay) B T(lay)

x—1

—+ xt

—e



e Properly coloured triangulations (g colours):

TGyit) =TGy) =x(g—=1) +xytT(x,y)T(1,y)
T(X7y) B T(X7 0) _ x2yt T(Xay) B T(17y)

—+ xt ~—1

Isn't this reminiscent of quadrant equations?

Qlx,y;it) = Q(x,y) =1+ txyQ(x, y)
+ tQ(X,y) - Q(Ovy) + tQ(Xay) B Q(X,O)
x y

{




e Properly coloured triangulations (g colours):

TGyit) =TGy) =x(g—=1) +xytT(x,y)T(1,y)
T(X7y) B T(X7 0) _ x2yt T(Xay) B T(17y)

t
tx x—1

e For g = 4 cos? T q#0,4, the series T(1,y) satisfies an equation with

one catalytic variable y.




e Properly coloured triangulations (g colours):

TGyit) =TGy) =x(g—=1) +xytT(x,y)T(1,y)
T(X7y) B T(X7 0) _ X2yt T(Xay) B T(17y)

t
tx x—1

e For g = 4 cos? T q#0,4, the series T(1,y) satisfies an equation with

one catalytic variable y. This implies that it is algebraic [mbm-Jehanne
06].




e Properly coloured triangulations (g colours):

TGyit) =TGy) =x(g—=1) +xytT(x,y)T(1,y)
T(X7y) B T(X7 0) _ x2yt T(Xay) B T(17y)

t
tx x—1

e For g = 4 cos? T q#0,4, the series T(1,y) satisfies an equation with

one catalytic variable y. This implies that it is algebraic [mbm-Jehanne
06].

e For any g, the generating function of properly g-coloured planar
triangulations is differentially algebraic:

2(1— q)w + (w+ 10H — 6wH')H" + (4 — )(20H — 18wH’ + 9w?H") = 0

with H(w) = wT(1,0; /w).




|. Adapt Tutte's method to quadrant walks: new and uniform proofs of
algebraicity.

[I. Extension to an analytic context: some walks with an infinite group
(hence not D-finite) are still D-algebraic.
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In this talk
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e The equation (with x =1/x and y = 1/y):
(1= t(x +7 +x))0yQ(x, y) = xy — xQ(x, 0) — tyQ(0, y)
=xy = R(x) = 5(y)



e The equation (with x =1/x and y = 1/y):
(1= t(X+7 +x))xvQ(x,y) = xy — txQ(x, 0) — tyQ(0. y)
=xy — R(x) = 5(y)
o If we take x = t + ut?, both roots of the kernel
x—tE/(x —t)2 — 423
2tx?2

are (Laurent) series in t with rational coefficients in u, and can be legally
substituted for y in Q(x,y).

Yo1 =




Kreweras' model

e The equation (with x =1/x and y = 1/y):
(1= t(X+7+x))xvQx,y) = xy — txQ(x,0) — tyQ(0, y)
=xy — R(x) = 5(y)
o If we take x = t + ut?, both roots of the kernel
x —t4/(x — t)2 — 4t2x3
2tx?2

are (Laurent) series in t with rational coefficients in u, and can be legally
substituted for y in Q(x,y). This gives four equations:

Kernel ‘ RHS
xYo = t(Yo + x + x2YZ) | xYo = R(x) + S(Yo)
XY1=t(Y1+X+X2Y12) XY1:R(X)+5(Y1)

Yo1 =




e Four equations relating x, R(x), Yo, Y1,5(Y0),S(Y1) and t:
Kernel | RHS

xYy = R(x) + 5(Y0)

xY1 = R(x)+ S(Y1)

xYo = t(Yo —|—x+x2Y02)

xY1 =t("1 +x+X2Y12)



e Four equations relating x, R(x), Yo, Y1,5(Y0),S(Y1) and t:
Kernel | RHS

xYy = R(x) + 5(Y0)

xY1 = R(x)+ S(Y1)

xYo = t(Yo + x + x*Y§)
xY1 = t(Y1 + x + x2Y3?)

e Eliminate x from the kernel equations:

t 1 t 1
— — — —tYy= — — — — tY;
Y02 Yo 0 Y12 Y1 !



Kreweras' model

e Four equations relating x, R(x), Yo, Y1,5(Y0),S(Y1) and t:
Kernel | RHS

xYo = t(Yo + x + x2YZ) | xYo = R(x) + S(Y0)
xY1 = t(Y1+x+x2Y2) | xY1 = R(x) + S(V1)

e Eliminate x from the kernel equations:
t 1 t 1

— - —tYo=— — — — tY;

72 A 7 7

e Eliminate R(x) from the RHS equations, and then x:
1 1
Yo)+ o =S("1) + —
S(Yo) + Yo S(v1)+ Y,



e Four equations relating x, R(x), Yo, Y1,5(Y0),S(Y1) and t:
Kernel | RHS

xYo = R(x) + S(Yo)

xY1 = R(x)+ S(Y1)

xYo = t(Yo + x + x*Y§)

xY1 = t(Y1 + x + x2Y3?)

e Eliminate x from the kernel equations:

t 1 t 1
L o=~y
Y02 Yo 0 Y12 Y1 !
e Eliminate R(x) from the RHS equations, and then x:
1 1
Yo) + — = S(Y1) + —
5( o)-i-y0 SM)+ -




We have
I(Yo) = 1(Y1) and J(Yo) = J(Y1)
with

t 1 1
I(y)=— ———t and J(y) = tyQ(0,y) + —.
(v) T, (v) = tyQ(0, y) "



We have
I(Yo) = 1(Y1) and J(Yo) = J(Y1)
with

t 1 1
I(y)=— ———t and J(y) = tyQ(0,y) + —.
(v) T, (v) = tyQ(0, y) "

There are few invariants: /(y) must be a polynomial in J(y) whose
coefficients are series in t.
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There are few invariants: /(y) must be a polynomial in J(y) whose
coefficients are series in t.

Expandlng at y = 0 gives the value of c.
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I(Yo) = 1(Y1) and J(Yo) = J(Y1)
with

1 1
/ - d  Jy)= 0, -,
(v) = " ty an (v) = tyQ(0,y) + "

There are few invariants: /(y) must be a polynomial in J(y) whose
coefficients are series in t.
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Expanding at y = 0 gives the value of c.



We have
I(Yo) = 1(Y1) and J(Yo) = J(Y1)
with

1 1
/ - d  Jy)= 0, -,
(v) = " ty an (v) = tyQ(0,y) + "

There are few invariants: /(y) must be a polynomial in J(y) whose
coefficients are series in t.

2
I(y) = ——}—1,—ty =t <tyQ(0,y) + %) - (tyQ(O,y) + %) —2t2Q(0,0).

Expanding at y = 0 gives the value of c.
Polynomial equation with one catalytic variable = Q(0, y; t) is algebraic



from kernel | from RHS

X X

>< p—

— X

HHAR



from kernel | from RHS

HAERK

High time for the complete picture!
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The series Q(x, y; t) is D-finite iff the group G is finite.
It is algebraic iff, in addition, the orbit sum is zero.
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algebraic transcendental

The series Q(x, y; t) is D-finite iff the group G is finite.
It is algebraic iff, in addition, the orbit sum is zero.

[mbm-Mishna 10], [Bostan-Kauers 10]
[Kurkova-Raschel 12]

[Mishna-Rechnitzer 07], [Melczer-Mishna 13]




All models with a finite group and a zero orbit sum have two invariants =
uniform solution via the solution of an equation with one catalytic variable

sVl sie



Algebraic models: a uniform approach

All models with a finite group and a zero orbit sum have two invariants =
uniform solution via the solution of an equation with one catalytic variable

sVl sie

This applies as well to weighted algebraic models [Kauers, Yatchak 14(a)]:

2
1 1 1 1 1 1
1 1 1 1 1 1
A 1
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A weaker (and analytic) notion of invariants

o Still require that /(Yp) = /(Y1), where Yp, Yi are the roots of the kernel

xyK(x,y) =xy —xyt Y x'y" = a(x)y* + b(x)y + c(x)
(ij)es

... but only for some complex values of x (and t).
e meromorphicity condition in a domain



A weaker (and analytic) notion of invariants

o Still require that /(Yp) = (Y1), where Yp, Y7 are the roots of the kernel

xyK(x,y) =xy —xyt Y x'y' = a(x)y? + b(x)y + c(x)
(if)es

... but only for some complex values of x (and t).
e meromorphicity condition in a domain

Probability Theory and Stochastic Modelling 40

Guy Fayolle
Roudolf [asnogorodski
Vadim Malyshev

Random
Fayolle, lasnogorodski, Malyshev [1999] Walks in the

Quarter Plane




A weaker (and analytic) notion of invariants

o Still require that /(Yp) = /(Y1), where Yp, Yi are the roots of the kernel

xyK(x,y) =xy —xyt Y x'y" = a(x)y* + b(x)y + c(x)
(ij)es

... but only for some complex values of x (and t).
e meromorphicity condition in a domain



A weaker (and analytic) notion of invariants

o Still require that /(Yp) = /(Y1), where Yp, Yi are the roots of the kernel

xyK(x,y) =xy —xyt Y x'y" = a(x)y* + b(x)y + c(x)
(ij)es

e Take t in (0,1/|S]). The discriminant §(x) of xyK(x,-) looks like this:
b(x)? — 4a(x)c(x)




A weaker (and analytic) notion of invariants

o Still require that /(Yp) = /(Y1), where Yp, Yi are the roots of the kernel

xyK(x,y) =xy —xyt Y x'y" = a(x)y* + b(x)y + c(x)
(ij)es

e Take t in (0,1/|S]). The discriminant §(x) of xyK(x,-) looks like this:
b(x)? — 4a(x)c(x)

Def. A function I(y; t) is a weak invariant if, for x € [x1, x2],
1(Yo) = 1(Y1).



A weaker (and analytic) notion of invariants

o Still require that /(Yp) = /(Y1), where Yp, Yi are the roots of the kernel

xyK(x,y) =xy —xyt Y x'y" = a(x)y* + b(x)y + c(x)
(ij)es

e Take t in (0,1/|S]). The discriminant §(x) of xyK(x,-) looks like this:
b(x)? — 4a(x)c(x) S(Yi)

Yo L
f“\ o
-1 X X Xy X

Y1

Def. A function I(y; t) is a weak invariant if, for x € [x1, x2],
1(Yo) = I(Y1). Moreover, I(y) must be meromorphic inside
L = Y([x1,x2]), with finite limits on L.




For each non-singular model, there exists an (explicit) weak invariant of
the form

I(y; t) = o (R(y; t), wi(t), ws(t))

where
© is Weierstrass elliptic function
its periods wy and w3 are elliptic integrals

its argument R is also an elliptic integral




For each non-singular model, there exists an (explicit) weak invariant of
the form

I(y:t) = p(R(y; t), wi(t), ws(t))
where
g is Weierstrass elliptic function
its periods wy and w3 are elliptic integrals

its argument R is also an elliptic integral

% dx /Xl dx
Wy = —, w3 = _—
x2 1/ (x) X(y1) V (x)

f(y)
Rly:¢) = /f dz

(v2) V423 — g2z — g3

&2, g3 polynomials in t, f(y) rational in y and algebraic in t.




For each non-singular model, there exists an (explicit) weak invariant of
the form

I(y; t) = o (R(y; t), wi(t), ws(t))

where
© is Weierstrass elliptic function
its periods wy and w3 are elliptic integrals

its argument R is also an elliptic integral

I(y;t) is D-algebraic in y and t.




For appropriate values of x, we have:
/(Yo) = /(Yl) and J(Yo) = J(Yl)
where /(y) is the weak invariant and J(y) = t(1 + y)Q(0,y) + 1/y.



For appropriate values of x, we have:
I(Yo) = /(Yl) and J(Yo) = J(Yl)
where /(y) is the weak invariant and J(y) = t(1 + y)Q(0,y) + 1/y.

There are few invariants: J(y) must be a rational function in /(y). The

value of this rational function is found by looking at the poles and zeroes

of J(y).




For appropriate values of x, we have:
I(Yo) = /(Yl) and J(Yo) = J(Yl)
where /(y) is the weak invariant and J(y) = t(1 + y)Q(0,y) + 1/y.

There are few invariants: J(y) must be a rational function in /(y). The

value of this rational function is found by looking at the poles and zeroes

of J(y).

B 1 I(0) I'(0)
J0) =+ RO+ T =055 T i) — 1)




For appropriate values of x, we have:
I(Yg) = /(Yl) and J(Yo) = J(Yl)
where /(y) is the weak invariant and J(y) = t(1 + y)Q(0,y) + 1/y.

There are few invariants: J(y) must be a rational function in /(y). The

value of this rational function is found by looking at the poles and zeroes

of J(y).

1 1'(0) 1'(0)
Jiy)=t(1+y)Q(0,y)+ - = - -
W)= QO+ = 10 Z1) ~ 1) - 10)
Explicit expression of Q(0, y; t) in terms of the (explicit) weak invariant

I(y)

1




For appropriate values of x, we have:
I(Yo) = /(Yl) and J(Yo) = J(Yl)
where /(y) is the weak invariant and J(y) = t(1 + y)Q(0,y) + 1/y.

There are few invariants: J(y) must be a rational function in /(y). The
value of this rational function is found by looking at the poles and zeroes

of J(y).

For the 9 models with an infinite group and a RHS-invariant, the series
Q(x,y; t) is D-algebraic.

el als (e ol I als Sl
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Final comments
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o Nature of Q(x,y;t) when no decoupling function exists?
[Dreyfus, Hardouin, Roques, Singer 17(a)]: Q(0,y) is not DA in y
@ The existence of decoupling function depends much on the starting
point.
@ To do: find explicit DEs (done for y)



