# On the shape of binary trees

Mireille Bousquet-Mélou, CNRS, LaBRI, Bordeaux



#### A (complete) binary tree



n internal vertices, called nodes

(size n)

n+1 external vertices, called leaves



#### A plane tree



Each node has a (possibly empty) ordered sequence of children

n edges, n+1 nodes (size n)

What is the shape of a large binary tree?

## What is the shape of a large binary tree?



A random complete binary tree with 985 vertices

Random generation in linear time

## The (horizontal) profile of a binary tree



A binary tree of height 4 (or 5...)

## The horizontal profile of a plane tree



A plane tree of height 3.

## NEW! The vertical profile of a binary tree



LABEL

ABSCISSA

A binary tree of right width 3, and vertical profile [2, 2; 4, 2, 1, 1].

# Limit results on the shape of trees: general approach

- tions, generating functions...) Enumerative combinatorics (decompositions of trees, recurrence rela-
- functions the asymptotic behaviour of their coefficients Singularity analysis [Flajolet-Odlyzko 90]: extract from the generating

# Decomposition and enumeration of binary trees

Let  $a_n$  be the number of binary trees with n nodes (internal vertices):

$$\begin{cases} a_0 = 1 \\ a_n = \sum_{m=0}^{n-1} a_m a_{n-m-1} \end{cases}$$

Let  $A(t) := \sum\limits_{n\geqslant 0} a_n t^n$  be the associated generating function:

$$A(t) = 1 + tA(t)^2$$
.



# Decomposition and enumeration of plane trees

Let  $a_n^*$  be the number of plane trees with n edges (n+1) vertices:

$$\begin{cases} a_0^* &= 1 \\ a_n^* &= \sum_{m=0}^{n-1} a_m^* a_{n-m-1}^* \end{cases}$$

Let  $A^*(t) := \sum\limits_{n\geqslant 0} a_n^*t^n$  be the associated generating function:

$$A^*(t) = 1 + tA^*(t)^2$$
.



#### The Catalan numbers

There are as many binary trees with n nodes as plane trees with n edges:

$$a_n = a_n^*$$

The associated generating function is

$$A(t) = A^*(t) = \sum_{n} a_n t^n$$

It satisfies

$$A(t) = 1 + tA(t)^2 \Rightarrow A(t) = \frac{1 - \sqrt{1 - 4t}}{2t} = \sum_{n \ge 0} \frac{1}{n + 1} {2n \choose n} t^n.$$

Hence

$$a_n = a_n^* = \frac{1}{n+1} \binom{2n}{n}$$

is the nth Catalan number.

The height of binary trees: Experiments and observations

# The height of binary trees: recurrence relations

the number of binary trees of size n and height at most j. Then Let  $h_{n,j}$  be the number of binary trees of size n and height j. Let  $h_{n,\leqslant j}$  be

$$h_{n,j}=h_{n,\leqslant j}-h_{n,\leqslant j-1}$$

and

$$\left\{egin{array}{lll} h_{0,\leqslant j} &=& 1 \ h_{n,\leqslant 0} &=& \delta_{n,0} \ \end{array}
ight. \ \left. egin{array}{lll} h_{m,\leqslant j} &=& \sum_{m=0}^{n-1} h_{m,\leqslant j-1} h_{n-m-1,\leqslant j-1}. \end{array}
ight.$$



### The average height of binary trees

Consider the average height of binary trees with n nodes:

$$\mathbb{E}(\mathsf{H}_n) := \frac{1}{a_n} \sum_{|\tau| = n} h(\tau) = \frac{1}{a_n} \sum_{j \geqslant 0} j h_{n,j}.$$



#### The average height of trees

Consider the average height of binary trees with n nodes:

$$\mathbb{E}(\mathsf{H}_n) := \frac{1}{a_n} \sum_{|\tau|=n} h(\tau) = \frac{1}{a_n} \sum_{j\geqslant 0} j h_{n,j}.$$

Theorem: As  $n \to \infty$ ,

$$\frac{\mathbb{E}(\mathsf{H}_n)}{\sqrt{n}} o 2\sqrt{\pi}.$$

[Flajolet-Odlyzko 82], [Brown-Schubert 84]

Similarly, the average height of plane trees satisfies:

$$\frac{\mathbb{E}(\mathsf{H}_n^*)}{\sqrt{n}} \to \sqrt{\pi}.$$

[de Bruijn, Knuth, Rice 72]

Convergence of the mean of the (normalized) height

## The distribution function of the height

consider The number of trees of size n and height at most j is  $h_{n,\leqslant j}$  . For  $x\geqslant 0$ ,

$$F_n(x) := \mathbb{P}\left(rac{\mathsf{H}_n}{\sqrt{n}}\leqslant x
ight) = rac{1}{a_n}h_{n,\leqslant x\sqrt{n}},$$

the proportion of trees of size n having height at most  $x\sqrt{n}$ . probability that a random tree of size n has height at most  $x\sqrt{n}$ . It is the

Graph of  $F_n(x)$ :



## The distribution function of the height

Let  $F_n(x)$  be the probability that a random tree of size n has height at most

Theorem: As  $n \to \infty$ ,

$$F_n(x) = \mathbb{P}\left(\frac{\mathsf{H}_n}{\sqrt{n}} \leqslant x\right) \to F(x/2).$$

where

$$F(x) = \sum_{k=-\infty}^{\infty} e^{-k^2 x^2} (1 - 2k^2 x^2).$$

[Kemp 79], [Flajolet-Odlyzko 82]

Similarly, the height of plane trees satisfies:

$$\mathbb{P}\left(rac{\mathsf{H}_n^*}{\sqrt{n}}\leqslant x
ight)
ightarrow F(x).$$

[Flajolet-Odlyzko 82], [Brown-Schubert 84]

Convergence in law of the (normalized) height

# Limit results on the shape of trees: general approach

- write equations for the relevant generating functions and solve them... Enumerative combinatorics: Using a recursive decomposition of trees,
- 90] to extract from these series the asymptotic behaviour of their coefficients Use the results (or the technique) of singularity analysis [Flajolet-Odlyzko
- Results: "If  $B(t) = \sum_n b_n t^n$  behaves like this in the neighborhood of its dominant singularity  $t_s$ , then its coefficients  $b_n$  behave asymptotically like
- Technique: Cauchy's formula

$$b_n = \frac{1}{2i\pi} \int_{\mathcal{C}_n} B(t) \frac{dt}{t^{n+1}}$$

for a carefully chosen contour  $C_n$ .

# Generating functions of trees of bounded height

most j: Let  $H_{\leqslant j}(t) \equiv H_{\leqslant j}$  be the generating function of binary trees of height at

$$H_{\leqslant j} = \sum_{n\geqslant 0} h_{n,\leqslant j} t^n$$

$$H_{\leqslant 0} = 1$$

$$H_{\leqslant j} = 1 + tH_{\leqslant j-1}^2$$

most j, where t counts edges. Let  $H^*_{\leqslant_j}(t)\equiv H^*_{\leqslant_j}$  be the generating function of plane trees of height at

$$H_{\leqslant_0}^* = 1$$
  
 $H_{\leqslant_j}^* = 1 + tH_{\leqslant_{j-1}}^* H_{\leqslant_j}^*$ 



### The (right) width of binary trees

at most j. Let  $W_{\leqslant j}(t) \equiv W_{\leqslant j}$  be the generating function of binary trees of right width



For 
$$j \geqslant 0$$
,  $W$ 

$$W_{\leqslant -1} = 1$$
  
 $W_{\leqslant j} = 1 + tW_{\leqslant j+1}W_{\leqslant j-1}$ 

# Trees of bounded height or bounded width: functional equations

| Family |
|--------|
| 앜      |
| trees  |

Bounded height

Bounded (right) width



$$H_{\leqslant 0} = 1$$
  
 $H_{\leqslant j} = 1 + tH_{\leqslant j-1}^2$ 

$$|W_{\leqslant j}| = 1$$

$$|W_{\leqslant j}| = 1 + tW_{\leqslant j+1}W_{\leqslant j-1}$$

$$(j \ge 0)$$

$$H_{\leqslant 0}^* = 1$$
  
 $H_{\leqslant j}^* = 1 + tH_{\leqslant j-1}^* H_{\leqslant j}^*$ 

# Trees of bounded height or bounded width: functional equations

Family of trees

Bounded height

Bounded (right) width



$$H_{\leqslant 0} = 1$$
  
 $H_{\leqslant j} = 1 + tH_{\leqslant j-1}^2$ 

$$|W_{\leqslant -1} = 1 W_{\leqslant j} = 1 + tW_{\leqslant j+1}W_{\leqslant j-1} (j \ge 0)$$



$$|H_{\leqslant j}^{*}| = 1 + tH_{\leqslant j-1}^{*}H_{\leqslant j}^{*}$$

Induction on j

# Generating functions for trees of bounded height/width

**Proposition**: The generating function of plane trees of height  $\leq j$  is:

$$H_{\leqslant j}^* = A \frac{1 - Q^{j+1}}{1 - Q^{j+2}}$$

where A counts plane trees and Q=A-1 [de Bruijn, Knuth, Rice 72].

# Generating functions for trees of bounded height/width

**Proposition**: The generating function of plane trees of height  $\leq j$  is:

$$H_{\leqslant j}^* = A \frac{1 - Q^{j+1}}{1 - Q^{j+2}}$$

where A counts plane trees and Q=A-1 [de Bruijn, Knuth, Rice 72].

$$\triangle$$
  $\Diamond$   $\Diamond$   $\nabla$ 

width  $\leq j$  is: **Proposition** [mbm 05]: The generating function of binary trees of right

$$W_{\leqslant j} = A \frac{(1 - Z^{j+2})(1 - Z^{j+7})}{(1 - Z^{j+4})(1 - Z^{j+5})},$$

where A counts binary trees and  $Z\equiv Z(t)$  is the unique series in t such that

$$Z = t \frac{(1+Z^2)^2}{1-Z+Z^2}$$
 and  $Z(0) = 0$ .

[Bouttier et al. 03]

But. . . why?

### Limit results for the height of trees

tree with n edges. As  $n \to \infty$ , Convergence of the moments: Let  $H_n^*$  be the (random) height of a plane

$$\frac{\mathbb{E}(\mathsf{H}_n^*)}{\sqrt{n}} o \sqrt{\pi}, \qquad \mathbb{E}\left(\left(\frac{\mathsf{H}_n^*}{\sqrt{n}}\right)^k\right) o k(k-1)\Gamma(k/2)\zeta(k) \qquad \mathsf{fc}$$

for  $k \geqslant 2$ .

#### Convergence in law:

$$\mathbb{P}\left(rac{\mathsf{H}_n^*}{\sqrt{n}}\leqslant x
ight) 
ightarrow F(x),$$

where

$$F(x) = -\frac{1}{i\sqrt{\pi}} \int_{\mathcal{H}} \coth(x\sqrt{-z})\sqrt{-z}e^{-z}dz$$

$$= \sum_{k=-\infty}^{+\infty} e^{-k^2 x^2} (1 - 2k^2 x^2)$$



+ similar results for binary trees [Flajolet-Odlyzko 82], [Brown-Schubert 84]

# Limit results for the right width of binary trees [mbm 05]

binary tree with n nodes. Then, as  $n \to \infty$ , Convergence of the moments: Let  $W_n$  be the (random) right width of a

$$\frac{\mathbb{E}(W_n)}{n^{1/4}} \to \frac{3\sqrt{\pi}}{\sqrt{2}\Gamma(3/4)}, \qquad \mathbb{E}\left(\left(\frac{W_n}{n^{1/4}}\right)^2\right) \to 6\sqrt{2}$$

$$\left( \left( \frac{\mathsf{W}_n}{n^{1/4}} \right)^k \right) = \frac{24\sqrt{\pi}k!\zeta(k-1)}{\sqrt{2}k\Gamma((k-2)/4)} \quad \text{for } k \geqslant 3.$$

团

#### Convergence in law:

$$\mathbb{P}\left(\frac{\mathsf{W}_n}{n^{1/4}} \geqslant x\right) \to G(x)$$

$$G(x) = \frac{3}{i\sqrt{\pi}} \int_{\mathcal{H}} \frac{\sqrt{-z}e^{-z}}{\sinh^2(x(-z^{1/4}/\sqrt{2}))} dz$$



### Height and width of binary trees



#### What about the profiles?



## Gallery of (horizontal and vertical) profiles



Horizontal profiles of random binary trees with 1000 nodes.



Vertical profiles of random binary trees with 1000 nodes.

## The average (horizontal and vertical) profiles

Average horizontal profile of plane trees of size 10, 20, 30, 40, 50:



Average vertical profile of binary trees of size 5, 10, 20:



#### The horizontal profile

at a given (horizontal) level? A tree of size n has, on average, height  $O(\sqrt{n})$ . How many nodes are there

???

#### The horizontal profile

at a given (horizontal) level? A tree of size n has, on average, height  $O(\sqrt{n})$ . How many nodes are there

About  $\sqrt{n}$ .

#### The horizontal profile

at a given (horizontal) level? A tree of size n has, on average, height  $O(\sqrt{n})$ . How many nodes are there

About 
$$\sqrt{n}$$
.

tree with n edges. Let  $\mathsf{X}_n^*(j)$  be the number of nodes located at height j in a random plane

We study the quantity

$$\frac{\mathsf{X}_n^*(\lfloor\lambda\sqrt{n}\rfloor)}{\sqrt{n}}$$

#### The vertical profile

are there on a given (vertical) layer? A binary tree of size n has, on average, width  $O(n^{1/4})$ . How many nodes

About 
$$n^{3/4}$$
.

tree with n nodes Let  $Y_n(j)$  be the number of nodes located at abscissa j in a random binary

We study the quantity

$$\frac{\mathsf{Y}_n(\lfloor \lambda n^{1/4}\rfloor)}{n^{3/4}}.$$

# One new ingredient: bivariate generating functions

Before: Given j, how many plane trees of size n have height at most j?

$$\Rightarrow$$
 series  $H_{\leqslant j}^*(t) = \sum\limits_{m{n}} h_{m{n},\leqslant j} \; m{t}^{m{n}}$ 

Now: Given j, how many plane trees of size n have exactly k nodes at height

j?

$$\Rightarrow$$
 series  $P_j^*(t,u) = \sum_{n,k} p_{n,k,j} \; t^n u^k$ 

## The number of nodes at height j (plane trees)

(variable t) and by the number of nodes at height j (variable u): Let  $P_j^* \equiv P_j^*(t,u)$  be the generating function of plane trees, counted by edges

$$P_0^* = uA(t)$$
  
 $P_j^* = 1 + tP_{j-1}^*P_j^*$  = +

Proposition [???, mbm 04]:

$$P_j^* = A \frac{1 - MQ^j}{1 - MQ^{j+1}}$$

where A counts plane trees, Q = A - 1 and

$$M = \frac{A - u - tuA^2}{u + A(1 - u) + tuA^2(1 - A)}.$$

# The number of nodes at abscissa j (binary trees)

(t) and by the number of nodes at abscissa j (variable u). Let  $V_j \equiv V_j(t,u)$  be the generating function of binary trees, counted by nodes

For 
$$j \ge 0$$
,  $V_j = 1 + tV_{j+1}V_{j-1}$   $V_j = 0$ 

**Proposition** [mbm 05]: the series  $V_j$  are algebraic. Moreover,

$$V_j = A \frac{(1 + MZ^j)(1 + MZ^{j+5})}{(1 + MZ^{j+2})(1 + MZ^{j+3})}$$

where A counts binary trees,

$$Z = t \frac{\left(1 + Z^2\right)^2}{1 - Z + Z^2},$$

and  $M \equiv M(t,u)$  is the unique power series in t such that

$$M = (u-1)\frac{Z(1+MZ)^2(1+MZ^2)(1+MZ^6)}{(1+Z)^2(1+Z+Z^2)(1-Z)^3(1-M^2Z^5)}.$$

## The average horizontal profile of plane trees

#### Proposition:

$$\mathbb{E}\left(\frac{\mathsf{X}_n^*(\lfloor\lambda\sqrt{n}\rfloor)}{\sqrt{n}}\right)\to 2\lambda e^{-\lambda^2}.$$

On average, there are about  $2\lambda e^{-\lambda^2}\sqrt{n}$  nodes at height  $\lfloor \lambda \sqrt{n} 
floor$  in a plane tree having n edges



Average profile of plane trees of size 10, 20, 30, 40, 50:



+ Convergence in law (and as a process) of the horizontal profile [Drmota-Gittenberger 97]

## The average vertical profile of binary trees

abscissa j in a binary tree having n nodes. Then **Proposition** [mbm 05]: Let  $Y_n(j)$  be the (random) number of nodes at

$$\frac{1}{n^{3/4}} \left( \frac{Y_n(\lfloor \lambda n^{1/4} \rfloor)}{n^{3/4}} \right) \to \frac{1}{\sqrt{2\pi}} \sum_{m \geq 0} \frac{(-\sqrt{2}|\lambda|)^m}{m!} \cos \frac{(m+1)\pi}{4} \Gamma\left(\frac{m+3}{4}\right). \quad \boxed{1}$$

This gives the average number of nodes at abscissa  $\lfloor \lambda n^{1/4} \rfloor$  in a random binary tree having n nodes.



Average vertical profile of binary trees of size 5, 10, 20:



+ Convergence in law (and as a process [mbm-Janson 05])

### Why study the vertical profile?



LABEL

ABSCISSA

II

A binary tree of right width 3, and vertical profile [2, 2; 4, 2, 1, 1].

### Why study the vertical profile?

of a (random) probability distribution, converges to the ISE. Because the vertical profile of (random) binary trees, seen as the histogram



#### Did you say "ISE"?

## The Integrated SuperBrownian Excursion!

where. At least, as soon as a branching structure (tree) is combined with an embedding of the nodes in the space ( $\mathbb Z$  here). The ISE describes how the space is occupied by the nodes [Aldous 93], [Marckert-Mokkadem 03]. The ISE is a (random) probability distribution that occurs (almost) every-



#### That's it!



### Convergence in law: A special case

Theorem [mbm 05]: The random variable

$$\frac{\mathsf{Y}_n(0)}{n^{3/4}}$$

which gives the (normalized) number of nodes at abscissa 0, converges in law to a variable Y(0) such that

$$E(Y(0)^k) = \left(\frac{\sqrt{2}}{3}\right)^k \frac{\Gamma(1+3k/4)}{\Gamma(1+k/2)}$$

Hence

$$Y(0) = \frac{\sqrt{2}}{3\sqrt{T_{2/3}}},$$

where  $T_{2/3}$  follows a unilateral stable law of parameter 2/3.

$$E(e^{-aT_{2/3}}) = e^{-a^{2/3}} \text{ pour } a \ge 0.$$

#### Merci Alain Rouault!

#### Did you say "ISE"?

