An introduction to

asymptotic enumeration

Part 1. Why are asymptotic results interesting?

Part 2. Asymptotics of sequences a(n)

Part 3. Limit laws



From exact to asymptotic enumeration

Assumption: we have an exact description of the sequence a(n), like
e recurrence relation

e formula

e expression of the ordinary or exponential g.f. A(t) or A(t)

e functional equation defining A(t) or A(t)...

Wanted
a(n) ~s(n)--- or a(n)=sn)+0(r(n))



Overview

Three rather general techniques:
e when a(n) is given explicitly as a sum
e when A(t) has dominant singularities of an algebraic-logarithmic type

e when A(t) is entire or diverges violently near its dominant singularity(-ies)

What you (really) need to remember from these techniques:
e their existence
e their range of applicability (how they work)

e where to find them



T hree rather general techniques

e Bare-hand asymptotics on sums

a(n) = zn: 3 (n—1!'n! (25)1(24 4+ 18n+ (54 13n)j)
A G-DGHEDI G (=) (- 5+ 2)!

e Singularity analysis: when A(t) has dominant singularities of an algebraic-
logarithmic type

1 1
At)=—=11—- |1 —-4log 1
2 1 —log 14

e Saddle-point asymptotics: when A(t) is entire or diverges violently near its
dominant singularity(-ies)

At) = exp (1 t—t)



T hree rather general techniques... and their applications

e Software: When A(t) is explicitly given

t

1 1
A(t)=—=—|1— |1 —-4lo : Atzexp(—)
=3 J g1-|ogli_t 2 1—t

e Almost automatic asymptotic analysis for A(t) defined implicitly by
— an algebraic equation
BAOY*+ 2B +4) AR+ (3 —20t+6 t2) A(t)?
+ (1 —7t—|—29t2—|—4t3) AR)— (1—-8)3=0

— a linear differential equation

2
242 (—1—|—6t)A(t)—|—4t(—1—|—12t)%A(t)—|—t2(16t— 1)(jt—zA(t) =0



First method: Asymptotics of sums



Bare-hand asymptotics on sums

Input
a(n) => b(n,k)
k

Output
a(n) ~s(n)--- or a(n)=s(n)+0(r(n))



Bare-hand asymptotics on sums

Input
a(n) = Zb(n, k)
k
Output
a(n) ~s(n)--- or a(n)=s(n)—+ 0(r(n))
Example
. i 4(n — 1) n! (29)! -

M= D GED G D () gy ™

with

P(j,n) = 24+18n+(5 —13n) j4+(11n 4+ 20) j24+(10n — 2) 3+ (4n — 11) j4—6 5°.

39543 9"

aln) ~ 22 1 nf




The method on a toy example

Input

a(n) = f: b(n,k)  with  b(n, k) = (Z)
k=0

Output
a(n) ~ 2"




The method on a toy example

Input
i n
a(n) = Y b(n,k) with  b(n,k) :( )
k=0 k
Output
a(n) ~ 2"
The method:

1. Locate and estimate the largest summand(s) (k ~ n/2)

2. Recenter the problem in the vicinity of the “heavy” k's (k = n/2 4+ r, with

r small).
Estimate b(n, k) for those k's (Stirling)

3. Determine a window on which to focus (|k — n/2| < n?/3). Prove that the
other summands are negligible

4. Replace the sum in the window by an integral



The method on a toy example

Input

a(n) = f: b(n,k)  with  b(n, k) = (n)

k=0 k

1. Locate and estimate the largest summand(s)
The sequence b(n, k) is unimodal, with max. at k = |n/2]|. At this point,

L) =v2 27: (14 O(1/n)).

0B =(y2) = V2 7



The method on a toy example
Input

a(n) = Y b(n,k)  with  b(n, k) = (Z)
k=0

1. Locate and estimate the largest summand(s)
The sequence b(n, k) is unimodal, with max. at k = [n/2]. At this point,

L) =V2 QTnn (14 0(1/n)).

0 =2 =V2 U

2. Recenter the problem in the vicinity of the “heavy” k’s.
Estimate b(n, k) for those k's (Stirling).
Let k =n/2+r, with r = o(n3/%). Then

b(n,n/2 +7r) =2 \/2:_nexp (—27702> (1 + O(1/n) + O(r4/n3)) :

= The significant summands are found among the terms b(n,n/2 + r)
for r = O(n1/21¢)



3. Determine a window on which to focus.
Prove that the other summands are negligible.
For |r| > n2/3,

b(n,n/2 4+ 1) < b(n,n/2 +n?3) =0 (3—; exp(—2n1/3)>

= > b(n,n/2+7) =0 (2"Vnexp(—2n'/3)) = o(2"/v/n).

|7“|2n2/3

4. Replace the sum in the window by an integral [Riemann]
For |r| < n2/3, the following holds uniformly in r:

ol 272 _1/3
b(n,n/2 +1r) =2 exp (——) (1 + O(n )> :

VT n
Hence
n>/3 on ( n23 2r? 1/3
b(n,n/2+r) = V2 <—L> 14+ 0(n"
7:22/3 / = 7:22/3 exp (== ( ))
— 3 \/2:_”\/5 (/Rexp(—Qazz)da:) (14 o(1))

— 27(1 + o(1)).



References: Asymptotics of sums
e Bender, Edward A. Asymptotic methods in enumeration. SIAM Rev. 16
(1974), 485—-515.

e Odlyzko, A. M. Asymptotic enumeration methods. Handbook of combina-
torics, Vol. 1, 2, 1063—1229, Elsevier, Amsterdam, 1995.



Asymptotics and generating functions:
general principles

e Ph. Flajolet and R. Sedgewick, Analytic Combinatorics
http://algo.inria.fr/flajolet/Publications/books.htmi

Analytic Combinatorics (Chapters I,ILIII,1V,V,VI,VII, VIII,IX*). 743p.+X.
Version of October 23, 2006, "Oktoberfest', with Chapters I-VII in quasi-semi-
final form.



An elementary example: Rational generating functions

Let
1

Al =7

with k€ N and € C. Then

n+k—1\ ... (n+1)(n+2)---(n+k—-1) , ,
At) = " = t
(t) ngo( o ngo (k— 1) :
Then
nk—l .
a(n) = & — " (1+0(1/n)).

(Important) remark: As a function of the complex variable z, the function A(z)
has radius of convergence 1/|u|, and a pole of multiplicity k at zc = 1/pu.



An elementary example: Rational generating functions

Let
N (t)

d
A(t) = 10} with D) = [ (1 - pit)Fi

e Partial fraction expansion:

C; L
A(t) = P() + Z Z YT
i=1 k=1 (1 — pit)
o If u=|u1|l="---=|pj| > lpjr1l >+ > |ugl and e = max(ky, ko, - -

a(n) = O(u"n°"1)
If moreover e = ky > ko > ... > kj,
ne—l

e—1)!

a(n) = c11 ( ny (L4+0(1/n)).

7kj)7



Rational generating functions: some observations

Let A(t) = 03 with D() =TI, (1 — pit)Fi

If p=|p1| =" =|uj| > lujq1l > - > |pg) and e = max(ky, ko, -+, kj),

a(n) = O(u"n" 1)

As a function of a complex variable z, the function A(z) has radius p = 1/pu,
and a pole of order ¢ at one of the u;'s, 1 <1 <.

4O D> D

“The location and nature of the dominant singularities of a function A(z) =
S a(n)z™, analytic around 0, are reflected in the asymptotic behaviour of its
coefficients a(n).”



Analytic functions

Defn. The function A(z) is analytic near O if it is the sum of a convergent
power series: for |z| < p, with p > O,

A(z) = ) a(n)t"

n>0
The radius of convergence of A(z) is sup{r > 0 : > a(n)r™ converges }

Radius of cv. and exponential growth of coefficients
If the radius is p, then for all e > 0O

la(n)|] < (e+1/p)" for n large enough

(—e+1/p)" < |a(n)| infinitely often

“The location of the dominant singularity (the radius) gives the exponential
growth rate.”



Singularities

Let A(z) be analytic in a domain D. A point z. of the border
of D is a singularity of A if no analytic continuation is possible
at z.. That is, we cannot write

A(z) =) b(n)(z—z)" for |z — z¢| small .

Examples

e logz and /z are analytic in D = C\ (—o0, 0], with a unique singularity at O.
e The Catalan g.f. A(z) = (1 — /1 —4z2)/(22) is analytic in C\ [1/4,00), with
a unique singularity at 1/4

disk of convergence

- |7 ~ 1.2
- ~ & 7
4 N Y & =777/
’ ) £ WA
/ \ 087 &% LA

%
I
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i




The same example with binocular

The Catalan g.f. A(z) = (1 —-+v1—-42)/(2z2) izs

unique singularity at 1/4

disk of convergence
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- ~
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/
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Dominant singularities of power series

Let A(z) = > a(n)z"™ be a series with positive radius of cv p.

e Then A(z) has at least one singularity on the circle |z| = p. Such singularities
are called dominant.

e If a(n) > 0, one of the dominant singularities is p itself [Pringsheim].



Extraction of coefficients: Cauchy’s formula

Let A(z) = > a(n)z™ be a series with positive radius of cv, and analytic in a
domain D. Then

1
a(n) = 5 ) A(z) n—l—l

for every contour C C D encircling positively the origin.




Second method: singularity analysis

e Ph. Flajolet and R. Sedgewick, Analytic Combinatorics
http://algo.inria.fr/flajolet /Publications/books.html
Chapters VI, VII

e Ph. Flajolet and A. Odlyzko, Singularity analysis of generating functions,
SIAM J. on Algebraic and Discrete Maths, 1990.



Singularity analysis

e Basic series: We know the asymptotic behaviour of the coefficients of certain
simple (algebraic-logarithmic) functions, typically

S(2) = —1t)a (%'og %—t)ﬁ

na—l

M(a)

= s(n) = (logn)P (1+0O(1/logn))

e [ransfer theorems: Under certain hypotheses, if, in the neighborhood of its
dominant singularity z. (supposed to be unique),

A(z) = S(z) + O(R(2)) as z — zc,

where R(z) is simple, this estimate can be transfered to coefficients:

a(n) =s(n)+O(r(n)) asn — co.

e Similar statement with o(R(z)) and o(r(n)) instead of O(R(z)) and O(r(n)).



Singularity analysis: blind application

e GF of Motzkin numbers:

1—z—/(1+2)(1 - 32)

Alz) = D22

e Dominant singularity at z. =1/3. As z — z,

3-33/2,/T =32+ 15/2(1 —32) 40O((1 — 32)3/2)
S(z) +O(R(2))

A(z)

e “Hence”, for n large,
a(n) — [Zn] (—33/2\/1—732> _I_ O ([Zn](]. o 32)3/2)

33/2
- r(=1/2)

which can also be painfully obtained by analysing the sum

3N n—3/2 + O(3nn—5/2)

n!

a(n) = zk:k!(k—l— Ditn — 201"




Singularity analysis: blind application

e GF of column-convex polygons counted by (half-)perimeter:

A(z) = (1—2)|1-— 2v2

3\5—\/(1+z)/(1—z)(1—z+\/1—6z+22)

e Dominant singularity at z.= 3 — 2v/2. As z — 2,
A(z) = cg+c1(1—z/2)1 2 +0((1 - 2/2)1?)

e ‘‘Hence”

a n —3/2 o(2.™"n —3/2
"= 1/2)<3+2f) + o( )




Applying singularity analysis to Gilbert L.

e Permutations with k cycles (k fixed):

(2) = % ('Og 1 i z>k

This is a simple algebraic-logarithmic function:

Sk(n),w 1
n! (k—1)!

n~1 UOQT@k_l

e Derangements:




1. Coefficients of simple algebraic-logarithmic series

The basic series:

1 1 1 \"
S(Z)::(l-—tyy(gwogl-—t>
na—l
— s(n) = (logn)? (14+0O(1/logn))

()
Remarks
o ifa=0,—-1,—2,-3,..., then 1/T' (o) = 0 and this should be read

s(n) = O (no‘_l(log n)ﬁ_l)
Actually

1 1 \”
[2"](1 — 2)* (; 09 1—t) = (-1)Bk!n " "1(logn)"~1 (1 + O(1/log n))
e The numbers s(n) can always be expanded further.

e Maple does this for you!



2. Transfer theorems: A-domains

e If A(z) is analytic in a A-domain, and

A(z) =0O(R(z)) asz—1,

where R(z) is a simple alg-log function, then

a(n) =0O(r(n)) as n — oo.

e Similarly:

A(z) = o(R(z)) = a(n) = o(r(n))

A(z) ~ R(z) = a(n) ~r(n)

[Flajolet-Odlyzko 90]

4
\_

oV,




Examples of series analytic in a A-domain

D() =1 /
0

2/2
3\5—\/(1+z)/(1—z)(1—z+\/1—6z+z2)

oV,

C(z) = (1-2) | 1=

Counter-examples:

A(z) = > two dominant singularities
l1—=2

1
(1 —-2)(1—-22)(1—-23)--.

P(z) = natural boundary



Several dominant singularities

e If A(z) is analytic in a generalized A-domain, and, in
the neighborhood of each dominant singularity z;,

A(z) = Hi(z) + O((1 — 2/2;)%)  as z — z;,
where H,; is analytic around z;, then

a(n) =0n* 1Y asn— oco.

The contributions of the dominant singularities add up

WE

\

0
o

S~ |




Several dominant singularities: examples

Let

A= 1— 22

There are two dominant singularities, +1.

A(z) = c +0(W1—-2) asz—1,
V2(1 - 2)
~1
A(z) = ——2 +0(J/1+2) asz— —1.
V21 + 2)
Hence

. (& ( 1)”6_1 _3/2
a(n) 2T + 2Tn +O(n )

Maple does this for you! [Algolib] http://algo.inria.fr/libraries/



Implicit generating functions

The generating function of labelled rooted trees is given by

A(z) = zexp(A(z))

e The only dominant singularity is at zc = 1/e, and A(z.) = 1.
e A(z) is analytically defined in a A-domain
e Singular behaviour of A(z).

A(z) =1 —-V2vV1 —ze+o(/1—2ze) asz—1/e
Hence
CL(TZ) —\/§ enn_s/z en'n_3/2
n! r(—1/2) V2




Proofs of the asymptotics of basic series:
The “right” integration contour

The basic series:

1/n

= rn =1+ l0g%n/n



Why the Gamma function?

Hankel's expression of the reciprocal of the Gamma function:
1 1
= —/ (—z) %e “dz
M(s) 2imJH




Proof of the transfer theorems: The ‘right” integration contour

B
L




Third method: Saddle point asymptotics

e Ph. Flajolet and R. Sedgewick, Analytic Combinatorics
http://algo.inria.fr/flajolet/Publications/books.html
Chapter VIII



Saddle point bounds

o Let A(z) = > ,,a(n)z™ be a power series with non-negative coefficients and
radius of cv. p. Then

f4( )

a(n) < —= forall0<x<p

e Let r = x be chosen so as to minimize A(x)/x™:

rA’'(r) _

saddle-point equation
A(r) ( P g )

Then

a(n) < A(T).




Saddle point bounds

e Let r = x be chosen so as to minimize A(x)/x™:

A/
rA(r) — n (saddle-point equation)
A(r)
Then
A
a(n) < (T)
rn

Example: the exponential
Take A(z) = e =32"/nl. Then A'(z) =e* = A(z) and r =n

i< ()
< (=
n! 7 \n

Cf. Stirling’'s formula




Saddle point estimates

We have seen
rA'(r) .

A(r) _
" A(r)

T

a(n) < with

n.

Theorem. Under suitable conditions (...)
A(r)
r7 \/QTQWG”(T)

a(n) ~

with G(z) = log &)



Proof:. integration on a circle

AC) exp (G(z))

AL T

1 [AR)dz 1 [T Z.
a(n)—%/c R —E/WGXD(G(TQ “Ydo k

What are the suitable conditions?
e The part of integral before —6,, and after 6,, is negligible

e For z = rpet?, with 0 € [—6,,6,], the quadratic approximation holds:

G(z) = G(rpn) — % 7“?% 62 G"(rn) 4 0o(1)

e 0 is large enough to complete the integral to a Gaussian integral

fr% 97% G"(rn) — oo



Examples

e Involutions

A(2) = exp(z + 22/2)

e Bell numbers (set partitions)

A(z) = exp(e® — 1)

e A fast growing singular function

Alz) = exp (1 i z)

e Integer partitions

A(z) = L

Maple does this for you... [Algolib |

(1 —2)(1—22)(1—-23).-.



Applications of singularity analysis:
Automated asymptotics for algebraic generating
functions

Def. The series A(t) is algebraic if there exists a non-trivial polynomial P(-,-)
such that P(¢, A(t)) =0

Example: Dyck paths: A(t) = 1 4 t2A(¢)?

SRR i v

e Ph. Flajolet and R. Sedgewick, Analytic Combinatorics, Chapter VII
http://algo.inria.fr/flajolet /Publications/books.html



Algebraic series via singularity analysis
Let A(t) be a solution of P(A(t)) = O.

e The singularities of A(t) are found among:
— the roots of the dominant coefficient of P
— the roots of the discriminant of P

e In the neighborhood of a singularity z., A(z) admits a local expansion of the
form

A(z) = 3 bp(1 — z/ze)M/d

k>kq

with kg € Z and d € {1,2,...}

e Singularity analysis:
nko/d—1

(ko/nq)

a(n) ~ by zc



Applications: (almost) automated asymptotics
for D-finite generating functions

Def. The series A(t) is D-finite if its satisfies a linear differential equation with
polynomial coefficients:

Pe(t) A (t) + - 4+ P (1) A'(t) + Po(t)A(t) =0

Equivalently, the sequence a(n) satisfies a linear recurrence relation with poly-
nomial coefficients

Qo(n)a(n) + Q1(n)a(n —1) + -+ Q4(n)a(n —d) =0

4O D> D

e Ince, E. L. Ordinary Differential Equations. Dover Publications, New York,
1944,

e Wimp, J.; Zeilberger, D. Resurrecting the asymptotics of linear recurrences.
J. Math. Anal. Appl. 111 (1985), no. 1, 162—-176.



Singular behaviour of D-finite series

Let A(t) be D-finite:
Pe(t) A () + - 4+ P (1) A'(t) + Po(t)A(t) =0

e The singularities of A are found among the roots of P.(t)

e In the neighborhood of a regular root z. of P, the solutions of the ODE have
a regular local expansion formed of terms

(1 —2z/2)7 log (1 _1Z/ZC>

e In the neighborhood of a irregular root z. of P., the expansions may involve
terms of the form

exp(P(1/w))R(w)

where R is regular, P is a polynomial and w = (1 — z/z.)1/4



