An introduction to asymptotic enumeration

Part 1. Why are asymptotic results interesting?

Part 2. Asymptotics of sequences a(n)

Part 3. Limit laws

From exact to asymptotic enumeration

Assumption: we have an exact description of the sequence a(n), like

- recurrence relation
- formula
- ullet expression of the ordinary or exponential g.f. A(t) or $\tilde{A}(t)$
- functional equation defining A(t) or $\tilde{A}(t)$...

Wanted

$$a(n) \sim s(n) \cdots$$
 or $a(n) = s(n) + O(r(n))$

Overview

Three rather general techniques:

- when a(n) is given explicitly as a sum
- \bullet when A(t) has dominant singularities of an algebraic-logarithmic type
- when A(t) is entire or diverges violently near its dominant singularity(-ies)

What you (really) need to remember from these techniques:

- their existence
- their range of applicability (how they work)
- where to find them

Three rather general techniques

Bare-hand asymptotics on sums

$$a(n) = \sum_{j=1}^{n} \frac{3^{j} (n-1)! \ n! \ (2j)! (24+18 \ n+(5+13 \ n) \ j)}{(j-1)! \ j! \ (j+1)! \ (j+4)! \ (n-j)! \ (n-j+2)!}$$

ullet Singularity analysis: when A(t) has dominant singularities of an algebraic-logarithmic type

$$A(t) = \frac{1}{2} \left(1 - \sqrt{1 - 4 \log \frac{1}{1 - \log \frac{1}{1 - t}}} \right)$$

• Saddle-point asymptotics: when A(t) is entire or diverges violently near its dominant singularity(-ies)

$$A(t) = \exp\left(\frac{t}{1-t}\right)$$

Three rather general techniques... and their applications

ullet Software: When A(t) is explicitly given

$$A(t) = \frac{1}{2} \left(1 - \sqrt{1 - 4\log \frac{1}{1 - \log \frac{1}{1 - t}}} \right), \qquad A(t) = \exp\left(\frac{t}{1 - t}\right)$$

- \bullet Almost automatic asymptotic analysis for A(t) defined implicitly by
 - an algebraic equation

$$t^{3}A(t)^{4} + t^{2}(3+4t)A(t)^{3} + t(3-29t+6t^{2})A(t)^{2} + (1-7t+29t^{2}+4t^{3})A(t) - (1-t)^{3} = 0$$

a linear differential equation

$$2 + 2 (-1 + 6t) A(t) + 4t (-1 + 12t) \frac{d}{dt} A(t) + t^{2} (16t - 1) \frac{d^{2}}{dt^{2}} A(t) = 0$$

First method: Asymptotics of sums

Bare-hand asymptotics on sums

Input

$$a(n) = \sum_{k} b(n, k)$$

Output

$$a(n) \sim s(n) \cdots$$
 or $a(n) = s(n) + O(r(n))$

Bare-hand asymptotics on sums

Input

$$a(n) = \sum_{k} b(n, k)$$

Output

$$a(n) \sim s(n) \cdots$$
 or $a(n) = s(n) + O(r(n))$

Example

$$a(n) = \sum_{j=1}^{n} \frac{4(n-1)! \ n! \ (2j)!}{(j-1)! \ j! \ (j+1)! \ (j+4)! \ (n-j)! \ (n-j+2)!} P(j,n)$$

with

$$P(j,n) = 24 + 18n + (5 - 13n)j + (11n + 20)j^{2} + (10n - 2)j^{3} + (4n - 11)j^{4} - 6j^{5}.$$

$$a(n) \sim \frac{3^9 5}{2^5} \frac{\sqrt{3}}{\pi} \frac{9^n}{n^7}$$

Input

$$a(n) = \sum_{k=0}^{n} b(n,k)$$
 with $b(n,k) = {n \choose k}$

Output

$$a(n) \sim 2^n$$

Input

$$a(n) = \sum_{k=0}^{n} b(n,k)$$
 with $b(n,k) = {n \choose k}$

Output

$$a(n) \sim 2^n$$

The method:

- 1. Locate and estimate the largest summand(s) $(k \sim n/2)$
- 2. Recenter the problem in the vicinity of the "heavy" k's (k = n/2 + r, with r small).

Estimate b(n, k) for those k's (Stirling)

- 3. Determine a window on which to focus $(|k n/2| < n^{2/3})$. Prove that the other summands are negligible
- 4. Replace the sum in the window by an integral

Input

$$a(n) = \sum_{k=0}^{n} b(n,k)$$
 with $b(n,k) = {n \choose k}$

1. Locate and estimate the largest summand(s)

The sequence b(n,k) is unimodal, with max. at $k = \lfloor n/2 \rfloor$. At this point,

$$b(n,k) = {n \choose |n/2|} = \sqrt{2} \frac{2^n}{\sqrt{\pi n}} (1 + O(1/n)).$$

Input

$$a(n) = \sum_{k=0}^{n} b(n,k)$$
 with $b(n,k) = {n \choose k}$

1. Locate and estimate the largest summand(s)

The sequence b(n,k) is unimodal, with max. at $k = \lfloor n/2 \rfloor$. At this point,

$$b(n,k) = {n \choose \lfloor n/2 \rfloor} = \sqrt{2} \frac{2^n}{\sqrt{\pi n}} (1 + O(1/n)).$$

2. Recenter the problem in the vicinity of the "heavy" k's.

Estimate b(n, k) for those k's (Stirling).

Let k = n/2 + r, with $r = o(n^{3/4})$. Then

$$b(n, n/2 + r) = \sqrt{2} \frac{2^n}{\sqrt{\pi n}} \exp\left(-\frac{2r^2}{n}\right) \left(1 + O(1/n) + O(r^4/n^3)\right).$$

 \Rightarrow The significant summands are found among the terms b(n, n/2 + r) for $r = O(n^{1/2+\epsilon})$

3. Determine a window on which to focus. Prove that the other summands are negligible. For $|r| > n^{2/3}$,

$$b(n, n/2 + r) \le b(n, n/2 + n^{2/3}) = O\left(\frac{2^n}{\sqrt{n}} \exp(-2n^{1/3})\right)$$

$$\implies \sum_{|r| \ge n^{2/3}} b(n, n/2 + r) = O\left(2^n \sqrt{n} \exp(-2n^{1/3})\right) = o(2^n / \sqrt{n}).$$

4. Replace the sum in the window by an integral [Riemann] For $|r| < n^{2/3}$, the following holds uniformly in r:

$$b(n, n/2 + r) = \sqrt{2} \frac{2^n}{\sqrt{\pi n}} \exp\left(-\frac{2r^2}{n}\right) \left(1 + O(n^{-1/3})\right).$$

Hence

$$\sum_{r=-n^{2/3}}^{n^{2/3}} b(n, n/2 + r) = \sqrt{2} \frac{2^n}{\sqrt{\pi n}} \left(\sum_{r=-n^{2/3}}^{n^{2/3}} \exp\left(-\frac{2r^2}{n}\right) \right) \left(1 + O(n^{-1/3})\right)$$

$$= \sqrt{2} \frac{2^n}{\sqrt{\pi n}} \sqrt{n} \left(\int_{\mathbb{R}} \exp(-2x^2) dx \right) (1 + o(1))$$

$$= 2^n (1 + o(1)).$$

References: Asymptotics of sums

- Bender, Edward A. Asymptotic methods in enumeration. SIAM Rev. 16 (1974), 485–515.
- Odlyzko, A. M. Asymptotic enumeration methods. Handbook of combinatorics, Vol. 1, 2, 1063–1229, Elsevier, Amsterdam, 1995.

Asymptotics and generating functions: general principles

• Ph. Flajolet and R. Sedgewick, Analytic Combinatorics http://algo.inria.fr/flajolet/Publications/books.html Analytic Combinatorics (Chapters I,II,III,IV,V,VI,VII,VIII,IX*). 743p.+x. Version of October 23, 2006, "Oktoberfest", with Chapters I-VII in quasi-semifinal form.

An elementary example: Rational generating functions

Let

$$A(t) = \frac{1}{(1 - \mu t)^k}$$

with $k \in \mathbb{N}$ and $\mu \in \mathbb{C}$. Then

$$A(t) = \sum_{n>0} {n+k-1 \choose k-1} \mu^n t^n = \sum_{n>0} \frac{(n+1)(n+2)\cdots(n+k-1)}{(k-1)!} \mu^n t^n$$

Then

$$a(n) = \frac{n^{k-1}}{(k-1)!} \mu^n \left(1 + O(1/n) \right).$$

(Important) remark: As a function of the complex variable z, the function A(z) has radius of convergence $1/|\mu|$, and a pole of multiplicity k at $z_c = 1/\mu$.

An elementary example: Rational generating functions

Let

$$A(t) = \frac{N(t)}{D(t)}$$
 with $D(t) = \prod_{i=1}^{d} (1 - \mu_i t)^{k_i}$

Partial fraction expansion:

$$A(t) = P(t) + \sum_{i=1}^{d} \sum_{k=1}^{k_i} \frac{c_{i,k}}{(1 - \mu_i t)^k}$$

• If $\mu = |\mu_1| = \dots = |\mu_j| > |\mu_{j+1}| \ge \dots \ge |\mu_d|$ and $e = \max(k_1, k_2, \dots, k_j)$,

$$a(n) = O(\mu^n n^{e-1})$$

If moreover $e = k_1 > k_2 \geq ... \geq k_j$,

$$a(n) = c_{1,1} \frac{n^{e-1}}{(e-1)!} \mu_1^n (1 + O(1/n)).$$

Rational generating functions: some observations

Let
$$A(t) = \frac{N(t)}{D(t)}$$
 with $D(t) = \prod_{i=1}^{d} (1 - \mu_i t)^{k_i}$

If
$$\mu = |\mu_1| = \dots = |\mu_j| > |\mu_{j+1}| \ge \dots \ge |\mu_d|$$
 and $e = \max(k_1, k_2, \dots, k_j)$,
$$a(n) = O(\mu^n n^{e-1})$$

As a function of a complex variable z, the function A(z) has radius $\rho = 1/\mu$, and a pole of order e at one of the μ_i 's, $1 \le i \le j$.

$$\triangleleft$$
 \triangleleft \Diamond \triangleright

"The location and nature of the dominant singularities of a function $A(z) = \sum a(n)z^n$, analytic around 0, are reflected in the asymptotic behaviour of its coefficients a(n)."

Analytic functions

Defn. The function A(z) is analytic near 0 if it is the sum of a convergent power series: for $|z|<\rho$, with $\rho>0$,

$$A(z) = \sum_{n \ge 0} a(n)t^n$$

The radius of convergence of A(z) is $\sup\{r>0: \sum a(n)r^n \text{ converges }\}$

Radius of cv. and exponential growth of coefficients

If the radius is ρ , then for all $\varepsilon > 0$

$$|a(n)| \leq (\epsilon + 1/\rho)^n$$
 for n large enough

$$(-\epsilon + 1/\rho)^n \le |a(n)|$$
 infinitely often

"The location of the dominant singularity (the radius) gives the exponential growth rate."

Singularities

Let A(z) be analytic in a domain D. A point z_c of the border of D is a singularity of A if no analytic continuation is possible at z_c . That is, we cannot write

$$A(z) = \sum b(n)(z - z_c)^n$$
 for $|z - z_c|$ small.

Examples

- \bullet log z and \sqrt{z} are analytic in $D = \mathbb{C} \setminus (-\infty, 0]$, with a unique singularity at 0.
- The Catalan g.f. $A(z)=(1-\sqrt{1-4z})/(2z)$ is analytic in $\mathbb{C}\setminus[1/4,\infty)$, with a unique singularity at 1/4

The same example with binoculars

The Catalan g.f. $A(z)=(1-\sqrt{1-4z})/(2z)$ is analytic in $\mathbb{C}\setminus[1/4,\infty)$, with a

unique singularity at 1/4

disk of convergence

Dominant singularities of power series

Let $A(z) = \sum a(n)z^n$ be a series with positive radius of cv ρ .

- Then A(z) has at least one singularity on the circle $|z| = \rho$. Such singularities are called dominant.
- If $a(n) \ge 0$, one of the dominant singularities is ρ itself [Pringsheim].

Extraction of coefficients: Cauchy's formula

Let $A(z) = \sum a(n)z^n$ be a series with positive radius of cv, and analytic in a domain D. Then

$$a(n) = \frac{1}{2i\pi} \int_{\mathcal{C}} A(z) \frac{dz}{z^{n+1}}$$

for every contour $\mathcal{C} \subset D$ encircling positively the origin.

Second method: singularity analysis

- Ph. Flajolet and R. Sedgewick, Analytic Combinatorics http://algo.inria.fr/flajolet/Publications/books.html Chapters VI,VII
- Ph. Flajolet and A. Odlyzko, Singularity analysis of generating functions, SIAM J. on Algebraic and Discrete Maths, 1990.

Singularity analysis

• Basic series: We know the asymptotic behaviour of the coefficients of certain simple (algebraic-logarithmic) functions, typically

$$S(z) = \frac{1}{(1-t)^{\alpha}} \left(\frac{1}{t} \log \frac{1}{1-t}\right)^{\beta}$$

$$\Rightarrow s(n) = \frac{n^{\alpha-1}}{\Gamma(\alpha)} (\log n)^{\beta} \left(1 + O(1/\log n)\right)$$

• Transfer theorems: Under certain hypotheses, if, in the neighborhood of its

$$A(z) = S(z) + O(R(z))$$
 as $z \to z_c$,

where R(z) is simple, this estimate can be transferred to coefficients:

dominant singularity z_c (supposed to be unique),

$$a(n) = s(n) + O(r(n))$$
 as $n \to \infty$.

• Similar statement with o(R(z)) and o(r(n)) instead of O(R(z)) and O(r(n)).

Singularity analysis: blind application

GF of Motzkin numbers:

$$A(z) = \frac{1 - z - \sqrt{(1+z)(1-3z)}}{2z^2}.$$

ullet Dominant singularity at $z_c=1/3$. As $z o z_c$,

$$A(z) = 3 - 3^{3/2}\sqrt{1 - 3z} + 15/2(1 - 3z) + O((1 - 3z)^{3/2})$$

= $S(z)$ + $O(R(z))$

• "Hence", for *n* large,

$$a(n) = [z^n] \left(-3^{3/2} \sqrt{1 - 3z} \right) + O\left([z^n] (1 - 3z)^{3/2} \right)$$
$$= -\frac{3^{3/2}}{\Gamma(-1/2)} 3^n n^{-3/2} + O(3^n n^{-5/2})$$

which can also be painfully obtained by analysing the sum

$$a(n) = \sum_{k} \frac{n!}{k!(k+1)!(n-2k)!}.$$

Singularity analysis: blind application

• GF of column-convex polygons counted by (half-)perimeter:

$$A(z) = (1-z) \left(1 - \frac{2\sqrt{2}}{3\sqrt{2} - \sqrt{(1+z)/(1-z)(1-z+\sqrt{1-6z+z^2})}} \right)$$

• Dominant singularity at $z_c = 3 - 2\sqrt{2}$. As $z \to z_c$,

$$A(z) = c_0 + c_1(1 - z/z_c)^{1/2} + o((1 - z/z_c)^{1/2})$$

"Hence"

$$a_n = \frac{c_1}{\Gamma(-1/2)} (3 + 2\sqrt{2})^n n^{-3/2} + o(z_c^{-n} n^{-3/2})$$

Applying singularity analysis to Gilbert L.

Permutations with k cycles (k fixed):

$$S_k(z) = \frac{1}{k!} \left(\log \frac{1}{1-z} \right)^k$$

This is a simple algebraic-logarithmic function:

$$\frac{s_k(n)}{n!} \sim \frac{1}{(k-1)!} n^{-1} (\log n)^{k-1}$$

Derangements:

$$D(z) = \frac{e^{-z}}{1-z} \sim \frac{e^{-1}}{1-z} \quad \Rightarrow \frac{d(n)}{n!} \sim e^{-1}$$

1. Coefficients of simple algebraic-logarithmic series

The basic series:

$$S(z) = \frac{1}{(1-t)^{\alpha}} \left(\frac{1}{t} \log \frac{1}{1-t}\right)^{\beta}$$

$$\Longrightarrow s(n) = \frac{n^{\alpha-1}}{\Gamma(\alpha)} (\log n)^{\beta} \left(1 + O(1/\log n)\right)$$

Remarks

• if $\alpha = 0, -1, -2, -3, \ldots$, then $1/\Gamma(\alpha) = 0$ and this should be read

$$s(n) = O\left(n^{\alpha - 1} (\log n)^{\beta - 1}\right)$$

Actually

$$[z^n](1-z)^k \left(\frac{1}{t}\log\frac{1}{1-t}\right)^{\beta} = (-1)^k \beta k! n^{-k-1} (\log n)^{\beta-1} \left(1 + O(1/\log n)\right)$$

- ullet The numbers s(n) can always be expanded further.
- Maple does this for you!

2. Transfer theorems: \triangle -domains

ullet If A(z) is analytic in a Δ -domain, and

$$A(z) = O(R(z))$$
 as $z \to 1$,

where R(z) is a simple alg-log function, then

$$a(n) = O(r(n))$$
 as $n \to \infty$.

• Similarly:

$$A(z) = o(R(z)) \Rightarrow a(n) = o(r(n))$$

$$A(z) \sim R(z) \qquad \Rightarrow a(n) \sim r(n)$$

[Flajolet-Odlyzko 90]

Examples of series analytic in a \triangle -domain

$$D(z) = \frac{e^{-z}}{1 - z}$$

$$C(z) = (1-z)\left(1 - \frac{2\sqrt{2}}{3\sqrt{2} - \sqrt{(1+z)/(1-z)(1-z+\sqrt{1-6z+z^2})}}\right)$$

Counter-examples:

$$A(z) = \frac{e^z}{\sqrt{1 - z^2}}$$
 two dominant singularities

$$P(z) = \frac{1}{(1-z)(1-z^2)(1-z^3)\cdots}$$
 natural boundary

Several dominant singularities

ullet If A(z) is analytic in a generalized Δ -domain, and, in the neighborhood of each dominant singularity z_i ,

$$A(z) = H_i(z) + O((1 - z/z_i)^{\alpha})$$
 as $z \to z_i$,

where H_i is analytic around z_i , then

$$a(n) = O(n^{\alpha - 1})$$
 as $n \to \infty$.

The contributions of the dominant singularities add up

Several dominant singularities: examples

Let

$$A(z) = \frac{e^z}{\sqrt{1 - z^2}}$$

There are two dominant singularities, ± 1 .

$$A(z) = \frac{e}{\sqrt{2(1-z)}} + O(\sqrt{1-z})$$
 as $z \to 1$,

$$A(z) = \frac{e^{-1}}{\sqrt{2(1+z)}} + O(\sqrt{1+z})$$
 as $z \to -1$.

Hence

$$a(n) = \frac{e}{\sqrt{2\pi n}} + \frac{(-1)^n e^{-1}}{\sqrt{2\pi n}} + O(n^{-3/2}).$$

Maple does this for you! [Algolib] http://algo.inria.fr/libraries/

Implicit generating functions

The generating function of labelled rooted trees is given by

$$A(z) = z \exp(A(z))$$

- ullet The only dominant singularity is at $z_c=1/e$, and $A(z_c)=1$.
- A(z) is analytically defined in a Δ -domain
- Singular behaviour of A(z).

$$A(z) = 1 - \sqrt{2}\sqrt{1 - ze} + o(\sqrt{1 - ze})$$
 as $z \to 1/e$

Hence

$$\frac{a(n)}{n!} \sim \frac{-\sqrt{2}}{\Gamma(-1/2)} e^n n^{-3/2} \sim \frac{e^n n^{-3/2}}{\sqrt{2\pi}}$$

Proofs of the asymptotics of basic series: The "right" integration contour

The basic series:

$$S(z) = \frac{1}{(1-t)^{\alpha}} \left(\frac{1}{t} \log \frac{1}{1-t}\right)^{\beta} \quad \to \quad s(n) = \frac{1}{2i\pi} \int_{\mathcal{C}} S(z) \frac{dz}{z^{n+1}}$$

$$S(z) = (1-z)^{-2/3}$$
 and $n = 4$

$$r_n = 1 + \log^2 n/n$$

Why the Gamma function?

Hankel's expression of the reciprocal of the Gamma function:

$$\frac{1}{\Gamma(s)} = \frac{1}{2i\pi} \int_{\mathcal{H}} (-z)^{-s} e^{-z} dz$$

Proof of the transfer theorems: The "right" integration contour

Third method: Saddle point asymptotics

• Ph. Flajolet and R. Sedgewick, Analytic Combinatorics http://algo.inria.fr/flajolet/Publications/books.html Chapter VIII

Saddle point bounds

• Let $A(z) = \sum_n a(n)z^n$ be a power series with non-negative coefficients and radius of cv. ρ . Then

$$a(n) \le \frac{A(x)}{x^n}$$
 for all $0 < x < \rho$

• Let r = x be chosen so as to minimize $A(x)/x^n$:

$$\frac{rA'(r)}{A(r)} = n \quad \text{(saddle-point equation)}$$

Then

$$a(n) \le \frac{A(r)}{r^n}.$$

Saddle point bounds

• Let r = x be chosen so as to minimize $A(x)/x^n$:

$$\frac{rA'(r)}{A(r)} = n \quad \text{(saddle-point equation)}$$

Then

$$a(n) \le \frac{A(r)}{r^n}.$$

Example: the exponential

Take $A(z) = e^z = \sum z^n/n!$. Then $A'(z) = e^z = A(z)$ and r = n

$$\frac{1}{n!} \le \left(\frac{e}{n}\right)^n$$

Cf. Stirling's formula

$$\frac{1}{n!} = \left(\frac{e}{n}\right)^n \frac{1}{\sqrt{2\pi n}} \left(1 + O(1/n)\right)$$

Saddle point estimates

We have seen

$$a(n) \le \frac{A(r)}{r^n}$$
 with $\frac{rA'(r)}{A(r)} = n$.

Theorem. Under suitable conditions (...)

$$a(n) \sim \frac{A(r)}{r^n \sqrt{2r^2 \pi G''(r)}}$$

with
$$G(z) = \log \frac{A(z)}{z^n}$$

Proof: integration on a circle

$$\frac{A(z)}{z^n} = \exp\left(G(z)\right)$$

$$a(n) = \frac{1}{2i\pi} \int_{\mathcal{C}} \frac{A(z)}{z^n} \frac{dz}{z} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \exp(G(re^{i\theta})) d\theta$$

What are the suitable conditions?

- ullet The part of integral before $-\theta_n$ and after θ_n is negligible
- For $z=r_ne^{i\theta}$, with $\theta\in[-\theta_n,\theta_n]$, the quadratic approximation holds:

$$G(z) = G(r_n) - \frac{1}{2} r_n^2 \theta^2 G''(r_n) + o(1)$$

ullet heta is large enough to complete the integral to a Gaussian integral

$$r_n^2 \theta_n^2 G''(r_n) \to \infty$$

Examples

Involutions

$$A(z) = \exp(z + z^2/2)$$

Bell numbers (set partitions)

$$A(z) = \exp(e^z - 1)$$

• A fast growing singular function

$$A(z) = \exp\left(\frac{z}{1-z}\right)$$

Integer partitions

$$A(z) = \frac{1}{(1-z)(1-z^2)(1-z^3)\cdots}$$

Maple does this for you... [Algolib]

Applications of singularity analysis: Automated asymptotics for algebraic generating functions

Def. The series A(t) is algebraic if there exists a non-trivial polynomial $P(\cdot, \cdot)$ such that P(t, A(t)) = 0

Example: Dyck paths: $A(t) = 1 + t^2 A(t)^2$

 \triangleleft \triangleleft \Diamond \triangleright \triangleright

• Ph. Flajolet and R. Sedgewick, Analytic Combinatorics, Chapter VII http://algo.inria.fr/flajolet/Publications/books.html

Algebraic series via singularity analysis

Let A(t) be a solution of P(A(t)) = 0.

- \bullet The singularities of A(t) are found among:
- the roots of the dominant coefficient of P
- the roots of the discriminant of P
- ullet In the neighborhood of a singularity z_c , A(z) admits a local expansion of the form

$$A(z) = \sum_{k \ge k_0} b_k (1 - z/z_c)^{k/d}$$

with $k_0 \in \mathbb{Z}$ and $d \in \{1, 2, \ldots\}$

Singularity analysis:

$$a(n) \sim b_{k_0} z_c^{-n} \frac{n^{k_0/d-1}}{\Gamma(k_0/n_d)}$$

Applications: (almost) automated asymptotics for D-finite generating functions

Def. The series A(t) is D-finite if its satisfies a linear differential equation with polynomial coefficients:

$$P_e(t)A^{(e)}(t) + \dots + P_1(t)A'(t) + P_0(t)A(t) = 0$$

Equivalently, the sequence a(n) satisfies a linear recurrence relation with polynomial coefficients

$$Q_0(n)a(n) + Q_1(n)a(n-1) + \dots + Q_d(n)a(n-d) = 0$$

$$\triangleleft$$
 \triangleleft \Diamond \triangleright

- Ince, E. L. Ordinary Differential Equations. Dover Publications, New York, 1944.
- Wimp, J.; Zeilberger, D. Resurrecting the asymptotics of linear recurrences.
- J. Math. Anal. Appl. 111 (1985), no. 1, 162-176.

Singular behaviour of D-finite series

Let A(t) be D-finite:

$$P_e(t)A^{(e)}(t) + \dots + P_1(t)A'(t) + P_0(t)A(t) = 0$$

- ullet The singularities of A are found among the roots of $P_e(t)$
- In the neighborhood of a regular root z_c of P_e , the solutions of the ODE have a regular local expansion formed of terms

$$(1-z/z_c)^{\sigma}\log\left(rac{1}{1-z/z_c}
ight)^i$$

ullet In the neighborhood of a irregular root z_c of P_e , the expansions may involve terms of the form

$$\exp(P(1/w))R(w)$$

where R is regular, P is a polynomial and $w = (1 - z/z_c)^{1/d}$