Functional equations in enumerative combinatorics

Mireille Bousquet-Mélou, CNRS, Université de Bordeaux, France

European
Mathematical
Society

Enumerative combinatorics and generating functions

- Let \mathcal{A} be a set of combinatorial objects equipped with an integer size $|\cdot|$, and assume that for each n, the set

$$
\{w \in \mathcal{A}:|w|=n\}
$$

is finite. Let $a(n)$ be its cardinality.

- The generating function of the objects of \mathcal{A}, counted by the size, is

$$
A(t) \equiv A:=\sum_{n \geq 0} a(n) t^{n}=\sum_{w \in \mathcal{A}} t^{|w|}
$$

Enumerative combinatorics and generating functions

- Let \mathcal{A} be a set of combinatorial objects equipped with an integer size $|\cdot|$, and assume that for each n, the set

$$
\{w \in \mathcal{A}:|w|=n\}
$$

is finite. Let $a(n)$ be its cardinality.

- The generating function of the objects of \mathcal{A}, counted by the size, is

$$
A(t) \equiv A:=\sum_{n \geq 0} a(n) t^{n}=\sum_{w \in \mathcal{A}} t^{|w|}
$$

- Refined enumeration:

$$
A(y ; t) \equiv A(y):=\sum_{n \geq 0} a(k ; n) y^{k} t^{n}=\sum_{w \in \mathcal{A}} y^{p(w)} t^{|w|}
$$

for some parameter p.

I. A collection of examples

Ex. 1: Plane trees

Ex. 1: Plane trees

Delete the root edge
\Rightarrow An ordered pair of trees

Ex. 1: Plane trees

Delete the root edge \Rightarrow An ordered pair of trees

Counting: let $a(n)$ be the number of plane trees with n edges. Then $a(0)=1$ and

$$
a(n)=\sum_{i+j=n-1} a(i) a(j)
$$

Ex. 1: Plane trees

Delete the root edge \Rightarrow An ordered pair of trees

Counting: let $a(n)$ be the number of plane trees with n edges. Then $a(0)=1$ and

$$
a(n)=\sum_{i+j=n-1} a(i) a(j)
$$

Generating function: the associated formal power series

$$
A:=\sum_{n \geq 0} a(n) t^{n}=\sum_{T \text { tree }} t^{\mathrm{e}(T)}
$$

Ex. 1: Plane trees

Delete the root edge \Rightarrow An ordered pair of trees

Counting: let $a(n)$ be the number of plane trees with n edges. Then $a(0)=1$ and

$$
a(n)=\sum_{i+j=n-1} a(i) a(j)
$$

Generating function: the associated formal power series

$$
A:=\sum_{n \geq 0} a(n) t^{n}=\sum_{T \text { tree }} t^{\mathrm{e}(T)}
$$

Functional equation:

$$
A=1+t A^{2}
$$

Ex. 1: Plane trees

Functional equation:

$$
A=1+t A^{2} \Rightarrow A=\frac{1-\sqrt{1-4 t}}{2 t}
$$

Ex. 1: Plane trees

Functional equation:

$$
A=1+t A^{2} \Rightarrow A=\frac{1-\sqrt{1-4 t}}{2 t}
$$

Are we happy?

Ex. 1: Plane trees

Functional equation:

$$
A=1+t A^{2} \Rightarrow A=\frac{1-\sqrt{1-4 t}}{2 t}
$$

Are we happy? YES!

- Expand:

$$
a(n)=\frac{1}{n+1}\binom{2 n}{n} \sim \frac{1}{\sqrt{\pi}} 4^{n} n^{-3 / 2}
$$

Ex. 1: Plane trees

Functional equation:

$$
A=1+t A^{2} \Rightarrow A=\frac{1-\sqrt{1-4 t}}{2 t}
$$

Are we happy? YES!

- Expand:

$$
a(n)=\frac{1}{n+1}\binom{2 n}{n} \sim \frac{1}{\sqrt{\pi}} 4^{n} n^{-3 / 2}
$$

- Linear recurrence relation:

$$
(n+2) a(n+1)=2(2 n+1) a(n)
$$

\Rightarrow Fast computation of coefficients.
\Rightarrow Bruno Salvy, tomorrow

Ex. 2: Planar maps
Definition
Planar map $=$ connected planar graph

+ embedding of this graph in the plane, taken up to continuous deformation

$$
\bar{Z}
$$

Ex. 2: Planar maps
Definition
Planar map $=$ connected planar graph

+ embedding of this graph in the plane, taken up to continuous deformation

\neq

Ex. 2: Planar maps

Definition

Planar map $=$ connected planar graph

+ embedding of this graph in the plane,
taken up to continuous deformation
faces

degree of the outer face: 7

Ex. 2: Planar maps

Definition

Planar map $=$ connected planar graph

+ embedding of this graph in the plane,
taken up to continuous deformation

Maps are rooted at an external corner. The next edge (in cc order) is the root edge.

Ex. 2: Planar maps

Definition

Planar map $=$ connected planar graph

+ embedding of this graph in the plane,
taken up to continuous deformation

Maps are rooted at an external corner. The next edge (in cc order) is the root edge.

A recursive description of maps: delete the root edge

A recursive description of maps: delete the root edge

A recursive description of maps: delete the root edge

A recursive description of maps: delete the root edge

A recursive description of maps: delete the root edge

Functional equation: the series $M(y):=\sum_{M \text { map }} t^{\mathrm{e}(M)} y^{\mathrm{od}(M)}$ satisfies:

$$
M(y)=1+t y^{2} M(y)^{2}+t y \frac{y M(y)-M(1)}{y-1}
$$

Note: $M(1)=\sum_{M} t^{\mathrm{e}(M)}$ is the GF we want to compute An equation with one catalytic variable [Zeilberger 00]

A recursive description of maps: delete the root edge

Functional equation:

$$
M(y)=1+t y^{2} M(y)^{2}+t y \frac{y M(y)-M(1)}{y-1}
$$

Are we happy?

A recursive description of maps: delete the root edge

Functional equation:

$$
M(y)=1+t y^{2} M(y)^{2}+t y \frac{y M(y)-M(1)}{y-1}
$$

Are we happy? NO!
The solution is an algebraic function with nice coefficients:

$$
\begin{aligned}
M(1)=\sum_{M} t^{\mathrm{e}(M)} & =\frac{(1-12 t)^{3 / 2}-1+18 t}{54 t^{2}} \\
& =\sum_{n \geq 0} t^{n} \frac{2 \cdot 3^{n}}{(n+1)(n+2)}\binom{2 n}{n}
\end{aligned}
$$

Ex. 3: Walks on a half-line

Count walks on the non-negative half-line by the length and height j of the endpoint:

$$
H(y)=\sum_{w \text { walk }} t^{|w|} y^{j(w)}
$$

Ex. 3: Walks on a half-line

Count walks on the non-negative half-line by the length and height j of the endpoint:

$$
H(y)=\sum_{w \text { walk }} t^{|w|} y^{j(w)}
$$

Then

$$
H(y)=1+t(y+1 / y) H(y)-t / y H(0) .
$$

Ex. 3: Walks on a half-line

Count walks on the non-negative half-line by the length and height j of the endpoint:

$$
H(y)=\sum_{w \text { walk }} t^{|w|} y^{j(w)}
$$

Then

$$
H(y)=1+t(y+1 / y) H(y)-t / y H(0) .
$$

Are we happy? NO!
The solution is algebraic with nice coefficients

$$
H(0)=\frac{1-\sqrt{1-4 t^{2}}}{2 t^{2}}=\sum_{n} \frac{1}{n+1}\binom{2 n}{n} t^{2 n}
$$

Ex. 4: Walks in the first quadrant

Count walks with steps NE, W, S starting from $(0,0)$ and confined in the first quadrant, by the length and coordinates (i, j) of the endpoint:

$$
Q(x, y)=\sum_{w \text { walk }} t^{|w|} x^{i(w)} y^{j(w)}
$$

Ex. 4: Walks in the first quadrant

Count walks with steps NE, W, S starting from $(0,0)$ and confined in the first quadrant, by the length and coordinates (i, j) of the endpoint:

$$
Q(x, y)=\sum_{w \text { walk }} t^{|w|} x^{i(w)} y^{j(w)}
$$

Then, writing $\bar{x}=1 / x$ and $\bar{y}=1 / y$,

$$
Q(x, y)=1+t(x y+\bar{x}+\bar{y}) Q(x, y)-t \bar{x} Q(0, y)-t \bar{y} Q(x, 0)
$$

An equation with two catalytic variables.

Ex. 4: Walks in the first quadrant

Count walks with steps NE, W, S starting from $(0,0)$ and confined in the first quadrant, by the length and coordinates (i, j) of the endpoint:

$$
Q(x, y)=\sum_{w \text { walk }} t^{|w|} x^{i(w)} y^{j(w)}
$$

Then, writing $\bar{x}=1 / x$ and $\bar{y}=1 / y$,

$$
Q(x, y)=1+t(x y+\bar{x}+\bar{y}) Q(x, y)-t \bar{x} Q(0, y)-t \bar{y} Q(x, 0)
$$

An equation with two catalytic variables.
BUT: The series $Q(x, y ; t)$ is again algebraic $\quad(\operatorname{Pol}(x, y, t, Q)=0)$ [Gessel 86, mbm 02].

Ex. 5: q-Coloured triangulations

- Let $T(x, y ; t) \equiv T(x, y)$ be the unique formal power series in t, with polynomial coefficients in x and y, satisfying

$$
\begin{aligned}
T(x, y)=x q(q-1) & +\frac{x y t}{q} T(x, y) T(1, y) \\
& +x t \frac{T(x, y)-T(x, 0)}{y}-x^{2} y t \frac{T(x, y)-T(1, y)}{x-1}
\end{aligned}
$$

- Then $T(1,0)$ counts properly q-coloured triangulations by the number of faces. [Tutte 73]

We're not happy...

[Tutte, 1984]

- The number $c(n)$ of q-coloured triangulations with $2 n$ faces satisfies:

$$
\begin{aligned}
q(n+1)(n+2) c(n)= & q(q-4)(3 n-1)(3 n-2) c(n-1) \\
& +2 \sum_{i=1}^{n} i(i+1)(3 n-3 i+1) c(i-1) c(n-i)
\end{aligned}
$$

with $c(0)=q(q-1)$.

We're not happy...

[Tutte, 1984]

- The number $c(n)$ of q-coloured triangulations with $2 n$ faces satisfies:

$$
q(n+1)(n+2) c(n)=q(q-4)(3 n-1)(3 n-2) c(n-1)
$$

with $c(0)=q(q-1)$.

$$
+2 \sum_{i=1}^{n} i(i+1)(3 n-3 i+1) c(i-1) c(n-i)
$$

- The associated generating function

$$
C(t)=\sum_{n} c(n) t^{n+2}
$$

is differentially algebraic, and satisfies

$$
2 q^{2}(1-q) t+\left(q t+10 C-6 t C^{\prime}\right) C^{\prime \prime}+q(4-q)\left(20 C-18 t C^{\prime}+9 t^{2} C^{\prime \prime}\right)=0
$$

Summary

The combinatorial structure of discrete objects

often yields functional equations

that are not of the "right" type.

$$
\triangleleft \triangleleft \diamond \triangleright \triangleright
$$

$$
M(y)=1+t y^{2} M(y)^{2}+t y \frac{y M(y)-M(1)}{y-1}
$$

vs.

$$
M(1)=\sum_{M} t^{\mathrm{e}(M)}=\frac{(1-12 t)^{3 / 2}-1+18 t}{54 t^{2}}
$$

What are the "right" types?

- Rational series

$$
A(t)=\frac{P(t)}{Q(t)}
$$

- Algebraic series

$$
P(t, A(t))=0
$$

- Differentially finite series (D-finite)

What are the "right" types?

- Rational series

$$
A(t)=\frac{P(t)}{Q(t)}
$$

- Algebraic series

$$
P(t, A(t))=0
$$

- Differentially finite series (D-finite)

A hierarchy of formal power series

A hierarchy of formal power series

plane trees planar maps walks on a half-line 3-coloured triangs.
quadrant walks

q-coloured triangs.

not DA

II. Equations with one catalytic variable: algebraicity

$$
\operatorname{Pol}\left(A(y), A_{1}, \ldots, A_{k}, t, y\right)=0
$$

- Walks on a half-line:

$$
H(y)=1+\operatorname{ty} H(y)+t \frac{H(y)-H(0)}{y}
$$

- Planar maps:

$$
M(y)=1+t y^{2} M(y)^{2}+t y \frac{y M(y)-M(1)}{y-1}
$$

Planar maps: the quadratic method

[Brown 65]

- Form a square:

$$
\begin{aligned}
& \left(2 t y^{2}(y-1) M(y)+t y^{2}-y+1\right)^{2}= \\
& \quad\left(y-1-y^{2} t\right)^{2}-4 t y^{2}(y-1)^{2}+4 t^{2} y^{3}(y-1) M_{1}:=\Delta(y)
\end{aligned}
$$

$\Delta(y)$ is a polynomial in y

Planar maps: the quadratic method

- Form a square:

$$
\begin{aligned}
& \left(2 t y^{2}(y-1) M(y)+t y^{2}-y+1\right)^{2}= \\
& \quad\left(y-1-y^{2} t\right)^{2}-4 t y^{2}(y-1)^{2}+4 t^{2} y^{3}(y-1) M_{1}:=\Delta(y)
\end{aligned}
$$

$\Delta(y)$ is a polynomial in y

- There exists a (unique) series $Y \equiv Y(t)$ that cancels the LHS:

$$
Y=1+t Y^{2}+2 t Y^{2}(Y-1) M(Y)
$$

\Rightarrow characterizes inductively the coefficient of t^{n}

Planar maps: the quadratic method

- Form a square:

$$
\begin{aligned}
& \left(2 t y^{2}(y-1) M(y)+t y^{2}-y+1\right)^{2}= \\
& \quad\left(y-1-y^{2} t\right)^{2}-4 t y^{2}(y-1)^{2}+4 t^{2} y^{3}(y-1) M_{1}:=\Delta(y)
\end{aligned}
$$

$\Delta(y)$ is a polynomial in y

- There exists a (unique) series $Y \equiv Y(t)$ that cancels the LHS:

$$
Y=1+t Y^{2}+2 t Y^{2}(Y-1) M(Y)
$$

\Rightarrow characterizes inductively the coefficient of t^{n}

- This series Y must be a root of $\Delta(y)$, and in fact a double root.

Planar maps: the quadratic method

- Form a square:

$$
\begin{aligned}
& \left(2 t y^{2}(y-1) M(y)+t y^{2}-y+1\right)^{2}= \\
& \quad\left(y-1-y^{2} t\right)^{2}-4 t y^{2}(y-1)^{2}+4 t^{2} y^{3}(y-1) M_{1}:=\Delta(y)
\end{aligned}
$$

$\Delta(y)$ is a polynomial in y

- There exists a (unique) series $Y \equiv Y(t)$ that cancels the LHS:

$$
Y=1+t Y^{2}+2 t Y^{2}(Y-1) M(Y)
$$

\Rightarrow characterizes inductively the coefficient of t^{n}

- This series Y must be a root of $\Delta(y)$, and in fact a double root.
- Algebraic consequence: The discriminant of $\Delta(y)$ w.r.t. y is zero:

$$
27 t^{2} M_{1}^{2}+(1-18 t) M_{1}+16 t-1=0
$$

or

$$
M_{1}=\frac{(1-12 t)^{3 / 2}-1+18 t}{54 t^{2}}
$$

Equations with one catalytic variable

Theorem [mbm-Jehanne 06]
Let $P\left(A(y), A_{1}, \ldots, A_{k}, t, y\right)$ be a polynomial equation in one catalytic variable y. Under reasonable hypotheses (*),

- The equation

$$
P_{1}^{\prime}\left(A(Y), A_{1}, \ldots, A_{k}, t, Y\right)=0
$$

admits k solutions Y_{1}, \ldots, Y_{k} (Puiseux series in t)

- Each of them is a double root of $\Delta\left(A_{1}, \ldots, A_{k}, t, y\right)$, the discriminant of P w.r.t. its first variable
- The series $A(y)$ and the A_{i} 's are algebraic.
$\left(^{*}\right)$ The equation defines uniquely $A(y), A_{1} \ldots, A_{k}$ as formal power series in t (with polynomial coefficients in y for $A(y)$).

Equations with one catalytic variable

Theorem [mbm-Jehanne 06]
Let $P\left(A(y), A_{1}, \ldots, A_{k}, t, y\right)$ be a polynomial equation in one catalytic variable y. Under reasonable hypotheses (*),

- The equation

$$
P_{1}^{\prime}\left(A(Y), A_{1}, \ldots, A_{k}, t, Y\right)=0
$$

admits k solutions Y_{1}, \ldots, Y_{k} (Puiseux series in t)

- Each of them is a double root of $\Delta\left(A_{1}, \ldots, A_{k}, t, y\right)$, the discriminant of P w.r.t. its first variable
- The series $A(y)$ and the A_{i} 's are algebraic.
\Rightarrow A special case of an Artin approximation theorem with "nested" conditions [Popescu 85], [Swan 98]

Polynomials with k common roots

The discriminant $\Delta\left(A_{1}, \ldots, A_{k}, t, y\right)$ of P has k double roots in y. Or: Δ and Δ_{y}^{\prime} have k roots in common.

Polynomials with k common roots

The discriminant $\Delta\left(A_{1}, \ldots, A_{k}, t, y\right)$ of P has k double roots in y. Or: Δ and Δ_{y}^{\prime} have k roots in common.

Proposition

Two polynomials $P(y)=\sum p_{i} y^{i}$ and $Q(y)=\sum q_{j} y^{j}$ of degrees m and n have k roots in common iff the rank of their Sylvester matrix is less than $m+n-2 k$.

$$
\operatorname{Sylv}(P, Q)=\left(\begin{array}{ccccc}
p_{2} & p_{1} & p_{0} & 0 & 0 \\
0 & p_{2} & p_{1} & p_{0} & 0 \\
0 & 0 & p_{2} & p_{1} & p_{0} \\
q_{3} & q_{2} & q_{1} & q_{0} & 0 \\
0 & q_{3} & q_{2} & q_{1} & q_{0}
\end{array}\right)
$$

Polynomials with k common roots

The discriminant $\Delta\left(A_{1}, \ldots, A_{k}, t, y\right)$ of P has k double roots in y. Or: Δ and Δ_{y}^{\prime} have k roots in common.

Proposition

Two polynomials $P(y)=\sum p_{i} y^{i}$ and $Q(y)=\sum q_{j} y^{j}$ of degrees m and n have k roots in common iff the rank of their Sylvester matrix is less than $m+n-2 k$. Equivalently, iff k (well-chosen) minors vanish.

$$
\operatorname{Sylv}(P, Q)=\left(\begin{array}{ccccc}
p_{2} & p_{1} & p_{0} & 0 & 0 \\
0 & p_{2} & p_{1} & p_{0} & 0 \\
0 & 0 & p_{2} & p_{1} & p_{0} \\
q_{3} & q_{2} & q_{1} & q_{0} & 0 \\
0 & q_{3} & q_{2} & q_{1} & q_{0}
\end{array}\right)
$$

Example: planar maps

- Planar maps

$$
P\left(M(y), M_{1}, t, y\right)=-M(y)+1+t y^{2} M(y)^{2}+t y \frac{y M(y)-M_{1}}{y-1}=0
$$

Example: planar maps

- Planar maps

$$
P\left(M(y), M_{1}, t, y\right)=-M(y)+1+t y^{2} M(y)^{2}+t y \frac{y M(y)-M_{1}}{y-1}=0
$$

- The equation $P_{1}^{\prime}\left(M(Y), M_{1}, t, Y\right)=0$ reads
$-1+2 t Y^{2} M(Y)+t Y^{2} \frac{M(Y)}{Y-1}=0 \Rightarrow Y=1+t Y^{2}+2 t Y^{2}(Y-1) M(Y)$ and has indeed a unique solution Y.

Example: planar maps

- Planar maps

$$
P\left(M(y), M_{1}, t, y\right)=-M(y)+1+t y^{2} M(y)^{2}+t y \frac{y M(y)-M_{1}}{y-1}=0
$$

- The equation $P_{1}^{\prime}\left(M(Y), M_{1}, t, Y\right)=0$ reads

$$
-1+2 t Y^{2} M(Y)+t Y^{2} \frac{M(Y)}{Y-1}=0 \Rightarrow Y=1+t Y^{2}+2 t Y^{2}(Y-1) M(Y)
$$

and has indeed a unique solution Y.

- This series Y is a double root of $\Delta\left(M_{1}, t, y\right)$.

Example: planar maps

- Planar maps

$$
P\left(M(y), M_{1}, t, y\right)=-M(y)+1+t y^{2} M(y)^{2}+t y \frac{y M(y)-M_{1}}{y-1}=0
$$

- The equation $P_{1}^{\prime}\left(M(Y), M_{1}, t, Y\right)=0$ reads

$$
-1+2 t Y^{2} M(Y)+t Y^{2} \frac{M(Y)}{Y-1}=0 \Rightarrow Y=1+t Y^{2}+2 t Y^{2}(Y-1) M(Y)
$$ and has indeed a unique solution Y.

- This series Y is a double root of $\Delta\left(M_{1}, t, y\right)$.
- Algebraic consequence: The discriminant of Δ w.r.t. y is zero:

$$
0=27 t^{2} M_{1}^{2}+(1-18 t) M_{1}+16 t-1
$$

"The discriminant (in y) of the discriminant of P (in its first variable) vanishes"

Example: planar maps

- Planar maps

$$
P\left(M(y), M_{1}, t, y\right)=-M(y)+1+t y^{2} M(y)^{2}+t y \frac{y M(y)-M_{1}}{y-1}=0
$$

- The equation $P_{1}^{\prime}\left(M(Y), M_{1}, t, Y\right)=0$ reads

$$
-1+2 t Y^{2} M(Y)+t Y^{2} \frac{M(Y)}{Y-1}=0 \Rightarrow Y=1+t Y^{2}+2 t Y^{2}(Y-1) M(Y)
$$ and has indeed a unique solution Y.

- This series Y is a double root of $\Delta\left(M_{1}, t, y\right)$.
- Algebraic consequence: The discriminant of Δ w.r.t. y is zero:

$$
0=\left(27 t^{2} M_{1}^{2}+(1-18 t) M_{1}+16 t-1\right)\left(1-t M_{1}\right)^{2}
$$

"The discriminant (in y) of the discriminant of P (in its first variable) vanishes"

Example: Properly 3-coloured planar maps [Bernardi-mbm]

$$
P\left(M(y), M_{0}, M_{1}, M_{2}, t, y\right)=0
$$

Example: Properly 3-coloured planar maps [Bernardi-mbm]

$P\left(M(y), M_{0}, M_{1}, M_{2}, t, y\right)=0$

$$
=36 y^{6} t^{3}(2 y+1)(y-1)^{3} M(y)^{4}+2 t^{2} y^{4}(y-1)^{2}\left(42 t y^{3}+12 y^{2} t-26 y^{3}-39 y^{2}+39 y+26\right) M(y)^{3}
$$

$$
+\left(-36 y^{6} t^{3}(y-1)^{2} M_{0}+(y-1) y^{2} t\left(32 t^{2} y^{5}+4 y^{4} t^{2}+2 t y^{5}-120 t y^{4}+8 y^{5}+78 t y^{3}+38 y^{4}\right.\right.
$$

$$
\left.\left.+40 y^{2} t-25 y^{3}-71 y^{2}+25 y+25\right)\right) M(y)^{2}+\left(-36 y^{5} t^{3}(y-1)^{2} M_{0}^{2}-6 t^{2}(y-1) y^{4}\left(6 y^{2} t-2 y t\right.\right.
$$

$$
\left.-9 y^{2}+5 y+4\right) M_{0}-12 M_{1} t^{3} y^{7}+24 M_{1} t^{3} y^{6}+4 y^{7} t^{3}-12 y^{5} t^{3} M_{1}+10 t^{2} y^{7}-42 t^{2} y^{6}-26 t y^{7}
$$

$$
\left.+28 t^{2} y^{5}+52 t y^{6}+4 y^{4} t^{2}+32 t y^{5}-4 y^{6}-94 t y^{4}-2 y^{5}+14 t y^{3}+16 y^{4}+22 y^{2} t-16 y^{2}+2 y+4\right) M
$$

$$
-36 y^{4} t^{3}(y-1)^{2} M_{0}^{3}-2 t^{2}(y-1) y^{3}\left(22 y^{2} t-16 y t-33 y^{2}+27 y+6\right) M_{0}^{2}-2 y^{2} t\left(18 M_{1} t^{2} y^{4}\right.
$$

$$
-36 M_{1} t^{2} y^{3}+6 y^{4} t^{2}+18 M_{1} t^{2} y^{2}-6 y^{3} t^{2}-4 t y^{4}+2 y^{2} t^{2}-7 t y^{3}+16 y^{4}+13 y^{2} t-23 y^{3}-2 y t
$$

$$
+5 y+2) M_{0}-(y-1)\left(12 y^{5} t^{3} M_{1}+2 M_{2} t^{3} y^{5}-8 y^{4} t^{3} M_{1}-22 M_{1} t^{2} y^{5}-2 y^{4} t^{3} M_{2}\right.
$$

$\left.+18 M_{1} t^{2} y^{4}+4 M_{1} t^{2} y^{3}-11 t y^{5}+21 t y^{4}-4 y^{5}-9 t y^{3}-6 y^{4}-y^{2} t+10 y^{3}+10 y^{2}-6 y-4\right)$.

Example: Properly 3-coloured planar maps [Bernardi-mbm]

$$
P\left(M(y), M_{0}, M_{1}, M_{2}, t, y\right)=0
$$

Theorem

The generating function of properly 3-coloured planar maps is

$$
M_{0}=\frac{(1+2 A)\left(1-2 A^{2}-4 A^{3}-4 A^{4}\right)}{\left(1-2 A^{3}\right)^{2}}
$$

where A is the unique series in t with constant term 0 such that

$$
A=t \frac{(1+2 A)^{3}}{1-2 A^{3}} .
$$

What's wrong?

- Wrong approach to this counting problem!

What's wrong?

- Wrong approach to this counting problem!
- Improve the elimination procedure

What's wrong?

- Wrong approach to this counting problem!
- Improve the elimination procedure
- Unavoidable factorizations? Iterated discriminants and resultants are known to factor, and to have repeated factors [Henrici 1868, Lazard \& McCallum 09, Busé \& Mourrain 09]

$$
\begin{aligned}
\operatorname{disc}_{y}\left(\operatorname { d i s c } _ { x } \left(x^{4}+\right.\right. & \left.\left.p x^{3}+q x^{2}+y x+s\right)\right)= \\
& -256 s\left(p^{4}-8 p^{2} q+16 q^{2}-64 s\right)^{2} \times \\
& \left(27 s p^{4}-p^{2} q^{3}-108 p^{2} q s+3 q^{4}+72 q^{2} s+432 s^{2}\right)^{3}
\end{aligned}
$$

What's wrong?

- Wrong approach to this counting problem!
- Improve the elimination procedure
- Unavoidable factorizations? Iterated discriminants and resultants are known to factor, and to have repeated factors [Henrici 1868, Lazard \& McCallum 09, Busé \& Mourrain 09]

$$
\begin{aligned}
\operatorname{disc}_{y}\left(\operatorname { d i s c } _ { x } \left(x^{4}+\right.\right. & \left.\left.p x^{3}+q x^{2}+y x+s\right)\right)= \\
& -256 s\left(p^{4}-8 p^{2} q+16 q^{2}-64 s\right)^{2} \times \\
& \left(27 s p^{4}-p^{2} q^{3}-108 p^{2} q s+3 q^{4}+72 q^{2} s+432 s^{2}\right)^{3}
\end{aligned}
$$

More equations to solve!

III. Tutte's invariant method:

From two to one catalytic variable(s)

(and algebraicity again)

- Quadrant walks:

$$
Q(x, y)=1+t x y Q(x, y)+t \frac{Q(x, y)-Q(0, y)}{x}+t \frac{Q(x, y)-Q(x, 0)}{y}
$$

- q-Coloured triangulations:

$$
\begin{aligned}
T(x, y)=x q(q & -1)+\frac{x y t}{q} T(x, y) T(1, y) \\
& +x t \frac{T(x, y)-T(x, 0)}{y}-x^{2} y t \frac{T(x, y)-T(1, y)}{x-1}
\end{aligned}
$$

[Tutte $1973 \rightarrow$ 1984]

Equations with two catalytic variables are much harder than

 those with one...

Algebraic

$$
(1-t(\bar{x}+\bar{y}+x y)) x y Q(x, y)=x y-t y Q(0, y)-t x Q(x, 0)
$$

D-finite transcendental

$$
(1-t(y+\bar{x}+x \bar{y})) x y Q(x, y)=x y-t y Q(0, y)-t x^{2} Q(x, 0)
$$

\square Not D-finite

$$
(1-t(x+\bar{x}+\bar{y}+x y)) x y Q(x, y)=x y-t y Q(0, y)-t x Q(x, 0)
$$

In particular, their solutions are not systematically algebraic. Still, some of them DO have an algebraic solution...

Invariants

- Quadrant walks with NE, W and S steps:

$$
\begin{aligned}
(1-t(\bar{x}+\bar{y}+x y)) x y Q(x, y) & =x y-t x Q(x, 0)-t y Q(0, y) \\
& =x y-R(x)-S(y)
\end{aligned}
$$

- The equation $1-t(\bar{x}+\bar{y}+x y)=0$ can be written in a decoupled form:

$$
I_{1}(x):=\frac{t}{x^{2}}-x-\frac{t}{x}=\frac{t}{y^{2}}-y-\frac{t}{y}=: I_{2}(y)
$$

The functions $\left(I_{1}(x), I_{2}(y)\right)$ form a pair of invariants.

Invariants

- Quadrant walks with NE, W and S steps:

$$
\begin{aligned}
(1-t(\bar{x}+\bar{y}+x y)) x y Q(x, y) & =x y-t x Q(x, 0)-t y Q(0, y) \\
& =x y-R(x)-S(y)
\end{aligned}
$$

- The equation $1-t(\bar{x}+\bar{y}+x y)=0$ can be written in a decoupled form:

$$
I_{1}(x):=\frac{t}{x^{2}}-x-\frac{t}{x}=\frac{t}{y^{2}}-y-\frac{t}{y}=: I_{2}(y)
$$

The functions $\left(I_{1}(x), I_{2}(y)\right)$ form a pair of invariants.

- Combined with $x y-R(x)-S(y)=0$, this gives also:

$$
J_{1}(x):=-R(x)-\frac{1}{x}+\frac{1}{t}=S(y)+\frac{1}{y}=: J_{2}(y)
$$

The functions $\left(J_{1}(x), J_{2}(y)\right)$ form another pair of invariants.

The invariant lemma

Two pairs of invariants:

$$
\begin{aligned}
I_{1}(x):=\frac{t}{x^{2}}-x-\frac{t}{x} & =\frac{t}{y^{2}}-y-\frac{t}{y}=: I_{2}(y) \\
J_{1}(x):=-R(x)-\frac{1}{x}+\frac{1}{t} & =S(y)+\frac{1}{y}=: J_{2}(y)
\end{aligned}
$$

The invariant lemma

\square
Two pairs of invariants:

$$
\begin{aligned}
I_{1}(x):=\frac{t}{x^{2}}-x-\frac{t}{x} & =\frac{t}{y^{2}}-y-\frac{t}{y}=: I_{2}(y) \\
J_{1}(x):=-R(x)-\frac{1}{x}+\frac{1}{t} & =S(y)+\frac{1}{y}=: J_{2}(y) .
\end{aligned}
$$

The invariant lemma
There are few invariants: $I_{2}(y)$ must be a polynomial in $J_{2}(y)$ whose coefficients are series in t.

The invariant lemma

\square

Two pairs of invariants:

$$
\begin{aligned}
I_{1}(x):=\frac{t}{x^{2}}-x-\frac{t}{x} & =\frac{t}{y^{2}}-y-\frac{t}{y}=: I_{2}(y) \\
J_{1}(x):=-R(x)-\frac{1}{x}+\frac{1}{t} & =S(y)+\frac{1}{y}=: J_{2}(y) .
\end{aligned}
$$

The invariant lemma
There are few invariants: $I_{2}(y)$ must be a polynomial in $J_{2}(y)$ whose coefficients are series in t.

$$
I_{2}(y)=\frac{t}{y^{2}}-\frac{1}{y}-t y=t\left(t y Q(0, y)+\frac{1}{y}\right)^{2}-\left(\operatorname{ty} Q(0, y)+\frac{1}{y}\right)+c
$$

Expanding at $y=0$ gives the value of c.

The invariant lemma

\square

Two pairs of invariants:

$$
\begin{aligned}
I_{1}(x):=\frac{t}{x^{2}}-x-\frac{t}{x} & =\frac{t}{y^{2}}-y-\frac{t}{y}=: I_{2}(y) \\
J_{1}(x):=-R(x)-\frac{1}{x}+\frac{1}{t} & =S(y)+\frac{1}{y}=: J_{2}(y) .
\end{aligned}
$$

The invariant lemma
There are few invariants: $I_{2}(y)$ must be a polynomial in $J_{2}(y)$ whose coefficients are series in t.

$$
I_{2}(y)=\frac{t}{y^{2}}-\frac{1}{y}-t y=t\left(t y Q(0, y)+\frac{1}{y}\right)^{2}-\left(t y Q(0, y)+\frac{1}{y}\right)-2 t^{2} Q(0,0)
$$

Expanding at $y=0$ gives the value of c.

The invariant lemma

\square

Two pairs of invariants:

$$
\begin{aligned}
I_{1}(x):=\frac{t}{x^{2}}-x-\frac{t}{x} & =\frac{t}{y^{2}}-y-\frac{t}{y}=: I_{2}(y) \\
J_{1}(x):=-R(x)-\frac{1}{x}+\frac{1}{t} & =S(y)+\frac{1}{y}=: J_{2}(y) .
\end{aligned}
$$

The invariant lemma
There are few invariants: $I_{2}(y)$ must be a polynomial in $J_{2}(y)$ whose coefficients are series in t.
$I_{2}(y)=\frac{t}{y^{2}}-\frac{1}{y}-t y=t\left(t y Q(0, y)+\frac{1}{y}\right)^{2}-\left(t y Q(0, y)+\frac{1}{y}\right)-2 t^{2} Q(0,0)$.
Expanding at $y=0$ gives the value of c.
Polynomial equation with one catalytic variable $\Rightarrow Q(0, y ; t)$ is algebraic

What invariants are good for

- start with an equation with two catalytic variables x and y (degree 1 in the main series $Q(x, y)$)
- construct a pair of invariants in y from the coefficients of $Q(x, y)^{1}$ and $Q(x, y)^{0}$
- relate them algebraically (the invariant lemma)
- obtain an equation with one catalytic variable only \Rightarrow algebraicity

Other equations: are there invariants?

Thm. [Bernardi, mbm, Raschel 15(a)]
Exactly 4 quadrant models with small steps have two invariants \Rightarrow uniform algebraic solution via the solution of an equation with one catalytic variable

Other equations: are there invariants?

Thm. [Bernardi, mbm, Raschel 15(a)]
Exactly 4 quadrant models with small steps have two invariants \Rightarrow uniform algebraic solution via the solution of an equation with one catalytic variable

Gessel's model

- conjecture for $q(0,0 ; n)$ [Gessel $\simeq 00$]
- proof of this conjecture [Kauers, Koutschan \& Zeilberger 08]
- $Q(x, y ; t)$ are algebraic! [Bostan \& Kauers 09a]
- new proof via complex analysis [Bostan, Kurkova \& Raschel 13(a)]
- an elementary and constructive proof [mbm 15(a)]

Other equations: are there invariants?

Thm. [Bernardi, mbm, Raschel 15(a)]
Exactly 4 quadrant models with small steps have two invariants \Rightarrow uniform algebraic solution via the solution of an equation with one catalytic variable

Thm. [Tutte 74], [Bernardi-mbm 11]
For q-coloured triangulations (or planar maps, and even for the q-state Potts model), there is one invariant for any q, and a second one if $q=4 \cos ^{2} \frac{k \pi}{m}$, with $q \neq 0,4 . \quad \Rightarrow$ Algebraicity

Example: Properly 3-coloured planar maps

- Two catalytic variables [Tutte 68]

$$
\begin{aligned}
& M(x, y)=1+x y t(1+2 y) M(x, y) M(1, y)-x y t M(x, y) M(x, 1) \\
& -x y t \frac{x M(x, y)-M(1, y)}{x-1}+x y t \frac{y M(x, y)-M(x, 1)}{y-1}
\end{aligned}
$$

- One catalytic variable [Bernardi-mbm 11]

$$
P\left(M(1, y), M_{0}, M_{1}, M_{2}, t, y\right)=0
$$

Example: Properly 3-coloured planar maps

$P\left(M(1, y), M_{0}, M_{1}, M_{2}, t, y\right)=0$
$=36 y^{6} t^{3}(2 y+1)(y-1)^{3} M(y)^{4}+2 t^{2} y^{4}(y-1)^{2}\left(42 t y^{3}+12 y^{2} t-26 y^{3}-39 y^{2}+39 y+26\right) M(y)^{3}$
$+\left(-36 y^{6} t^{3}(y-1)^{2} M_{0}+(y-1) y^{2} t\left(32 t^{2} y^{5}+4 y^{4} t^{2}+2 t y^{5}-120 t y^{4}+8 y^{5}+78 t y^{3}+38 y^{4}\right.\right.$
$\left.\left.+40 y^{2} t-25 y^{3}-71 y^{2}+25 y+25\right)\right) M(y)^{2}+\left(-36 y^{5} t^{3}(y-1)^{2} M_{0}^{2}-6 t^{2}(y-1) y^{4}\left(6 y^{2} t-2 y t\right.\right.$
$\left.-9 y^{2}+5 y+4\right) M_{0}-12 M_{1} t^{3} y^{7}+24 M_{1} t^{3} y^{6}+4 y^{7} t^{3}-12 y^{5} t^{3} M_{1}+10 t^{2} y^{7}-42 t^{2} y^{6}-26 t y^{7}$ $\left.+28 t^{2} y^{5}+52 t y^{6}+4 y^{4} t^{2}+32 t y^{5}-4 y^{6}-94 t y^{4}-2 y^{5}+14 t y^{3}+16 y^{4}+22 y^{2} t-16 y^{2}+2 y+4\right) M$
$-36 y^{4} t^{3}(y-1)^{2} M_{0}^{3}-2 t^{2}(y-1) y^{3}\left(22 y^{2} t-16 y t-33 y^{2}+27 y+6\right) M_{0}{ }^{2}-2 y^{2} t\left(18 M_{1} t^{2} y^{4}\right.$
$-36 M_{1} t^{2} y^{3}+6 y^{4} t^{2}+18 M_{1} t^{2} y^{2}-6 y^{3} t^{2}-4 t y^{4}+2 y^{2} t^{2}-7 t y^{3}+16 y^{4}+13 y^{2} t-23 y^{3}-2 y t$ $+5 y+2) M_{0}-(y-1)\left(12 y^{5} t^{3} M_{1}+2 M_{2} t^{3} y^{5}-8 y^{4} t^{3} M_{1}-22 M_{1} t^{2} y^{5}-2 y^{4} t^{3} M_{2}\right.$
$\left.+18 M_{1} t^{2} y^{4}+4 M_{1} t^{2} y^{3}-11 t y^{5}+21 t y^{4}-4 y^{5}-9 t y^{3}-6 y^{4}-y^{2} t+10 y^{3}+10 y^{2}-6 y-4\right)$.

Some questions

- More efficient ways to compute with equations in one catalytic variable
- Effective construction of invariants - or prove that there are not any
- Prove more algebraicity results with them (e.g. lattice walks confined to/avoiding a quadrant)

Some questions

- More efficient ways to compute with equations in one catalytic variable
- Effective construction of invariants - or prove that there are not any
- Prove more algebraicity results with them (e.g. lattice walks confined to/avoiding a quadrant)

Example: the hard-particle model on planar maps

$$
\begin{gathered}
\quad F(y)=1+G(y)-s+t^{2} F(y)^{2}+t y \frac{y F(y)-F_{1}}{y-1} \\
\quad G(y)=s+\operatorname{ty} F(y) G(y)+t y \frac{G(y)-G_{1}}{y-1}
\end{gathered}
$$

Then $F(1)$ is an explicit rational function of s and A, where

$$
A=t \frac{1-(2-s) A}{(1-A)(1-2 A)\left(1-3 A+3 A^{2}\right)}
$$

Intermediate steps: Y_{1} and Y_{2} have degree 10. Numerous intermediate factorisations... some of the factors are enormous.

