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Enumerative combinatorics and generating functions

• Let A be a set of combinatorial objects equipped with an integer size
| · |, and assume that for each n, the set

{w ∈ A : |w | = n},
is finite. Let a(n) be its cardinality.

• The generating function of the objects of A, counted by the size, is

A(t) ≡ A :=
∑
n≥0

a(n)tn =
∑
w∈A

t |w |.

• Refined enumeration:

A(y ; t) ≡ A(y) :=
∑
n≥0

a(k ; n)yktn =
∑
w∈A

yp(w)t |w |

for some parameter p.
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I. A collection of examples



Ex. 1: Plane trees

Delete the root edge
⇒ An ordered pair of trees

Counting: let a(n) be the number of plane trees with n edges. Then
a(0) = 1 and

a(n) =
∑

i+j=n−1

a(i)a(j)

Generating function: the associated formal power series

A :=
∑
n≥0

a(n)tn =
∑

T tree

te(T )

Functional equation:
A = 1 + tA2
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Ex. 1: Plane trees

Functional equation:

A = 1 + tA2 ⇒ A =
1−
√
1− 4t
2t

Are we happy?

YES!

Expand:

a(n) =
1

n + 1

(
2n
n

)
∼ 1√

π
4nn−3/2

Linear recurrence relation:

(n + 2) a(n + 1) = 2 (2 n + 1) a(n)

⇒ Fast computation of coefficients.
⇒ Bruno Salvy, tomorrow
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Ex. 2: Planar maps

Definition

Planar map = connected planar graph

+ embedding of this graph in the plane,

taken up to continuous deformation

Maps are rooted at an external corner.
The next edge (in cc order) is the root
edge.
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The next edge (in cc order) is the root
edge.



Ex. 2: Planar maps

Definition

Planar map = connected planar graph

+ embedding of this graph in the plane,

taken up to continuous deformation

Maps are rooted at an external corner.
The next edge (in cc order) is the root
edge.



Ex. 2: Planar maps

Definition

Planar map = connected planar graph

+ embedding of this graph in the plane,

taken up to continuous deformation

Maps are rooted at an external corner.
The next edge (in cc order) is the root
edge.



A recursive description of maps: delete the root edge

bridge

Functional equation: the series M(y) :=
∑

M map t
e(M)yod(M) satisfies:

M(y) = 1 + ty2M(y)2 + ty
yM(y)−M(1)

y − 1

Note: M(1) =
∑

M te(M) is the GF we want to compute
An equation with one catalytic variable [Zeilberger 00]
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outer degree d

d + 1 maps
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A recursive description of maps: delete the root edge

Functional equation:

M(y) = 1 + ty2M(y)2 + ty
yM(y)−M(1)

y − 1

Are we happy?

NO!

The solution is an algebraic function with nice coefficients:

M(1) =
∑
M

te(M) =
(1− 12t)3/2 − 1+ 18 t

54t2

=
∑
n≥0

tn 2 · 3n

(n + 1)(n + 2)

(
2n
n

)
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Ex. 3: Walks on a half-line

Count walks on the non-negative half-line by the length and height j of
the endpoint:

H(y) =
∑

w walk

t |w |y j(w).

j

Are we happy? NO!
The solution is algebraic with nice coefficients

H(0) =
1−
√
1− 4t2

2t2 =
∑

n

1
n + 1

(
2n
n

)
t2n
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Ex. 4: Walks in the first quadrant

Count walks with steps NE, W, S starting from (0, 0) and confined in the
first quadrant, by the length and coordinates (i , j) of the endpoint:

Q(x , y) =
∑

w walk

t |w |x i(w)y j(w).

i

j
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∑

w walk
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Then, writing x̄ = 1/x and ȳ = 1/y ,

Q(x , y) = 1 + t(xy + x̄ + ȳ)Q(x , y)− tx̄Q(0, y)− tȳQ(x , 0)

An equation with two catalytic variables.

BUT: The series Q(x , y ; t) is again algebraic (Pol(x , y , t,Q) = 0)
[Gessel 86, mbm 02].
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Ex. 5: q-Coloured triangulations

• Let T (x , y ; t) ≡ T (x , y) be the unique formal power series in t, with
polynomial coefficients in x and y , satisfying

T (x , y) = xq(q − 1) +
xyt
q

T (x , y)T (1, y)

+ xt
T (x , y)− T (x , 0)

y
− x2yt

T (x , y)− T (1, y)

x − 1

• Then T (1, 0) counts properly q-coloured triangulations by the number
of faces. [Tutte 73]



We’re not happy... [Tutte, 1984]

• The number c(n) of q-coloured triangulations with 2n faces satisfies:

q(n + 1)(n + 2)c(n) = q(q − 4)(3n − 1)(3n − 2)c(n − 1)

+ 2
n∑

i=1

i(i + 1)(3n − 3i + 1)c(i − 1)c(n − i),

with c(0) = q(q − 1).

• The associated generating function

C (t) =
∑
n

c(n)tn+2

is differentially algebraic, and satisfies

2q2(1−q)t + (qt + 10C − 6tC ′)C ′′+q(4−q)(20C − 18tC ′+ 9t2C ′′) = 0
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Summary

The combinatorial structure of discrete objects

often yields functional equations

that are not of the “right” type.

/ C � B .

M(y) = 1 + ty2M(y)2 + ty
yM(y)−M(1)

y − 1

vs.

M(1) =
∑
M

te(M) =
(1− 12t)3/2 − 1 + 18 t

54t2



What are the “right” types?

• Rational series

A(t) =
P(t)

Q(t)

• Algebraic series

P(t,A(t)) = 0

• Differentially finite series (D-finite)
d∑

i=0

Pi (t)A(i)(t) = 0

• D-algebraic series
P(t,A(t),A′(t), . . . ,A(d)(t)) = 0

Multi-variate series: one DE per variable
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A hierarchy of formal power series

Alg.

Rat.

D-alg.

3-coloured triangs.

q-coloured triangs.

D-finite

planar maps
plane trees

walks on a half-line

not DA

quadrant walks



II. Equations with one catalytic
variable: algebraicity

Pol(A(y),A1, . . . ,Ak , t, y) = 0

Walks on a half-line:

H(y) = 1 + tyH(y) + t
H(y)− H(0)

y

Planar maps:

M(y) = 1 + ty2M(y)2 + ty
yM(y)−M(1)

y − 1



Planar maps: the quadratic method [Brown 65]

• Form a square:(
2ty2(y − 1)M(y) + ty2 − y + 1

)2
=

(y − 1− y2t)2 − 4ty2(y − 1)2 + 4t2y3(y − 1)M1 := ∆(y)

∆(y) is a polynomial in y

• There exists a (unique) series Y ≡ Y (t) that cancels the LHS:

Y = 1 + tY 2 + 2tY 2(Y − 1)M(Y ).

⇒ characterizes inductively the coefficient of tn

• This series Y must be a root of ∆(y), and in fact a double root.
• Algebraic consequence: The discriminant of ∆(y) w.r.t. y is zero:

27 t2M2
1 + (1− 18 t)M1 + 16 t − 1 = 0

or

M1 =
(1− 12t)3/2 − 1 + 18t

54t2
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Equations with one catalytic variable

Theorem [mbm-Jehanne 06]
Let P(A(y),A1, . . . ,Ak , t, y) be a polynomial equation in one catalytic
variable y . Under reasonable hypotheses (*),

The equation
P ′1(A(Y ),A1, . . . ,Ak , t,Y ) = 0

admits k solutions Y1, . . . ,Yk (Puiseux series in t)
Each of them is a double root of ∆(A1, . . . ,Ak , t, y), the
discriminant of P w.r.t. its first variable
The series A(y) and the Ai ’s are algebraic.

(*) The equation defines uniquely A(y),A1 . . . ,Ak as formal power series
in t (with polynomial coefficients in y for A(y)).
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Each of them is a double root of ∆(A1, . . . ,Ak , t, y), the
discriminant of P w.r.t. its first variable
The series A(y) and the Ai ’s are algebraic.

⇒ A special case of an Artin approximation theorem with “nested”
conditions [Popescu 85], [Swan 98]



Polynomials with k common roots

The discriminant ∆(A1, . . . ,Ak , t, y) of P has k double roots in y .
Or: ∆ and ∆′y have k roots in common.

Proposition

Two polynomials P(y) =
∑

piy i and Q(y) =
∑

qjy j of degrees m and n
have k roots in common iff the rank of their Sylvester matrix is less than
m + n − 2k .

Equivalently, iff k (well-chosen) minors vanish.

Sylv(P,Q) =



p2 p1 p0 0 0

0 p2 p1 p0 0

0 0 p2 p1 p0

q3 q2 q1 q0 0

0 q3 q2 q1 q0


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Example: planar maps

• Planar maps

P(M(y),M1, t, y) = −M(y) + 1 + ty2M(y)2 + ty
yM(y)−M1

y − 1
= 0

• The equation P ′1(M(Y ),M1, t,Y ) = 0 reads

−1 + 2tY 2M(Y ) + tY 2M(Y )

Y − 1
= 0⇒ Y = 1 + tY 2 + 2tY 2(Y − 1)M(Y )

and has indeed a unique solution Y .
• This series Y is a double root of ∆(M1, t, y).
• Algebraic consequence: The discriminant of ∆ w.r.t. y is zero:

0 =

(

27 t2M1
2 + (1− 18 t)M1 + 16 t − 1

)
(1− tM1)2

“The discriminant (in y) of the discriminant of P (in its first variable)
vanishes”
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Example: Properly 3-coloured planar maps [Bernardi-mbm]

P(M(y),M0,M1,M2, t, y) = 0
.



Example: Properly 3-coloured planar maps [Bernardi-mbm]

P(M(y),M0,M1,M2, t, y) = 0
= 36 y6t3(2 y+1)(y−1)3M(y)4+2 t2y4(y−1)2(42 ty3+12 y2t−26 y3−39 y2+39 y+26)M(y)3

+(−36 y6t3(y−1)2M0+(y−1)y2t(32 t2y5+4 y4t2+2 ty5−120 ty4+8 y5+78 ty3+38 y4

+40 y2t−25 y3−71 y2+25 y+25))M(y)2+(−36 y5t3(y−1)2M0
2−6 t2(y−1)y4(6 y2t−2 yt

−9 y2+5 y+4)M0−12 M1 t3y7+24 M1 t3y6+4 y7t3−12 y5t3M1+10 t2y7−42 t2y6−26 ty7

+28 t2y5+52 ty6+4 y4t2+32 ty5−4 y6−94 ty4−2 y5+14 ty3+16 y4+22 y2t−16 y2+2 y+4)M

−36 y4t3(y−1)2M0
3−2 t2(y−1)y3(22 y2t−16 yt−33 y2+27 y+6)M0

2−2 y2t(18 M1 t2y4

−36 M1 t2y3+6 y4t2+18 M1 t2y2−6 y3t2−4 ty4+2 y2t2−7 ty3+16 y4+13 y2t−23 y3−2 yt

+5 y+2)M0−(y−1)(12 y5t3M1+2 M2 t3y5−8 y4t3M1−22 M1 t2y5−2 y4t3M2

+18 M1 t2y4+4 M1 t2y3−11 ty5+21 ty4−4 y5−9 ty3−6 y4−y2t+10 y3+10 y2−6 y−4).



Example: Properly 3-coloured planar maps [Bernardi-mbm]

P(M(y),M0,M1,M2, t, y) = 0
.

Theorem
The generating function of properly 3-coloured planar maps is

M0 =
(1 + 2A)(1− 2A2 − 4A3 − 4A4)

(1− 2A3)2

where A is the unique series in t with constant term 0 such that

A = t
(1 + 2A)3

1− 2A3 .



What’s wrong?

Wrong approach to this counting problem!

Improve the elimination procedure
Unavoidable factorizations? Iterated discriminants and resultants are
known to factor, and to have repeated factors
[Henrici 1868, Lazard & McCallum 09, Busé & Mourrain 09]

discy (discx(x4 + px3 + qx2 + yx + s)) =

− 256 s
(
p4 − 8 p2q + 16 q2 − 64 s

)2×(
27 sp4 − p2q3 − 108 p2qs + 3 q4 + 72 q2s + 432 s2)3

More equations to solve!
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III. Tutte’s invariant method:
From two to one catalytic variable(s)

(and algebraicity again)

Quadrant walks:

Q(x , y) = 1+txyQ(x , y)+t
Q(x , y)− Q(0, y)

x
+t

Q(x , y)− Q(x , 0)

y
q-Coloured triangulations:

T (x , y) = xq(q − 1) +
xyt
q

T (x , y)T (1, y)

+ xt
T (x , y)− T (x , 0)

y
− x2yt

T (x , y)− T (1, y)

x − 1
[Tutte 1973 → 1984]



Equations with two catalytic variables are much harder than
those with one...

Algebraic

(1− t(x̄ + ȳ + xy))xyQ(x , y) = xy − tyQ(0, y)− txQ(x , 0)

D-finite transcendental(
1− t(y + x̄ + xȳ)

)
xyQ(x , y) = xy − tyQ(0, y)− tx2Q(x , 0)

Not D-finite

(1− t(x + x̄ + ȳ + xy))xyQ(x , y) = xy − tyQ(0, y)− txQ(x , 0)

In particular, their solutions are not systematically algebraic.
Still, some of them DO have an algebraic solution...



Invariants

• Quadrant walks with NE, W and S steps:(
1− t(x̄ + ȳ + xy)

)
xyQ(x , y) = xy − txQ(x , 0)− tyQ(0, y)

= xy − R(x)− S(y)

• The equation 1− t(x̄ + ȳ + xy) = 0 can be written in a decoupled
form:

I1(x) :=
t
x2 − x − t

x
=

t
y2 − y − t

y
=: I2(y)

The functions (I1(x), I2(y)) form a pair of invariants.

• Combined with xy − R(x)− S(y) = 0, this gives also:

J1(x) := −R(x)− 1
x

+
1
t

= S(y) +
1
y

=: J2(y).

The functions (J1(x), J2(y)) form another pair of invariants.
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The invariant lemma

Two pairs of invariants:

I1(x) :=
t
x2 − x − t

x
=

t
y2 − y − t

y
=: I2(y)

J1(x) := −R(x)− 1
x

+
1
t

= S(y) +
1
y

=: J2(y).

The invariant lemma
There are few invariants: I2(y) must be a polynomial in J2(y) whose
coefficients are series in t.

I2(y) =
t
y2−

1
y
−ty = t

(
tyQ(0, y) +

1
y

)2

−
(
tyQ(0, y) +

1
y

)

−2t2Q(0, 0)

.

Expanding at y = 0 gives the value of c .

Polynomial equation with one catalytic variable ⇒ Q(0, y ; t) is algebraic
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What invariants are good for

start with an equation with two catalytic variables x and y (degree 1
in the main series Q(x , y))
construct a pair of invariants in y from the coefficients of Q(x , y)1

and Q(x , y)0

relate them algebraically (the invariant lemma)
obtain an equation with one catalytic variable only ⇒ algebraicity



Other equations: are there invariants?

Thm. [Bernardi, mbm, Raschel 15(a)]
Exactly 4 quadrant models with small steps have two invariants ⇒
uniform algebraic solution via the solution of an equation with one
catalytic variable



Other equations: are there invariants?

Thm. [Bernardi, mbm, Raschel 15(a)]
Exactly 4 quadrant models with small steps have two invariants ⇒
uniform algebraic solution via the solution of an equation with one
catalytic variable

Gessel’s model
conjecture for q(0, 0; n) [Gessel ' 00]
proof of this conjecture [Kauers, Koutschan & Zeilberger 08]
Q(x , y ; t) are algebraic! [Bostan & Kauers 09a]
new proof via complex analysis [Bostan, Kurkova & Raschel 13(a)]
an elementary and constructive proof [mbm 15(a)]



Other equations: are there invariants?

Thm. [Bernardi, mbm, Raschel 15(a)]
Exactly 4 quadrant models with small steps have two invariants ⇒
uniform algebraic solution via the solution of an equation with one
catalytic variable

Thm. [Tutte 74], [Bernardi-mbm 11]
For q-coloured triangulations (or planar maps, and even for the q-state
Potts model), there is one invariant for any q, and a second one if
q = 4 cos2 kπ

m , with q 6= 0, 4. ⇒ Algebraicity



Example: Properly 3-coloured planar maps

• Two catalytic variables [Tutte 68]

M(x , y) = 1 + xyt (1 + 2y)M(x , y)M(1, y)− xytM(x , y)M(x , 1)

− xyt
xM(x , y)−M(1, y)

x − 1
+ xyt

yM(x , y)−M(x , 1)

y − 1
• One catalytic variable [Bernardi-mbm 11]

P(M(1, y),M0,M1,M2, t, y) = 0



Example: Properly 3-coloured planar maps

P(M(1, y),M0,M1,M2, t, y) = 0
= 36 y6t3(2 y+1)(y−1)3M(y)4+2 t2y4(y−1)2(42 ty3+12 y2t−26 y3−39 y2+39 y+26)M(y)3

+(−36 y6t3(y−1)2M0+(y−1)y2t(32 t2y5+4 y4t2+2 ty5−120 ty4+8 y5+78 ty3+38 y4

+40 y2t−25 y3−71 y2+25 y+25))M(y)2+(−36 y5t3(y−1)2M0
2−6 t2(y−1)y4(6 y2t−2 yt

−9 y2+5 y+4)M0−12 M1 t3y7+24 M1 t3y6+4 y7t3−12 y5t3M1+10 t2y7−42 t2y6−26 ty7

+28 t2y5+52 ty6+4 y4t2+32 ty5−4 y6−94 ty4−2 y5+14 ty3+16 y4+22 y2t−16 y2+2 y+4)M

−36 y4t3(y−1)2M0
3−2 t2(y−1)y3(22 y2t−16 yt−33 y2+27 y+6)M0

2−2 y2t(18 M1 t2y4

−36 M1 t2y3+6 y4t2+18 M1 t2y2−6 y3t2−4 ty4+2 y2t2−7 ty3+16 y4+13 y2t−23 y3−2 yt

+5 y+2)M0−(y−1)(12 y5t3M1+2 M2 t3y5−8 y4t3M1−22 M1 t2y5−2 y4t3M2

+18 M1 t2y4+4 M1 t2y3−11 ty5+21 ty4−4 y5−9 ty3−6 y4−y2t+10 y3+10 y2−6 y−4).



Some questions

More efficient ways to compute with equations in one catalytic
variable
Effective construction of invariants — or prove that there are not any
Prove more algebraicity results with them (e.g. lattice walks confined
to/avoiding a quadrant)
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Example: the hard-particle model on planar maps
t

s

◦ F (y) = 1 + G (y)− s + ty2F (y)2 + ty
yF (y)− F1

y − 1

• G (y) = s + tyF (y)G (y) + ty
G (y)− G1

y − 1
Then F (1) is an explicit rational function of s and A, where

A = t
1− (2− s)A

(1− A)(1− 2A)(1− 3A + 3A2)

Intermediate steps: Y1 and Y2 have degree 10. Numerous intermediate
factorisations... some of the factors are enormous.

[mbm-Jehanne 06]




