Functional equations in enumerative combinatorics

Mireille Bousquet-Mélou, CNRS, Université de Bordeaux, France

European Mathematical Society

Enumerative combinatorics and generating functions

• Let A be a set of combinatorial objects equipped with an integer size $|\cdot|$, and assume that for each n, the set

$$\{w \in \mathcal{A} : |w| = n\},\$$

is finite. Let a(n) be its cardinality.

 \bullet The generating function of the objects of $\mathcal{A},$ counted by the size, is

$$A(t) \equiv A := \sum_{n \ge 0} a(n)t^n = \sum_{w \in \mathcal{A}} t^{|w|}.$$

Enumerative combinatorics and generating functions

• Let A be a set of combinatorial objects equipped with an integer size $|\cdot|$, and assume that for each *n*, the set

$$\{w \in \mathcal{A} : |w| = n\},\$$

is finite. Let a(n) be its cardinality.

 \bullet The generating function of the objects of $\mathcal{A},$ counted by the size, is

$$A(t) \equiv A := \sum_{n \ge 0} a(n)t^n = \sum_{w \in \mathcal{A}} t^{|w|}.$$

• Refined enumeration:

$$A(y;t) \equiv A(y) := \sum_{n \ge 0} a(k;n) y^k t^n = \sum_{w \in \mathcal{A}} y^{p(w)} t^{|w|}$$

for some parameter p.

I. A collection of examples

Delete the root edge \Rightarrow An ordered pair of trees

Delete the root edge \Rightarrow An ordered pair of trees

Counting: let a(n) be the number of plane trees with n edges. Then a(0) = 1 and

$$a(n) = \sum_{i+j=n-1} a(i)a(j)$$

Delete the root edge \Rightarrow An ordered pair of trees

Counting: let a(n) be the number of plane trees with n edges. Then a(0) = 1 and

$$a(n) = \sum_{i+j=n-1} a(i)a(j)$$

Generating function: the associated formal power series

$$A := \sum_{n \ge 0} a(n)t^n = \sum_{T \text{ tree}} t^{e(T)}$$

Delete the root edge \Rightarrow An ordered pair of trees

Counting: let a(n) be the number of plane trees with n edges. Then a(0) = 1 and

$$a(n) = \sum_{i+j=n-1} a(i)a(j)$$

Generating function: the associated formal power series

$$A := \sum_{n \ge 0} a(n)t^n = \sum_{T \text{ tree}} t^{e(T)}$$

Functional equation:

 $A = 1 + tA^2$

Functional equation:

$$A = 1 + tA^2 \Rightarrow A = \frac{1 - \sqrt{1 - 4t}}{2t}$$

Functional equation:

$$A = 1 + tA^2 \implies A = \frac{1 - \sqrt{1 - 4t}}{2t}$$

Are we happy?

Functional equation:

$$A = 1 + tA^2 \Rightarrow A = \frac{1 - \sqrt{1 - 4t}}{2t}$$

Are we happy? YES!

• Expand:

$$a(n) = \frac{1}{n+1} {\binom{2n}{n}} \sim \frac{1}{\sqrt{\pi}} 4^n n^{-3/2}$$

Functional equation:

$$A = 1 + tA^2 \Rightarrow A = \frac{1 - \sqrt{1 - 4t}}{2t}$$

Are we happy? YES!

• Expand:

$$a(n) = \frac{1}{n+1} {\binom{2n}{n}} \sim \frac{1}{\sqrt{\pi}} 4^n n^{-3/2}$$

• Linear recurrence relation:

$$(n+2) a(n+1) = 2 (2 n+1) a(n)$$

 \Rightarrow Fast computation of coefficients.

 \Rightarrow Bruno Salvy, tomorrow

Definition

Planar map = connected planar graph

- + embedding of this graph in the plane,
 - taken up to continuous deformation

Definition

Planar map = connected planar graph

- + embedding of this graph in the plane,
 - taken up to continuous deformation

Definition

Planar map = connected planar graph

+ embedding of this graph in the plane,

taken up to continuous deformation

degree of the outer face: 7

Definition

Planar map = connected planar graph

+ embedding of this graph in the plane,

taken up to continuous deformation

Maps are rooted at an external corner. The next edge (in cc order) is the root edge.

Definition

Planar map = connected planar graph

- + embedding of this graph in the plane,
 - taken up to continuous deformation

Maps are rooted at an external corner. The next edge (in cc order) is the root edge.

Functional equation: the series $M(y) := \sum_{M \text{ map}} t^{e(M)} y^{od(M)}$ satisfies: $M(y) = 1 + ty^2 M(y)^2 + ty \frac{yM(y) - M(1)}{y - 1}$

Note: $M(1) = \sum_{M} t^{e(M)}$ is the GF we want to compute An equation with one catalytic variable [Zeilberger 00]

Functional equation:

$$M(y) = 1 + ty^2 M(y)^2 + ty \frac{yM(y) - M(1)}{y - 1}$$

Are we happy?

Functional equation:

$$M(y) = 1 + ty^2 M(y)^2 + ty \frac{yM(y) - M(1)}{y - 1}$$

Are we happy? NO!

The solution is an algebraic function with nice coefficients:

$$M(1) = \sum_{M} t^{e(M)} = \frac{(1 - 12t)^{3/2} - 1 + 18t}{54t^2}$$
$$= \sum_{n \ge 0} t^n \frac{2 \cdot 3^n}{(n+1)(n+2)} {2n \choose n}$$

Ex. 3: Walks on a half-line

Count walks on the non-negative half-line by the length and height j of the endpoint:

$$H(y) = \sum_{w \ walk} t^{|w|} y^{j(w)}$$

Ex. 3: Walks on a half-line

Count walks on the non-negative half-line by the length and height j of the endpoint:

$$H(y) = \sum_{w \ walk} t^{|w|} y^{j(w)}.$$

Then

Ex. 3: Walks on a half-line

Count walks on the non-negative half-line by the length and height j of the endpoint:

$$H(y) = \sum_{w \ walk} t^{|w|} y^{j(w)}.$$

Then

Are we happy? NO!

The solution is algebraic with nice coefficients

$$H(0) = \frac{1 - \sqrt{1 - 4t^2}}{2t^2} = \sum_n \frac{1}{n+1} \binom{2n}{n} t^{2n}$$

Ex. 4: Walks in the first quadrant

Count walks with steps NE, W, S starting from (0,0) and confined in the first quadrant, by the length and coordinates (i,j) of the endpoint:

Ex. 4: Walks in the first quadrant

Count walks with steps NE, W, S starting from (0,0) and confined in the first quadrant, by the length and coordinates (i,j) of the endpoint:

$$Q(x,y) = \sum_{w \text{ walk}} t^{|w|} x^{i(w)} y^{j(w)}.$$

Then, writing $ar{x}=1/x$ and $ar{y}=1/y$,

 $Q(x,y) = 1 + t(xy + \bar{x} + \bar{y})Q(x,y) - t\bar{x}Q(0,y) - t\bar{y}Q(x,0)$

An equation with two catalytic variables.

Ex. 4: Walks in the first quadrant

Count walks with steps NE, W, S starting from (0,0) and confined in the first quadrant, by the length and coordinates (i,j) of the endpoint:

$$Q(x,y) = \sum_{w \text{ walk}} t^{|w|} x^{i(w)} y^{j(w)}.$$

Then, writing $ar{x}=1/x$ and $ar{y}=1/y$,

 $Q(x,y) = 1 + t(xy + \bar{x} + \bar{y})Q(x,y) - t\bar{x}Q(0,y) - t\bar{y}Q(x,0)$

An equation with two catalytic variables.

BUT: The series Q(x, y; t) is again algebraic [Gessel 86, mbm 02].

 $(\operatorname{Pol}(x,y,t,Q)=0)$

Ex. 5: q-Coloured triangulations

• Let $T(x, y; t) \equiv T(x, y)$ be the unique formal power series in t, with polynomial coefficients in x and y, satisfying

$$T(x,y) = xq(q-1) + \frac{xyt}{q}T(x,y)T(1,y) + xt\frac{T(x,y) - T(x,0)}{y} - x^2yt\frac{T(x,y) - T(1,y)}{x-1}$$

• Then T(1,0) counts properly *q*-coloured triangulations by the number of faces. [Tutte 73]

We're not happy...

• The number c(n) of q-coloured triangulations with 2n faces satisfies: q(n+1)(n+2)c(n) = q(q-4)(3n-1)(3n-2)c(n-1) $+ 2\sum_{i=1}^{n} i(i+1)(3n-3i+1)c(i-1)c(n-i),$ with c(0) = q(q-1).

[Tutte, 1984]

We're not happy...

- The number c(n) of q-coloured triangulations with 2n faces satisfies: q(n+1)(n+2)c(n) = q(q-4)(3n-1)(3n-2)c(n-1) $+ 2\sum_{i=1}^{n} i(i+1)(3n-3i+1)c(i-1)c(n-i),$ with c(0) = q(q-1).
- The associated generating function

 $C(t) = \sum_{n} c(n)t^{n+2}$ is differentially algebraic, and satisfies

[Tutte, 1984]

 $2q^{2}(1-q)t + (qt+10C-6tC')C'' + q(4-q)(20C-18tC'+9t^{2}C'') = 0$

The combinatorial structure of discrete objects

often yields functional equations

that are not of the "right" type.

 $\triangleleft \ \lhd \ \diamond \ \vartriangleright \ \triangleright$

$$M(y) = 1 + ty^2 M(y)^2 + ty \frac{yM(y) - M(1)}{y - 1}$$

VS.

$$M(1) = \sum_{M} t^{e(M)} = \frac{(1 - 12t)^{3/2} - 1 + 18t}{54t^2}$$

What are the "right" types?

• Rational series

$$A(t) = \frac{P(t)}{Q(t)}$$

• Algebraic series

$$P(t,A(t))=0$$

- Differentially finite series (D-finite) $\sum_{i=0}^{d} P_i(t) A^{(i)}(t) = 0$
- D-algebraic series

$$P(t,A(t),A'(t),\ldots,A^{(d)}(t))=0$$

What are the "right" types?

• Rational series

$$A(t) = \frac{P(t)}{Q(t)}$$

• Algebraic series

$$P(t,A(t))=0$$

- Differentially finite series (D-finite) $\sum_{i=0}^{d} P_i(t) A^{(i)}(t) = 0$
- D-algebraic series

$$P(t,A(t),A'(t),\ldots,A^{(d)}(t))=0$$

Multi-variate series: one DE per variable

plane trees planar maps walks on a half-line Ø 3-coloured triangs. **D**-finite q-coloured triangs.

II. Equations with one catalytic variable: algebraicity

$$\operatorname{Pol}(A(y), A_1, \ldots, A_k, t, y) = 0$$

• Walks on a half-line:

$$H(y) = 1 + tyH(y) + t\frac{H(y) - H(0)}{y}$$

• Planar maps:

$$M(y) = 1 + ty^{2}M(y)^{2} + ty \frac{yM(y) - M(1)}{y - 1}$$

• Form a square:

$$(2ty^2(y-1)M(y) + ty^2 - y + 1)^2 = (y-1-y^2t)^2 - 4ty^2(y-1)^2 + 4t^2y^3(y-1)M_1 := \Delta(y)$$

[Brown 65]

 $\Delta(y)$ is a polynomial in y

Planar maps: the quadratic method

• Form a square:

$$(2ty^2(y-1)M(y) + ty^2 - y + 1)^2 = (y-1-y^2t)^2 - 4ty^2(y-1)^2 + 4t^2y^3(y-1)M_1 := \Delta(y)$$

Brown 65

 $\Delta(y)$ is a polynomial in y

• There exists a (unique) series $Y \equiv Y(t)$ that cancels the LHS:

$$Y = 1 + tY^2 + 2tY^2(Y - 1)M(Y).$$

 \Rightarrow characterizes inductively the coefficient of t^n

• Form a square:

$$(2ty^2(y-1)M(y) + ty^2 - y + 1)^2 = (y-1-y^2t)^2 - 4ty^2(y-1)^2 + 4t^2y^3(y-1)M_1 := \Delta(y)$$

[Brown 65]

 $\Delta(y)$ is a polynomial in y

• There exists a (unique) series $Y \equiv Y(t)$ that cancels the LHS:

$$Y = 1 + tY^2 + 2tY^2(Y - 1)M(Y).$$

 \Rightarrow characterizes inductively the coefficient of t^n

• This series Y must be a root of $\Delta(y)$, and in fact a double root.

• Form a square:

$$(2ty^2(y-1)M(y) + ty^2 - y + 1)^2 = (y-1-y^2t)^2 - 4ty^2(y-1)^2 + 4t^2y^3(y-1)M_1 := \Delta(y)$$

[Brown 65]

 $\Delta(y)$ is a polynomial in y

• There exists a (unique) series $Y \equiv Y(t)$ that cancels the LHS:

$$Y = 1 + tY^2 + 2tY^2(Y - 1)M(Y).$$

 \Rightarrow characterizes inductively the coefficient of t^n

- This series Y must be a root of $\Delta(y)$, and in fact a double root.
- Algebraic consequence: The discriminant of $\Delta(y)$ w.r.t. y is zero:

$$27 t^2 M_1^2 + (1 - 18 t) M_1 + 16 t - 1 = 0$$

or

$$M_1 = \frac{(1-12t)^{3/2} - 1 + 18t}{54t^2}$$

Equations with one catalytic variable

Theorem [mbm-Jehanne 06]

Let $P(A(y), A_1, ..., A_k, t, y)$ be a polynomial equation in one catalytic variable y. Under reasonable hypotheses (*),

• The equation

$$P_1'(A(Y),A_1,\ldots,A_k,t,Y)=0$$

admits k solutions Y_1, \ldots, Y_k (Puiseux series in t)

- Each of them is a double root of Δ(A₁,..., A_k, t, y), the discriminant of P w.r.t. its first variable
- The series A(y) and the A_i 's are algebraic.

(*) The equation defines uniquely $A(y), A_1 \dots, A_k$ as formal power series in t (with polynomial coefficients in y for A(y)).

Equations with one catalytic variable

Theorem [mbm-Jehanne 06]

Let $P(A(y), A_1, ..., A_k, t, y)$ be a polynomial equation in one catalytic variable y. Under reasonable hypotheses (*),

• The equation

$$P_1'(A(Y),A_1,\ldots,A_k,t,Y)=0$$

admits k solutions Y_1, \ldots, Y_k (Puiseux series in t)

- Each of them is a double root of Δ(A₁,..., A_k, t, y), the discriminant of P w.r.t. its first variable
- The series A(y) and the A_i's are algebraic.

 \Rightarrow A special case of an Artin approximation theorem with "nested" conditions [Popescu 85], [Swan 98]

Polynomials with k common roots

The discriminant $\Delta(A_1, \ldots, A_k, t, y)$ of *P* has *k* double roots in *y*. Or: Δ and Δ'_v have *k* roots in common.

Polynomials with k common roots

The discriminant $\Delta(A_1, \ldots, A_k, t, y)$ of *P* has *k* double roots in *y*. Or: Δ and Δ'_{ν} have *k* roots in common.

Proposition

Two polynomials $P(y) = \sum p_i y^i$ and $Q(y) = \sum q_j y^j$ of degrees *m* and *n* have *k* roots in common iff the rank of their Sylvester matrix is less than m + n - 2k.

$$Sylv(P,Q) = \begin{pmatrix} p_2 & p_1 & p_0 & 0 & 0 \\ 0 & p_2 & p_1 & p_0 & 0 \\ 0 & 0 & p_2 & p_1 & p_0 \\ q_3 & q_2 & q_1 & q_0 & 0 \\ 0 & q_3 & q_2 & q_1 & q_0 \end{pmatrix}$$

Polynomials with k common roots

The discriminant $\Delta(A_1, \ldots, A_k, t, y)$ of *P* has *k* double roots in *y*. Or: Δ and Δ'_{ν} have *k* roots in common.

Proposition

Two polynomials $P(y) = \sum p_i y^i$ and $Q(y) = \sum q_j y^j$ of degrees *m* and *n* have *k* roots in common iff the rank of their Sylvester matrix is less than m + n - 2k. Equivalently, iff *k* (well-chosen) minors vanish.

$$Sylv(P,Q) = \begin{pmatrix} p_2 & p_1 & p_0 & 0 & 0 \\ 0 & p_2 & p_1 & p_0 & 0 \\ 0 & 0 & p_2 & p_1 & p_0 \\ q_3 & q_2 & q_1 & q_0 & 0 \\ 0 & q_3 & q_2 & q_1 & q_0 \end{pmatrix}$$

• Planar maps

$$P(M(y), M_1, t, y) = -M(y) + 1 + ty^2 M(y)^2 + ty \frac{yM(y) - M_1}{y - 1} = 0$$

• Planar maps

$$P(M(y), M_1, t, y) = -M(y) + 1 + ty^2 M(y)^2 + ty \frac{yM(y) - M_1}{y - 1} = 0$$

• The equation $P'_1(M(Y), M_1, t, Y) = 0$ reads

$$-1+2tY^2M(Y)+tY^2\frac{M(Y)}{Y-1}=0 \Rightarrow Y=1+tY^2+2tY^2(Y-1)M(Y)$$

and has indeed a unique solution Y.

• Planar maps

$$P(M(y), M_1, t, y) = -M(y) + 1 + ty^2 M(y)^2 + ty \frac{yM(y) - M_1}{y - 1} = 0$$

• The equation $P'_1(M(Y), M_1, t, Y) = 0$ reads

$$-1 + 2tY^{2}M(Y) + tY^{2}\frac{M(Y)}{Y-1} = 0 \Rightarrow Y = 1 + tY^{2} + 2tY^{2}(Y-1)M(Y)$$

and has indeed a unique solution Y.

• This series Y is a double root of $\Delta(M_1, t, y)$.

• Planar maps

$$P(M(y), M_1, t, y) = -M(y) + 1 + ty^2 M(y)^2 + ty \frac{yM(y) - M_1}{y - 1} = 0$$

• The equation $P'_1(M(Y), M_1, t, Y) = 0$ reads

$$-1 + 2tY^{2}M(Y) + tY^{2}\frac{M(Y)}{Y-1} = 0 \Rightarrow Y = 1 + tY^{2} + 2tY^{2}(Y-1)M(Y)$$

and has indeed a unique solution Y.

- This series Y is a double root of $\Delta(M_1, t, y)$.
- Algebraic consequence: The discriminant of Δ w.r.t. y is zero:

$$0 = 27 t^2 M_1^2 + (1 - 18 t) M_1 + 16 t - 1$$

"The discriminant (in y) of the discriminant of P (in its first variable) vanishes"

• Planar maps

$$P(M(y), M_1, t, y) = -M(y) + 1 + ty^2 M(y)^2 + ty \frac{yM(y) - M_1}{y - 1} = 0$$

• The equation $P'_1(M(Y), M_1, t, Y) = 0$ reads

$$-1 + 2tY^{2}M(Y) + tY^{2}\frac{M(Y)}{Y-1} = 0 \Rightarrow Y = 1 + tY^{2} + 2tY^{2}(Y-1)M(Y)$$

and has indeed a unique solution Y.

- This series Y is a double root of $\Delta(M_1, t, y)$.
- Algebraic consequence: The discriminant of Δ w.r.t. y is zero:

$$0 = (27 t^2 M_1^2 + (1 - 18 t) M_1 + 16 t - 1) (1 - t M_1)^2$$

"The discriminant (in y) of the discriminant of P (in its first variable) vanishes"

Example: Properly 3-coloured planar maps [Bernardi-mbm]

 $P(M(y), M_0, \underline{M_1}, \underline{M_2}, t, y) = 0$

Example: Properly 3-coloured planar maps [Bernardi-mbm]

 $P(M(y), M_0, M_1, M_2, t, y) = 0$ $= 36 y^{6} t^{3} (2 y+1) (y-1)^{3} M(y)^{4} + 2 t^{2} y^{4} (y-1)^{2} (42 ty^{3} + 12 y^{2} t - 26 y^{3} - 39 y^{2} + 39 y + 26) M(y)^{3}$ + $(-36y^{6}t^{3}(y-1)^{2}M_{0}+(y-1)y^{2}t(32t^{2}y^{5}+4y^{4}t^{2}+2ty^{5}-120ty^{4}+8y^{5}+78ty^{3}+38y^{4}t^{2}+2ty^{5}-120ty^{4}+8y^{5}+78ty^{3}+38y^{4}t^{2}+2ty^{5}-120ty^{4}+8y^{5}+78ty^{3}+38y^{4}t^{2}+2ty^{5}-120ty^{4}+8y^{5}+78ty^{3}+38y^{4}t^{2}+2ty^{5}-120ty^{4}+8y^{5}+78ty^{3}+38y^{4}t^{2}+2ty^{5}-120ty^{4}+8y^{5}+78ty^{3}+38y^{4}t^{2}+2ty^{5}-120ty^{4}+8y^{5}+78ty^{3}+38y^{4}t^{2}+2ty^{5}-120ty^{4}+8y^{5}+78ty^{3}+38y^{4}t^{2}+2ty^{5}-120ty^{4}+8y^{5}+78ty^{3}+38y^{4}t^{2}+2ty^{5}-120ty^{4}+8y^{5}+78ty^{3}+38y^{4}t^{2}+2ty^{5}-120ty^{4}+8y^{5}+78ty^{3}+38y^{4}t^{2}+2ty^{5}+120ty^{4}+8y^{5}+78ty^{3}+38y^{4}t^{2}+2ty^{5}+120ty^{4}+8y^{5}+78ty^{3}+38y^{4}t^{2}+2ty^{5}+120ty^{4}+8y^{5}+78ty^{3}+38y^{4}t^{2}+2ty^{5}+120ty^{4}+8y^{5}+120ty^{4}+8y^{5}+120ty^{4}+12ty^{5}+120ty^{4}+12ty^{5}+120ty^{4}+12ty^{5}+120ty^{4}+12ty^{5}+12t$ $+40y^{2}t-25y^{3}-71y^{2}+25y+25)M(y)^{2}+(-36y^{5}t^{3}(y-1)^{2}M_{0}^{2}-6t^{2}(y-1)y^{4}(6y^{2}t-2yt))M(y)^{2}+(-36y^{5}t^{3}(y-1)^{2}M_{0}^{2}-6t^{2}(y-1)y^{4}(6y^{2}t-2yt))M(y)^{2}+(-36y^{5}t^{3}(y-1)^{2}M_{0}^{2}-6t^{2}(y-1)y^{4}(6y^{2}t-2yt))M(y)^{2}+(-36y^{5}t^{3}(y-1)^{2}M_{0}^{2}-6t^{2}(y-1)y^{4}(6y^{2}t-2yt))M(y)^{2}+(-36y^{5}t^{3}(y-1)^{2}M_{0}^{2}-6t^{2}(y-1)y^{4}(6y^{2}t-2yt))M(y)^{2}+(-36y^{5}t^{3}(y-1)^{2}M_{0}^{2}-6t^{2}(y-1)y^{4}(6y^{2}t-2yt))M(y)^{2}+(-36y^{5}t^{3}(y-1)^{2}M_{0}^{2}-6t^{2}(y-1)y^{4}(6y^{2}t-2yt))M(y)^{2}+(-36y^{5}t^{3}(y-1)^{2}M_{0}^{2}-6t^{2}(y-1)y^{4}(6y^{2}t-2yt))M(y)^{2}+(-36y^{5}t^{3}(y-1)^{2}M_{0}^{2}-6t^{2}(y-1)y^{4}(6y^{2}t-2yt))M(y)^{2}+(-36y^{5}t^{3}(y-1)^{2}M_{0}^{2}-6t^{2}(y-1)y^{4}(6y^{2}t-2yt))M(y)^{2}+(-36y^{5}t^{3}(y-1)^{2}M_{0}^{2}-6t^{2}(y-1)y^{4}(6y^{2}t-2yt))M(y)^{2}+(-36y^{5}t^{3}(y-1)^{2}M_{0}^{2}-6t^{2}(y-1)y^{4}(6y^{2}t-2yt))M(y)^{2}+(-36y^{5}t^{3}(y-1)^{2}M_{0}^{2}-6t^{2}(y-1)y^{4}(6y^{2}t-2yt))M(y)^{2}+(-36y^{5}t^{3}(y-1)y^{2}+(-36y^{5}t^{3}(y-1)y^{2}))M(y)^{2}+(-36y^{5}t^{3}(y-1)y^{2}+(-36y^{5}t^{3}(y-1)y^{2}))M(y)^{2}+(-36y^{5}t^{3}(y-1)y^{2}+(-36y^{5}t^{3}(y-1)y^{2}))M(y)^{2}+(-36y^{5}t^{3}(y-1)y^{2}+(-36y^{5}t^{3}(y-1)y^{2}))M(y)^{2}+(-36y^{5}t^{3}(y-1)y^{2}+(-36y^{5}t^{3}(y-1)y^{2}))M(y)^{2}+(-36y^{5}t^{3}(y-1)y^{2}+(-36y^{5}t^{3}(y-1)y^{2}))M(y)^{2}+(-36y^$ $-9 y^{2}+5 y+4) M_{0}-12 \frac{M_{1}}{L} t^{3} y^{7}+24 \frac{M_{1}}{L} t^{3} y^{6}+4 y^{7} t^{3}-12 y^{5} t^{3} \frac{M_{1}}{L}+10 t^{2} y^{7}-42 t^{2} y^{6}-26 t y^{7}$ $+28 t^{2} y^{5}+52 t y^{6}+4 y^{4} t^{2}+32 t y^{5}-4 y^{6}-94 t y^{4}-2 y^{5}+14 t y^{3}+16 y^{4}+22 y^{2} t-16 y^{2}+2 y+4) M$ $-36 y^4 t^3 (y-1)^2 M_0^3 - 2 t^2 (y-1) y^3 (22 y^2 t - 16 y t - 33 y^2 + 27 y + 6) M_0^2 - 2 y^2 t (18 M_1 t^2 y^4 + 16 y +$ $-36 M_{1} t^{2} y^{3}+6 y^{4} t^{2}+18 M_{1} t^{2} y^{2}-6 y^{3} t^{2}-4 t y^{4}+2 y^{2} t^{2}-7 t y^{3}+16 y^{4}+13 y^{2} t-23 y^{3}-2 y t^{2}-10 t y^{4}+10 t y^{$ $+5y+2)M_0-(y-1)(12y^5t^3M_1+2M_2t^3y^5-8y^4t^3M_1-22M_1t^2y^5-2y^4t^3M_2$ $+18 M_1 t^2 y^4 + 4 M_1 t^2 y^3 - 11 t y^5 + 21 t y^4 - 4 y^5 - 9 t y^3 - 6 y^4 - y^2 t + 10 y^3 + 10 y^2 - 6 y - 4).$

Example: Properly 3-coloured planar maps [Bernardi-mbm]

$$P(M(y), M_0, M_1, M_2, t, y) = 0$$

Theorem

The generating function of properly 3-coloured planar maps is

$$M_0 = \frac{(1+2A)(1-2A^2-4A^3-4A^4)}{(1-2A^3)^2}$$

where A is the unique series in t with constant term 0 such that

$$A = t \frac{(1+2A)^3}{1-2A^3}.$$

• Wrong approach to this counting problem!

- Wrong approach to this counting problem!
- Improve the elimination procedure

- Wrong approach to this counting problem!
- Improve the elimination procedure
- Unavoidable factorizations? Iterated discriminants and resultants are known to factor, and to have repeated factors [Henrici 1868, Lazard & McCallum 09, Busé & Mourrain 09]

$$disc_{y}(disc_{x}(x^{4} + px^{3} + qx^{2} + yx + s)) = - 256 s (p^{4} - 8 p^{2}q + 16 q^{2} - 64 s)^{2} \times (27 sp^{4} - p^{2}q^{3} - 108 p^{2}qs + 3 q^{4} + 72 q^{2}s + 432 s^{2})^{3}$$

- Wrong approach to this counting problem!
- Improve the elimination procedure
- Unavoidable factorizations? Iterated discriminants and resultants are known to factor, and to have repeated factors [Henrici 1868, Lazard & McCallum 09, Busé & Mourrain 09]

$$disc_{y}(disc_{x}(x^{4} + px^{3} + qx^{2} + yx + s)) = - 256 s (p^{4} - 8 p^{2}q + 16 q^{2} - 64 s)^{2} \times (27 sp^{4} - p^{2}q^{3} - 108 p^{2}qs + 3 q^{4} + 72 q^{2}s + 432 s^{2})^{3}$$

More equations to solve!

III. Tutte's invariant method:From two to one catalytic variable(s)(and algebraicity again)

• Quadrant walks:

$$Q(x,y) = 1 + txyQ(x,y) + t\frac{Q(x,y) - Q(0,y)}{x} + t\frac{Q(x,y) - Q(x,0)}{y}$$

• q-Coloured triangulations:

$$T(x,y) = xq(q-1) + \frac{xyt}{q}T(x,y)T(1,y) + xt\frac{T(x,y) - T(x,0)}{y} - x^2yt\frac{T(x,y) - T(1,y)}{x-1}$$

 $[\mathsf{Tutte}\ 1973 \to 1984]$

Equations with two catalytic variables are much harder than those with one...

Algebraic

$$(1-t(\bar{x}+\bar{y}+xy))xyQ(x,y)=xy-tyQ(0,y)-txQ(x,0)$$

D-finite transcendental

$$(1-t(y+\bar{x}+x\bar{y}))xyQ(x,y)=xy-tyQ(0,y)-tx^2Q(x,0)$$

Not D-finite

$$(1-t(x+\bar{x}+\bar{y}+xy))xyQ(x,y)=xy-tyQ(0,y)-txQ(x,0)$$

In particular, their solutions are not systematically algebraic. Still, some of them DO have an algebraic solution...

Invariants

• Quadrant walks with NE, W and S steps:

$$(1 - t(\bar{x} + \bar{y} + xy))xyQ(x, y) = xy - txQ(x, 0) - tyQ(0, y)$$
$$= xy - R(x) - S(y)$$

• The equation $1 - t(\bar{x} + \bar{y} + xy) = 0$ can be written in a decoupled form:

$$l_1(x) := \frac{t}{x^2} - x - \frac{t}{x} = \frac{t}{y^2} - y - \frac{t}{y} =: l_2(y)$$

The functions $(I_1(x), I_2(y))$ form a pair of invariants.

Invariants

• Quadrant walks with NE, W and S steps:

$$(1 - t(\bar{x} + \bar{y} + xy))xyQ(x, y) = xy - txQ(x, 0) - tyQ(0, y)$$
$$= xy - R(x) - S(y)$$

• The equation $1 - t(\bar{x} + \bar{y} + xy) = 0$ can be written in a decoupled form:

$$l_1(x) := \frac{t}{x^2} - x - \frac{t}{x} = \frac{t}{y^2} - y - \frac{t}{y} =: l_2(y)$$

The functions $(I_1(x), I_2(y))$ form a pair of invariants.

• Combined with xy - R(x) - S(y) = 0, this gives also:

$$J_1(x) := -R(x) - \frac{1}{x} + \frac{1}{t} = S(y) + \frac{1}{y} =: J_2(y).$$

The functions $(J_1(x), J_2(y))$ form another pair of invariants.

Two pairs of invariants:

$$I_1(x) := \frac{t}{x^2} - x - \frac{t}{x} = \frac{t}{y^2} - y - \frac{t}{y} =: I_2(y)$$
$$J_1(x) := -R(x) - \frac{1}{x} + \frac{1}{t} = S(y) + \frac{1}{y} =: J_2(y).$$

Two pairs of invariants:

$$l_1(x) := \frac{t}{x^2} - x - \frac{t}{x} = \frac{t}{y^2} - y - \frac{t}{y} =: l_2(y)$$

$$l_1(x) := -R(x) - \frac{1}{x} + \frac{1}{t} = S(y) + \frac{1}{y} =: J_2(y).$$

The invariant lemma

There are few invariants: $I_2(y)$ must be a polynomial in $J_2(y)$ whose coefficients are series in t.

Two pairs of invariants:

$$l_1(x) := \frac{t}{x^2} - x - \frac{t}{x} = \frac{t}{y^2} - y - \frac{t}{y} =: l_2(y)$$

$$l_1(x) := -R(x) - \frac{1}{x} + \frac{1}{t} = S(y) + \frac{1}{y} =: J_2(y).$$

The invariant lemma

There are few invariants: $I_2(y)$ must be a polynomial in $J_2(y)$ whose coefficients are series in t.

$$J_2(y) = rac{t}{y^2} - rac{1}{y} - ty = t\left(tyQ(0,y) + rac{1}{y}
ight)^2 - \left(tyQ(0,y) + rac{1}{y}
ight) + c$$

Expanding at y = 0 gives the value of c.

Two pairs of invariants:

$$l_1(x) := \frac{t}{x^2} - x - \frac{t}{x} = \frac{t}{y^2} - y - \frac{t}{y} =: l_2(y)$$

$$l_1(x) := -R(x) - \frac{1}{x} + \frac{1}{t} = S(y) + \frac{1}{y} =: J_2(y).$$

The invariant lemma

There are few invariants: $I_2(y)$ must be a polynomial in $J_2(y)$ whose coefficients are series in t.

$$I_2(y) = \frac{t}{y^2} - \frac{1}{y} - ty = t \left(tyQ(0,y) + \frac{1}{y} \right)^2 - \left(tyQ(0,y) + \frac{1}{y} \right) - 2t^2Q(0,0).$$

Expanding at y = 0 gives the value of c.
The invariant lemma

Two pairs of invariants:

$$l_1(x) := \frac{t}{x^2} - x - \frac{t}{x} = \frac{t}{y^2} - y - \frac{t}{y} =: l_2(y)$$

$$l_1(x) := -R(x) - \frac{1}{x} + \frac{1}{t} = S(y) + \frac{1}{y} =: J_2(y).$$

The invariant lemma

There are few invariants: $I_2(y)$ must be a polynomial in $J_2(y)$ whose coefficients are series in t.

$$I_2(y) = \frac{t}{y^2} - \frac{1}{y} - ty = t \left(tyQ(0,y) + \frac{1}{y} \right)^2 - \left(tyQ(0,y) + \frac{1}{y} \right) - 2t^2Q(0,0).$$

Expanding at y = 0 gives the value of c.

Polynomial equation with one catalytic variable $\Rightarrow Q(0, y; t)$ is algebraic

- start with an equation with two catalytic variables x and y (degree 1 in the main series Q(x, y))
- construct a pair of invariants in y from the coefficients of $Q(x, y)^1$ and $Q(x, y)^0$
- relate them algebraically (the invariant lemma)
- $\bullet\,$ obtain an equation with one catalytic variable only $\Rightarrow\,$ algebraicity

Other equations: are there invariants?

Thm. [Bernardi, mbm, Raschel 15(a)]

Exactly 4 quadrant models with small steps have two invariants \Rightarrow uniform algebraic solution via the solution of an equation with one catalytic variable

Other equations: are there invariants?

Thm. [Bernardi, mbm, Raschel 15(a)]

Exactly 4 quadrant models with small steps have two invariants \Rightarrow uniform algebraic solution via the solution of an equation with one catalytic variable

Gessel's model

- conjecture for q(0,0;n) [Gessel $\simeq 00$]
- proof of this conjecture [Kauers, Koutschan & Zeilberger 08]
- Q(x, y; t) are algebraic! [Bostan & Kauers 09a]
- new proof via complex analysis [Bostan, Kurkova & Raschel 13(a)]
- an elementary and constructive proof [mbm 15(a)]

Other equations: are there invariants?

Thm. [Bernardi, mbm, Raschel 15(a)]

Exactly 4 quadrant models with small steps have two invariants \Rightarrow uniform algebraic solution via the solution of an equation with one catalytic variable

Thm. [Tutte 74], [Bernardi-mbm 11]

For *q*-coloured triangulations (or planar maps, and even for the *q*-state Potts model), there is one invariant for any *q*, and a second one if $q = 4\cos^2\frac{k\pi}{m}$, with $q \neq 0, 4$. \Rightarrow Algebraicity

Example: Properly 3-coloured planar maps

• Two catalytic variables [Tutte 68]

$$M(x, y) = 1 + xyt (1 + 2y) M(x, y) M(1, y) - xyt M(x, y) M(x, 1) - xyt \frac{xM(x, y) - M(1, y)}{x - 1} + xyt \frac{yM(x, y) - M(x, 1)}{y - 1}$$

• One catalytic variable [Bernardi-mbm 11]

 $P(M(1, y), M_0, M_1, M_2, t, y) = 0$

Example: Properly 3-coloured planar maps

 $P(M(1, y), M_0, M_1, M_2, t, y) = 0$ $= 36 y^{6} t^{3} (2 y+1) (y-1)^{3} M(y)^{4} + 2 t^{2} y^{4} (y-1)^{2} (42 ty^{3} + 12 y^{2} t - 26 y^{3} - 39 y^{2} + 39 y + 26) M(y)^{3}$ + $(-36y^{6}t^{3}(y-1)^{2}M_{0}+(y-1)y^{2}t(32t^{2}y^{5}+4y^{4}t^{2}+2ty^{5}-120ty^{4}+8y^{5}+78ty^{3}+38y^{4}t^{2}+2ty^{5}-120ty^{4}+8y^{5}+78ty^{3}+38y^{4}t^{2}+2ty^{5}-120ty^{4}+8y^{5}+78ty^{3}+38y^{4}t^{2}+2ty^{5}-120ty^{4}+8y^{5}+78ty^{3}+38y^{4}t^{2}+2ty^{5}-120ty^{4}+8y^{5}+78ty^{3}+38y^{4}t^{2}+2ty^{5}-120ty^{4}+8y^{5}+78ty^{3}+38y^{4}t^{2}+2ty^{5}-120ty^{4}+8y^{5}+78ty^{3}+38y^{4}t^{2}+2ty^{5}-120ty^{4}+8y^{5}+78ty^{3}+38y^{4}t^{2}+2ty^{5}-120ty^{4}+8y^{5}+78ty^{3}+38y^{4}t^{2}+2ty^{5}-120ty^{4}+8y^{5}+78ty^{3}+38y^{4}t^{2}+2ty^{5}-120ty^{4}+8y^{5}+78ty^{3}+38y^{4}t^{2}+2ty^{5}+120ty^{4}+8y^{5}+78ty^{3}+38y^{4}t^{2}+2ty^{5}+120ty^{4}+8y^{5}+78ty^{3}+38y^{4}t^{2}+2ty^{5}+120ty^{4}+8y^{5}+78ty^{3}+38y^{4}t^{2}+2ty^{5}+120ty^{4}+8y^{5}+120ty^{4}+8y^{5}+120ty^{4}+12ty^{5}+120ty^{4}+12ty^{5}+120ty^{4}+12ty^{5}+120ty^{4}+12ty^{5}+12t$ $+40y^{2}t-25y^{3}-71y^{2}+25y+25)M(y)^{2}+(-36y^{5}t^{3}(y-1)^{2}M_{0}^{2}-6t^{2}(y-1)y^{4}(6y^{2}t-2yt))M(y)^{2}+(-36y^{5}t^{3}(y-1)^{2}M_{0}^{2}-6t^{2}(y-1)y^{4}(6y^{2}t-2yt))M(y)^{2}+(-36y^{5}t^{3}(y-1)^{2}M_{0}^{2}-6t^{2}(y-1)y^{4}(6y^{2}t-2yt))M(y)^{2}+(-36y^{5}t^{3}(y-1)^{2}M_{0}^{2}-6t^{2}(y-1)y^{4}(6y^{2}t-2yt))M(y)^{2}+(-36y^{5}t^{3}(y-1)^{2}M_{0}^{2}-6t^{2}(y-1)y^{4}(6y^{2}t-2yt))M(y)^{2}+(-36y^{5}t^{3}(y-1)^{2}M_{0}^{2}-6t^{2}(y-1)y^{4}(6y^{2}t-2yt))M(y)^{2}+(-36y^{5}t^{3}(y-1)^{2}M_{0}^{2}-6t^{2}(y-1)y^{4}(6y^{2}t-2yt))M(y)^{2}+(-36y^{5}t^{3}(y-1)^{2}M_{0}^{2}-6t^{2}(y-1)y^{4}(6y^{2}t-2yt))M(y)^{2}+(-36y^{5}t^{3}(y-1)^{2}M_{0}^{2}-6t^{2}(y-1)y^{4}(6y^{2}t-2yt))M(y)^{2}+(-36y^{5}t^{3}(y-1)^{2}M_{0}^{2}-6t^{2}(y-1)y^{4}(6y^{2}t-2yt))M(y)^{2}+(-36y^{5}t^{3}(y-1)^{2}M_{0}^{2}-6t^{2}(y-1)y^{4}(6y^{2}t-2yt))M(y)^{2}+(-36y^{5}t^{3}(y-1)^{2}M_{0}^{2}-6t^{2}(y-1)y^{4}(6y^{2}t-2yt))M(y)^{2}+(-36y^{5}t^{3}(y-1)^{2}M_{0}^{2}-6t^{2}(y-1)y^{4}(6y^{2}t-2yt))M(y)^{2}+(-36y^{5}t^{3}(y-1)y^{2}+(-36y^{5}t^{3}(y-1)y^{2}))M(y)^{2}+(-36y^{5}t^{3}(y-1)y^{2}+(-36y^{5}t^{3}(y-1)y^{2}))M(y)^{2}+(-36y^{5}t^{3}(y-1)y^{2}+(-36y^{5}t^{3}(y-1)y^{2}))M(y)^{2}+(-36y^{5}t^{3}(y-1)y^{2}+(-36y^{5}t^{3}(y-1)y^{2}))M(y)^{2}+(-36y^{5}t^{3}(y-1)y^{2}+(-36y^{5}t^{3}(y-1)y^{2}))M(y)^{2}+(-36y^{5}t^{3}(y-1)y^{2}+(-36y^{5}t^{3}(y-1)y^{2}))M(y)^{2}+(-36y^{5}t^{3}(y-1)y^{2}))M(y)^{2}+(-36y^{5}t^{3}(y-1)y^{2}+(-36y^{5}t^{3}(y-1)y^{2}))M(y)^{2}+(-36y^{5}t^{3}(y-1)y^{2}))M(y)^{2}+(-36y^{5}t^{3}(y-1)y^{2}))M(y)^{2}+(-36y^{5}t^{3}(y-1)y^{2}))M(y)^{2}+(-36y^{5}t^{3}(y-1)y^{2}))M(y)^{2}+(-36y^{5}t^{3}(y-1)y^{2}))M(y)^{2}+(-36y^{5}t^{3}(y-1)y^{2}))M(y)^{2}+(-36y^{5}t^{3}(y-1)y^{2}))M(y)^{2}+(-36y^{5}t^{3}(y-1)y^{2}))M(y)^{2}+(-36y^{5}t^{3}(y-1)y^{2}))M(y)^{2}+(-36y^{5}t^{3}(y-1)y^{2}))M(y)^{2}+(-36y^{5}t^{3}(y-1)y^{2}))M(y)^{2}+(-36y^{5}t^{3}(y-1)y^{2}))M(y)^{2}+(-36y^{5}t^{3}(y-1)y^{2}))M(y)^{2}+(-36y^{5}t^{3}(y-1)y^{2}))M(y)^{2}+(-36y^{5}t^{3}(y-1)y^{2}))M(y)^{2}+(-36y^{5}t^{3}(y-1)y^{2}))M(y)^{2}+(-36y^{5}t^{3}(y-1)y^{2}))M(y)^{2}+(-36y^{5}t^{3}(y$ $-9y^{2}+5y+4)M_{0}-12M_{1}t^{3}y^{7}+24M_{1}t^{3}y^{6}+4y^{7}t^{3}-12y^{5}t^{3}M_{1}+10t^{2}y^{7}-42t^{2}y^{6}-26ty^{7}$ $+28\,t^{2}y^{5}+52\,ty^{6}+4\,y^{4}t^{2}+32\,ty^{5}-4\,y^{6}-94\,ty^{4}-2\,y^{5}+14\,ty^{3}+16\,y^{4}+22\,y^{2}t-16\,y^{2}+2\,y+4\big)M$ $-36 y^4 t^3 (y-1)^2 M_0^3 - 2 t^2 (y-1) y^3 (22 y^2 t - 16 y t - 33 y^2 + 27 y + 6) M_0^2 - 2 y^2 t (18 M_1 t^2 y^4 + 16 y +$ $-36 M_{1} t^{2} y^{3}+6 y^{4} t^{2}+18 M_{1} t^{2} y^{2}-6 y^{3} t^{2}-4 t y^{4}+2 y^{2} t^{2}-7 t y^{3}+16 y^{4}+13 y^{2} t-23 y^{3}-2 y t^{2}-10 t y^{4}+10 t y^{$ $+5y+2)M_0-(y-1)(12y^5t^3M_1+2M_2t^3y^5-8y^4t^3M_1-22M_1t^2y^5-2y^4t^3M_2$ $+18 M_1 t^2 y^4 + 4 M_1 t^2 y^3 - 11 t y^5 + 21 t y^4 - 4 y^5 - 9 t y^3 - 6 y^4 - y^2 t + 10 y^3 + 10 y^2 - 6 y - 4).$

- More efficient ways to compute with equations in one catalytic variable
- Effective construction of invariants or prove that there are not any
- Prove more algebraicity results with them (e.g. lattice walks confined to/avoiding a quadrant)

- More efficient ways to compute with equations in one catalytic variable
- Effective construction of invariants or prove that there are not any
- Prove more algebraicity results with them (e.g. lattice walks confined to/avoiding a quadrant)

Example: the hard-particle model on planar maps

•
$$F(y) = 1 + G(y) - s + ty^2 F(y)^2 + ty \frac{yF(y) - F_1}{y - 1}$$

• $G(y) = s + tyF(y)G(y) + ty \frac{G(y) - G_1}{y - 1}$

Then F(1) is an explicit rational function of s and A, where

$$A = t \frac{1 - (2 - s)A}{(1 - A)(1 - 2A)(1 - 3A + 3A^2)}$$

Intermediate steps: Y_1 and Y_2 have degree 10. Numerous intermediate factorisations... some of the factors are enormous.

[mbm-Jehanne 06]