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Planar maps

Definition
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+ embedding of this graph in the plane,
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Map enumeration: In combinatorics and statistical physics

• A typical question: how many rooted 4-valent maps with n
vertices?

Tutte and his descendents (1960 → · · · )
Brézin-Itzykson-Parisi-Zuber and their descendents (1978
→ · · · )

• Key object: the generating function of 4-valent maps, counted
by vertices:

M(t) :=
∑
M

tvertices(M) = 1 + 2t + 9t2 + O(t3)

=
∑
n≥0

2 · 3n

(n + 1)(n + 2)

(
2n

n

)
tn

=
(1− 12t)3/2 − 1 + 18 t

54t2
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Planar maps (tend to) have algebraic generating functions

M(t1, . . . , tk) map GF: there exists a polynomial Q such that

Q(t1, . . . , tk ;M(t1, . . . , tk)) = 0.

Example:

M(t) =
(1− 12t)3/2 − 1 + 18 t

54t2
⇒(

54t2M(t) + 1− 18t
)2

= (1− 12t)3

Arquès Bauer Bédard Bender Bernardi Bessis Bodirsky
Bousquet-Mélou Boulatov Bouttier Brézin Brown Canfield Chauve

Cori Di Francesco Duplantier Eynard Fusy Gao Goupil Goulden
Guitter t’Hooft Itzykson Jackson Jacquard Kazakov Kostov Krikun

Labelle Lehman Leroux Liskovets Liu Mach̀ı Mehta Mullin Parisi
Poulalhon Richmond Robinson Schaeffer Schellenberg Sportiello

Strehl Tutte Vainshtein Vauquelin Visentin Walsh Wanless
Wormald Zinn-Justin Zuber Zvonkine...
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Large random maps

Maps in probability theory:

the diameter behaves like n1/4

rescaled by n1/4, a planar map converges to a (universal)
limiting object, the Brownian map

And much more!
[Angel, Curien, Marckert, Le Gall, Miermont...]



Maps equipped with an additional structure

In combinatorics, but mostly in statistical physics

• How many maps • What is the expected

equipped with... partition function of...

– a spanning tree? – the Ising model? [Boulatov,

[Mullin 67] [Kazakov, MBM, Schaeffer,

– a spanning forest? Bouttier et al.]

[Bouttier et al., Sportiello et al.] – the hard-particle model?

... and this talk

[MBM, Schaeffer, Jehanne,

– a self-avoiding walk? Bouttier et al. 02, 07]

[Duplantier-Kostov 88] – the Potts model?

– a proper q-colouring? [Eynard-Bonnet 99, Baxter 01,

[Tutte 74-83, Bouttier et al. 02] MBM-Bernardi 09,

Guionnet et al., Borot et al. 12]
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Special values of u

Generating function

F (z , u) =
∑
M,F

z faces(M)ucomponents(F )−1

u = 1: unweighted spanning forests

u = 0: unweighted spanning trees [Mullin 67]

u = −1: root-connected acyclic orientations on (dual)
quadrangulations [Las Vergnas 84]
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Connections with other models: “physical” meaning for
u ≥ −1

Connected subgraphs on quadrangulations (counted by cycles)

Tutte polynomial TM(u + 1, 1)

Sandpile model [Merino Lopez 97, Cori & Le Borgne 03]

Limit q → 0 of the q-state Potts model:
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Connections with other models: “physical” meaning for
u ≥ −1

Connected subgraphs on quadrangulations (counted by cycles)

Tutte polynomial TM(u + 1, 1)

Sandpile model [Merino Lopez 97, Cori & Le Borgne 03]

Limit q → 0 of the q-state Potts model:

lim
q→0

1

q
ZM(q, u + 1) = uvertices(M)

∑
F forest

ucomponents(F )−1

with ZM(q, ν) the partition function of the Potts model (q counts
states, ν monochromatic edges)



Objectives

Exact enumeration:
I Generating function F (z , u) of forested maps
I Nature of F :

is it algebraic? D-finite? D-algebraic?

i.e., does it satisfy a polynomial

/ linear differential

/
polynomial differential/

equation with coefficients in Q(z , u)?

Asymptotic enumeration and phase transition(s):
I For u ≥ −1, asymptotic behaviour of

fn(u) := [zn]F (z , u)
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Exact enumeration

Theorem [Mullin 67]

The generating function of 4-valent maps equipped with a
spanning tree satisfies

F ′(z , 0) = 4
∑
i≥2

(3i − 2)!

(i − 2)!i !2
z i

where R ≡ R(z , u) is the only series in z with constant term 0
such that

R = z + u
∑
i≥2

(3i − 3)!

(i − 1)!2i !
R i .

A D-finite, but not algebraic series



Exact enumeration

Theorem [MBM & Courtiel 13]

The generating function of 4-valent maps equipped with a
spanning forest satisfies
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A combinatorial proof

Blocked edges on Eulerian maps and mobiles: application to
spanning trees, hard particles and the Ising model,

Bouttier, Di Francesco & Guitter (2008)
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Forested maps as decorated Eulerian maps

BIJECTION

tree

extraction

contraction

tree

Eulerian map (even degrees)



Translation into generating functions

Let M(z ; g1, g2, . . . ; h1, h2, . . .) be the generating function of
rooted Eulerian maps, with weight

z per face,

gi per non-root vertex of degree 2i ,

hi per root-vertex (!) of degree 2i .

The generating function of forested maps is:

F (z , u) = M(z ; ut`1, ut
`
2, . . . ; t

c
1 , t

c
2 , . . .)

with t`i (resp. tci ) the number of 4-valent trees rooted at a leaf
(resp. a corner) having 2i leaves:

t`i =
(3i − 3)!

(i − 1)!(2i − 1)!
, tci = 4

(3i − 3)!

(i − 2)!(2i)!
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The generating function of Eulerian maps is known

Theorem [Bouttier & Guitter 12]

The generating function of Eulerian maps satisfies

M ′(z ; g1, g2, . . . ; h1, h2, . . .) =
∑
i≥1

hi

(
2i

i

)
R i

where R is the unique series satisfying

R = z +
∑
i≥1

gi

(
2i − 1

i

)
R i .

[Tutte 62, Schaeffer 97, Bouttier-Di Francesco-Guitter 02]



Exact enumeration

Theorem [MBM & Courtiel 13]

The generating function of 4-valent maps equipped with a
spanning forest satisfies

F ′(z , u) = 4
∑
i≥2

(3i − 2)!

(i − 2)!i !2
R i = θ(R)

where

R = z + u
∑
i≥2

(3i − 3)!

(i − 1)!2i !
R i = z + u Φ(R).

Corollary: nature of F (z , u)

The series F (z , u) is D-algebraic (in z).

Proof: θ and Φ are D-algebraic (in fact, D-finite).
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Want to see the equation?

• The series F ′(z , u) satisfies a differential equation of order 2.

9F ′2F ′′5u6+36F ′2F ′′3F ′′′ u5z+144F ′2F ′′4u5−12 (21 z−1)F ′ F ′′5u5+432F ′2F ′′2F ′′′ u4z

−48 (24 z−1)F ′ F ′′3F ′′′ u4z+864F ′2F ′′3u4−96 (27 z−2)F ′ F ′′4u4

+4 (27 z−1)(15 z−1)F ′′5u4+1728F ′2F ′′ F ′′′ u3z−288 (21 z−2)F ′ F ′′2F ′′′ u3z

+10368F ′ F ′′′2u2z3+16 (27 z−1)(21 z−1)F ′′3F ′′′ u3z+2304F ′2F ′′2u3

−288 (31 z−4)F ′ F ′′3u3−64 (6 uz−162 z2+33 z−1)F ′′4u3+2304F ′2F ′′′ u2z

−2304 (6 z−1)F ′ F ′′ F ′′′ u2z−192 (8 uz−54 z2+29 z−1)F ′′2F ′′′ u2z

−768 (2 u+189 z−7)F ′′′2uz3+2304F ′2F ′′ u2−3072 (3 z−1)F ′ F ′′2u2

−192 (24 uz−27 z2+55 z−2)F ′′3u2−1536 (21 z−2)F ′ F ′′′ uz

−768 (12 uz+81 z2+24 z−1)F ′′ F ′′′ uz+1536 (9 z+2)F ′ F ′′ u

−512 (39 uz+81 z2+51 z−2)F ′′2u+36864F ′ z−1024 (12 uz−162 z2+33 z−1)F ′′′ z

−1024 (36 uz+27 z−1)F ′′−24576 z=0.

• No DE of order 2 for F (z , u) itself [Bostan, Salvy, Singer]
It could still be D-finite...
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−2304 (6 z−1)F ′ F ′′ F ′′′ u2z−192 (8 uz−54 z2+29 z−1)F ′′2F ′′′ u2z

−768 (2 u+189 z−7)F ′′′2uz3+2304F ′2F ′′ u2−3072 (3 z−1)F ′ F ′′2u2

−192 (24 uz−27 z2+55 z−2)F ′′3u2−1536 (21 z−2)F ′ F ′′′ uz

−768 (12 uz+81 z2+24 z−1)F ′′ F ′′′ uz+1536 (9 z+2)F ′ F ′′ u

−512 (39 uz+81 z2+51 z−2)F ′′2u+36864F ′ z−1024 (12 uz−162 z2+33 z−1)F ′′′ z

−1024 (36 uz+27 z−1)F ′′−24576 z=0.

• No DE of order 2 for F (z , u) itself [Bostan, Salvy, Singer]
It could still be D-finite...



A related D-algebraicity result for maps

Theorem [Bernardi & MBM 07–14]

The generating function of planar maps M weighted by their size
(edge number) and their Potts partition function ZM(q, ν) is
D-algebraic.

This is more general (for another family of maps). But:

the proof is much harder

little combinatorics, much algebra

it is not clear how to derive asymptotic results and locate
phase transitions.
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Asymptotic results



What we want to do

Take u ≥ −1, and estimate

fn(u) := [zn]F (z , u)

exponential growth ≺ radius of convergence ρu of F (z , u)

correction terms ≺ nature of the singularities of F (z , u) at ρu
and more generally on the circle |z | = ρu

Singularity analysis
[Flajolet-Odlyzko 90], [Flajolet-Sedgewick 09]



The radius of convergence of F (z , u)

For u ≥ −1, let ρu be the radius of convergence of F (z , u)

F ′ = θ(R) with R = z + u Φ(R)

−1

ρ1

ρ0 = 1
27

• Implicit function theorem

1 u

1 = u Φ′(ru)

ru = ρu + u Φ(ru)

Corollary

F (z ,−1) cannot be D-finite.

Proof: it has integer coefficients but a transcendental radius.
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The phase transition at u = 0

• fn(u) = [zn]F (z , u)

−1 ≤ u < 0 u = 0 u > 0

fn(u) ∼ κu
ρ−nu

n3 ln2 n
fn(u) ∼ κu

ρ−nu

n3
fn(u) ∼ κu

ρ−nu

n5/2

new “universality class” maps with standard map behaviour

for maps? a spanning tree
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Generating function of p-valent forested maps, for any p ≥ 3

Asymptotic behaviour in the cubic case ⇒ universality

Large random forested maps: ' cn components, discrete limit
law for the size of the root component

Large random maps equipped with a sandpile configuration:
phase transition for the level at u = 0

General forested planar maps (J. Courtiel, in preparation)
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