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M(t1,...,tx) map GF: there exists a polynomial Q such that
Q(tl, vy b M(tl, e tk)) =0.
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5412

M(t) =

(5422M(t) + 1 — 18t)° = (1 — 12¢)3
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Maps in probability theory:

@ the diameter behaves like n/4

o rescaled by n'/#, a planar map converges to a (universal)
limiting object, the Brownian map

And much more!
[Angel, Curien, Marckert, Le Gall, Miermont...]



Maps equipped with an additional structure
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F(z,u) = E faces(M)  components(F)—1
M,F

@ u = 1: unweighted spanning forests
e u = 0: unweighted spanning trees [Mullin 67]

e u = —1: root-connected acyclic orientations on (dual)
quadrangulations [Las Vergnas 84]
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e Connected subgraphs on quadrangulations (counted by cycles)
e Tutte polynomial Tp(u+1,1)
@ Sandpile model [Merino Lopez 97, Cori & Le Borgne 03]
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e crecurrent
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e Connected subgraphs on quadrangulations (counted by cycles)
e Tutte polynomial Ty(u+1,1)

@ Sandpile model [Merino Lopez 97, Cori & Le Borgne 03]

@ Limit g — 0 of the g-state Potts model:

|im0 e Zy(q,u+1)= yvertices(M) Z ycomponents(F)—1
—
e F forest

with Zy (g, v) the partition function of the Potts model (g counts
states, ¥ monochromatic edges)
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o Exact enumeration:
» Generating function F(z, u) of forested maps
» Nature of F:
is it algebraic? D-finite? D-algebraic?
i.e., does it satisfy a polynomial / linear differential /
polynomial differential/ equation with coefficients in Q(z, u)?

@ Asymptotic enumeration and phase transition(s):
» For u > —1, asymptotic behaviour of

fo(u) := [2"|F(z, u)






The generating function of 4-valent maps equipped with a
spanning tree satisfies

(3i —2)!
F'(z,0) _42 (i—2)irz ©

i>2

A D-finite, but not algebraic series




The generating function of 4-valent maps equipped with a
spanning forest satisfies

zu—4§ R'
l>2

where R = R(z, u) is the only series in z with constant term 0
such that

R—z+uz((.3i3)!

- i—1)121
i>2




Blocked edges on Eulerian maps and mobiles: application to
spanning trees, hard particles and the Ising model,
Bouttier, Di Francesco & Guitter (2008)
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@ g; per non-root vertex of degree 2/,

@ h; per root-vertex (!) of degree 2i.



Let M(z; g1,82,...; h1, ha,...) be the generating function of
rooted Eulerian maps, with weight

@ z per face,
@ g; per non-root vertex of degree 2/,

@ h; per root-vertex (!) of degree 2i.

F(z,u) = M(z; ut!, uts, ... t5,t5,..)

with t¢ (resp. tf) the number of 4-valent trees rooted at a leaf

(resp. a corner) having 2/ leaves:

(3i — 3)! c . (Bi=3)
(=120 - 1)V b _4(/'72)!(2,')!




The generating function of Eulerian maps satisfies

20\ _;
M’ (z; coihi ho ) = : ‘
(505329 00 o il i 0 o) E h’(i)R
i>1
where R is the unique series satisfying

2%i— 1\
R:z+2g,-< 'l_ )R’.

i>1

[Tutte 62, Schaeffer 97, Bouttier-Di Francesco-Guitter 02]
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The series F(z, u) is D-algebraic (in z).

Proof: 6 and ¢ are D-algebraic (in fact, D-finite).
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e The series F'(z, u) satisfies a differential equation of order 2.
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The generating function of planar maps M weighted by their size
(edge number) and their Potts partition function Zy(q,v) is
D-algebraic.




The generating function of planar maps M weighted by their size

(edge number) and their Potts partition function Zy(q,v) is
D-algebraic.

This is more general (for another family of maps). But:

@ the proof is much harder



The generating function of planar maps M weighted by their size

(edge number) and their Potts partition function Zy(q,v) is
D-algebraic.

This is more general (for another family of maps). But:
@ the proof is much harder

@ little combinatorics, much algebra



The generating function of planar maps M weighted by their size

(edge number) and their Potts partition function Zy(q,v) is
D-algebraic.

This is more general (for another family of maps). But:
@ the proof is much harder
@ little combinatorics, much algebra

@ it is not clear how to derive asymptotic results and locate
phase transitions.






Take u > —1, and estimate
fa(u) == [2"]F(z, u)

@ exponential growth < radius of convergence p, of F(z, u)

@ correction terms < nature of the singularities of F(z, u) at p,
and more generally on the circle |z| = p,

Singularity analysis
[Flajolet-Odlyzko 90], [Flajolet-Sedgewick 09]
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For u > —1, let p, be the radius of convergence of F(z, u)

F' =0(R) with R=_z+ud(R)

p_1 = % 1 e Implicit function theorem

\ 1=ud(r,)
e p is affine on [—1,0] =2 re = pu+ ud(r,)

pu=%(1+u)—£u




For u > —1, let p, be the radius of convergence of F(z, u)

F' =0(R) with R=_z+ud(R)

por=%
e p is affine on [—1,0] \

pu=%(1+u)—£u

)

e Implicit function theorem
1=ud(r,)
ry = pu+ ud(r,)

F(z,—1) cannot be D-finite.

Proof: it has integer coefficients but a transcendental radius.



o fp(u) = [2"|F(z, u)

-1<u<0 u=20 u>0
Py Py Py
f,,(u) ~ Iﬁ?um f,,(u) ~ Ky n3 f,-,(U) KRy n5/2
new “universality class” maps with standard map behaviour
for maps? a spanning tree




@ Generating function of p-valent forested maps, for any p > 3
Asymptotic behaviour in the cubic case =

: >~ cn components, discrete limit
law for the size of the root component

phase transition for the level at u =0
forested planar maps ( )
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