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Some natural questions
General walks
e Number:
ap = 4"
e End-to-end distance:
E(An) ~ (k) n*/?

e Limiting object: The (uniform) ran-
dom walk converges to the Brownian
motion




Some natural (but hard) questions

General walks
e Number:

an — 4?”2,
e End-to-end distance:
E(AR) ~ (k) nl/2

e Limiting object: The (uniform) ran-
dom walk converges to the Brownian
motion

Self-avoiding walks
e Number:
cn =7
e End-to-end distance:
E(Dp) ~ 7

e Limit of the random uniform SAW?

(© N. Clisby



T he number of n-step SAWS: predictions vs. theorems

e Predicted: The number of n-step SAWSsS behaves asymptotically as:
cn ~ pu'tn’

where v = 11/32 for all 2D lattices (square, triangular, honeycomb)
[Nienhuis 82]



T he probabilistic meaning of the exponent ~

e Predicted: The number of n-step SAWSsS behaves asymptotically as:

cn ~ pu'tn’

= T he probability that two n-step SAWSs starting from the same point do not
intersect is

C _
%Nn K
Cn
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T he number of n-step SAWS: predictions vs. theorems

e Predicted: The number of n-step SAWSsS behaves asymptotically as:
cn ~ pu'tn’

where v = 11/32 for all 2D lattices (square, triangular, honeycomb)
[Nienhuis 82]

e Known: there exists a constant u, called growth constant, such that
AL
and a constant «a such that
p" < ep < plaV"

[Hammersley 57], [Hammersley-Welsh 62]

e ¢, iS only known up to n =71 [Jensen 04]



The end-to-end distance: predictions vs. theorems

e Predicted: The end-to-end distance is on average

E(Dy) ~ n3/4 (vs. nl/2 for a simple random walk)

[Flory 49, Nienhuis 82]




The end-to-end distance: predictions vs. theorems

e Predicted: The end-to-end distance is on average

E(Dy) ~ n3/4 (vs. nl/2 for a simple random walk)

[Flory 49, Nienhuis 82]

e Known [Madras 2012], [Duminil-Copin & Hammond 2012]:

nt/* < B(Dy) < nt



The scaling limit: predictions vs. theorems

o Predicted: The limit of SAW is SLEg/3, the Schramm-Loewner evolution
process with parameter 8/3.

e Known: true if the limit of SAW exists and is conformally invariant
[Lawler, Schramm, Werner 02]

Confirms the predictions

11/32

cn ~ u'n and E(Dp) ~ n3/4



Outline

I. Self-avoiding walks (SAWSs): Generalities, predictions and results

II. The growth constant on honeycomb lattice is = /2 + V2
[Duminil-Copin & Smirnov 10]

What else?
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I. Self-avoiding walks (SAWSs): Generalities, predictions and results

II. The growth constant on honeycomb lattice is = /2 + V2
[Duminil-Copin & Smirnov 10]

What else?

III. The 14 +/2-conjecture: SAWSs in a half-plane interacting with the boundary
(honeycomb lattice) [Beaton, MBM, Duminil-Copin, de Gier & Guttmann 12]

IV. The 7?77-conjecture: The mysterious square lattice
(d'aprés [Cardy & Ikhlef 09])



II. The growth constant

on the honeycomb lattice:

The u = /2 + /2 ex-conjecture

[Duminil-Copin & Smirnov 10]



The growth constant

Clearly,
Crm4-n < Cm Cn
. 1 .
— limy, ct/™ exists and
Y 1/n . 1/n
U= IITI’Ln cnl = Il;]bf Cn

Theorem [Duminil-Copin & Smirnov 10]: the growth constant is

p=y2+v2

(conjectured by Nienhuis in 1982)



Growth constants and generating functions

e Let C(x) be the length generating function of SAWSs:

C(z) = ) cpa™

n>0

e The radius of convergence of C(x) is

p=1/u,
where
1/n

= |lim c
M oten

iIs the growth constant.

e Notation: z* := 1/4/2 + v/2. We want to prove that p = z*.



Many families of SAWSs have the same radius p

For instance...

Arches Bridges

27 G

[Hammersley 61]

To prove: A(x) (or B(z)) has radius z* := 1/4/2 + /2.



1. Duminil-Copin and Smirnov’s ‘“global”’ identity

Consider the following finite domain Dy, 4.

By, ¢

Y

Ap e arches

B bridges

| Eny ...

An 7 -

Let Ay o(x) (resp. By (z), Ep(x)) be the generating function of SAWSs that
start from the origin and end on the bottom (resp. top, right/left) border of
the domain Dh,g. These series are polynomials in x.



1. Duminil-Copin and Smirnov’s ‘“global”’ identity

At z* =1/\/24++/2 , and for all h and ¢,
aAp (z*) + By (™) +eBp (a) =1

- _ V2-2 — 1
with o = 5 and £ = 73

B,y

Y

Ap arches
Bh,g bridges
Ehg

)




A(z) = 223
B(z) = 2z° + 224

E(z) = 2z°

Example: the domain Dq
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N

— aA(z) + B(z) + cE(2) = 222 + 2023 + 22%4(1 + ¢)

and this polynomial equals 1 at z* = 1/y/2 + v2 ~ 0.54
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1. Duminil-Copin and Smirnov’s ‘“global”’ identity

At z* =1/\/24++/2 , and for all h and ¢,
aAp (z*) + By (™) +eBp (a) =1

- _ V2-2 — 1
with o = 5 and £ = 73

B,y

Y

Ap arches
Bh,g bridges
Ehg

)




2. A lower bound on p

aAp (™) + By (z) +eEp o(=™) = 1

As h and /¢ tend to infinity, Aj ,(z*) counts more and more arches, but remains

bounded (by 1/«): thus it converges, and its limit is the GF A(x) of all arches,
taken at x = z*.

This series is known to have radius p. Since it converges at z*, we have z* < p.

)




3. An upper bound on p

aAp (x") + By (™) +eEp (") = 1

p < z*: Not much harder. Thus:

,0=:13*=1/\/2—|—\/§



4. Where does the global identity come from?

2 — /2 § . 1
5 Ap (™) + By, o(x7) + 7

Ep (™) =1

From a local identity that is re-summed over all vertices of the domain.



A local identity

Let D = Dh,g be our domain, a the origin of the walks, and p a mid-edge in the
domain. Let

F(p) = F(z,0;p) = 3 alvle®W(w)

w.a~>p
where |w| is the length of w, and W (w) its winding number:

W (w) = left turns — right turns.

Example:

Ww)=6—-4=2




A local identity

Let

F(p) = F(z,0;p) = > @)
wia~p IN D

If p, ¢ and r are the 3 mid-edges around a vertex v of the honeycomb lattice,
then, for x = 2™ and 0 = —5x /24,

(p—v)F(p)+ (q—v)F(q) + (r —v)F(r) =0.

Rem: (p —wv) is here a complex number!

First Kirchhoff law




A local identity
Proof: Group walks that only differ in the neighborhood of wv:

e \Walks that visit all mid-edges:

S

e \Walks that only visit one or two mid-edges:

" &g

The contribution of all walks in a group is zero.



A local identity
Proof: Group walks that only differ in the neighborhood of wv:

e \Walks that visit all mid-edges:

g@ g@ e—iw/3€—4i0 + ie4i9 —0

e \Walks that only visit one or two mid-edges:

®/ /
g g\ 51 6—2@'7r/3 4 e—?ﬁr/3€—i9x + iewa: — 0

The contribution of all walks in a group is zero.



Proof of the global identity

Sum the local identity
(p—v)F(p)+(@—v)F(q) + (r—v)F(r) =0 '

over all vertices v of the domain Dy, 4.

e [ he inner mid-edges do not contribute.

e [ he winding number of walks ending on the
boundary is known.

e T he domain has a right-left symmetry.




Proof of the global identity

Sum the local identity
(p—v)F(p)+(@—v)F(q) + (r—v)F(r) =0 '

over all vertices v of the domain Dy, 4.

e The inner mid-edges do not contribute. h
e [ he winding number of walks ending on the
boundary is known.
e T he domain has a right-left symmetry. ' A
h,¢
This gives:
2 — /2 1
Apo(z™) + Bpo(z®) + —= Ep (z") = 1.

2 V2



The |2 + v/2-conjecture is proved...

What else?




III. The 1 4 /2-conjecture:
SAWS on the honeycomb lattice
iInteracting with a boundary

Conjecture of [Batchelor & Yung, 95]

joint work with
Nick Beaton, Hugo Duminil-Copin, Jan de Gier and
Tony Guttmann




Walks in a half-plane interacting with a ‘‘surface”

e Enumeration by contacts of n-step walks:

cn(y) = Z ycontacts(w)

|w|=n

In statistical physics, the parameter y is called “fugacity”



Walks in a half-plane interacting with a ‘‘surface”

e Enumeration by contacts of n-step walks:

cn(y) = Z ycontacts(w)

lw|=n
e Generating function
C(z,y) = ) en(y)z" 3
(7]
n>0

In statistical physics, the parameter y is called *fugacity”



Walks in a half-plane interacting with a ‘‘surface”

e Enumeration by contacts of n-step walks:
cn(y) = Z ycontacts(w)
lw|=n
e Generating function
C(z,y) = ) en(y)z"
n>0 Y
e Radius and growth constant (y > 0 fixed):

p(w) = s = lim 2u(y) V"

[Hammersley, Torrie and Whittington 82]

In statistical physics, the parameter y is called “fugacity”



The critical fugacity y.

e Radius and growth constant: for y > 0O,

p(y) = ﬁ = lim Cn(y)L/m

Proposition: p(y) is a continuous, weakly decreasing function of y € (0,0).
There exists y. > 1 such that

p(y){ <1l/p ify>ye,

where p is the growth constant of (unrestricted) SAWs.
[Whittington 75, Hammersley, Torrie and Whittington 82]

p(y)

1/p




T he critical fugacity: probabilistic meaning

Take half-space SAWSs of length n under the Boltzmann distribution

ycontacts(w)
Pn(w) =

En(y)
Then for y < y., the walk escapes from the surface. For y > y., a positive
fraction of its vertices lie on the surface.

© A. Rechnitzer
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T he critical fugacity: probabilistic meaning

Take half-space SAWSs of length n under the Boltzmann distribution

ycontacts(w)
Pn(w) =

En(y)
Then for y < y., the walk escapes from the surface. For y > y., a positive
fraction of its vertices lie on the surface.

© A. Rechnitzer

Theorem [B-BM-dG-DC-G 12]: this phase transition occurs at

yc:]-‘l‘\/§

(conjectured by Batchelor and Yung in 1995)



0. Duminil-Copin and Smirnov’s ‘“global’ identity:
refinement with lower contacts

For z* = 1/4/2 + +/2, and for any v,

V2 —y
T 1) A @, y) + oAl (2%, y) 4 Bro(a®,y) + eBp(a®,y) =y
with @ = Y2292, o = 2.
B ¢
’
s Eh,é
h 7
Ap e arches
e
B bridges
| Epe ...
— + -
Ape Any



0. Duminil-Copin and Smirnov’s ‘“global’ identity:
refinement with lower contacts

For z* = 1/4/2 + +/2, and for any v,

V2 —y
y(\/§ B 1) hg(w 7y) + aA g(w*ay) _I_ Bh,e(x*ay) _I_ {':Eh,ﬁ(w*ay) — Y
with @ = Y2292, o = 2. So what?
B
[}
- En g
yd
L Ap e arches
yd
B bridges
\J Eh,g
_ _|_ .
oy Ah,e



1. Duminil-Copin and Smirnov'’s ‘“global’ identity:
refinement with upper contacts

For z* = 1/4/2 + +/2, and for any v,
Yy -y
y(y*—1)

with @ = Y2792, e = 3 and y* = 14 V2.

aAp (%, y) + By, o(z",y) +eEp (z%,y) =1

By, g

)

Ap e arches

B bridges

' Eh,g




2. An alternative description of the critical fugacity y.

Proposition: Let A,(z,y) be the
(rationall) generating function of arches
in a strip of height h, counted by length
and upper contacts.

Let y, be the radius of convergence? of
Ap(z*,y).

Then, as h — oo,

Yn \ Ye-

(uses [van Rensburg, Orlandini and Whittington 06])

1S B> D

1. [Rechnitzer 03]
2. For all k, the coefficient of y* in A, (z,y) is finite at z* = 1/u



The complete picture

For y > O fixed, let py,(y) be the radius of Ay(x,vy).

pn(yn) = x*

Ye ~ Yn+1  Yh



3. A lower bound on y.

o For z* = 1/4/2 4+ /2, and for any v,

Yt —y
aAp (2%, y) + —— By (x*,y) +ebp (%, y) =1
y(y* — 1)
with o = 25\/5 Tand’y_l_l_\/_

e Set y = y*.



3. A lower bound on y.

o For z* = 1/y/2 + V2,

aAyp (%, y") + 0 +eBp (x",y") =1

with o = ¥Y22¥2 e = L and y* = 1+ V2.

e Set y = y*.



3. A lower bound on y.

o For z* = 1/y/2 + V2,

oAy o(z*,y") + 0 + By (@t y") = 1

with o = ¥Y22¥2 e = L and y* = 1+ V2.

e Set y = y*. For h fixed, Aj ,(z*,y*) increases with ¢ but remains bounded:
its limit is A, (z*,y*) (arches in an h-strip), and is finite.

Since the radius of A,(z*,y) is yp, Bh.i

*
<
Y > Yp, Ehn e

and since y; decreases to ye,

y* < ye.




4. An upper bound on y.

Y —y

A ) +
adAp (27, y) o — 1)

By, o(x™,y) + B (27, y) = 1

Harder! Uses a third ingredient:

Proposition: The length generating function Bj(xz,1) of bridges of height h,
taken at «* = 1/u, satisfies

Bp(z*,1) - 0 as h — oo.

Inspired by [Duminil-Copin & Hammond 12], “The self-avoiding walk is sub-
ballistic”

Conjecture (from SLE):
By (x*,1) ~ h~1/4



More about this?

The 2+v2 conjecture
\/1+\6—\/2+\6 ’

(due to [Batchelor, Bennett-Wood and Owczarek 98], proved by Nick Beaton)

e A similar result for SAWs confined to the half-plane {z > 0} (rather than
{y > 0}).

See Nick's poster on Tuesday!




IV. The mysterious square lattice

A = \/182+22%\/30261 conjecture?

[Jensen & Guttmann 99], [Clisby & Jensen 12]




Looking for a local identity

Let

F(p) = F(z,t,0;p) = Y allps@efWiw)
wia~p 1IN D

where |w| is the length of w, s(w) the number of vertices where w goes straight
and W(w) the winding number:

W (w) = left turns — right turns.

Could it be that
(p—v)F(p)+(@—v)F(q) + (r—v)F(r) + (s —v)F(s) =0

for an appropriate choice of =, t and 67




Group walks that only differ in the neighborhood of v

e Walks that visit three mid-edges (type 1):

U (Y

e Walks that visit three mid-edges (type 2):
e Walks that only visit one or two mid-edges:

C e

The contribution of all walks in a group should be zero.



Group walks that only differ in the neighborhood of v

e Walks that visit three mid-edges (type 1):

@ @ —ie 3 4430 =0

e Walks that visit three mid-edges (type 2):

< E) < [ ) Cite—310 4 02i0 _

e \Walks that only visit one or two mid-edges:

. ;—I Iy o
g ; ; —1 -+ ixe? — jpe + tx =0



Group walks that only differ in the neighborhood of v

e Walks that visit three mid-edges (type 1):

@ @ —ie 3 4430 =0

e Walks that visit three mid-edges (type 2):

< E) < [ ) Cite—310 4 02i0 _

No solution with t real



A dgeneralization of self-avoiding walks: osculating walks

F(p) = F(a,t,y,0;p) = Y. allis@yelw)fWiw),
wia~p 1IN D

where |w] is the length of w, s(w) the number of vertices where w goes straight,
c(w) the number of contacts, and W(w) the winding number.

[Cardy-Ikhlef 09]



Group walks that only differ in the neighborhood of v

e Walks that visit three or four mid-edges (type 1):

[ J (] [ ) (J
@ g@ @ @ —ie_?’w—I—ie?’w—l—xye_Me—l—xyeMe =0

e Walks that visit three or four mid-edges (type 2):

e \Walks that only visit one or two mid-edges:

o A o -
g gﬂ g\ ; —1 -+ ixe? — ipe + tx =0



Four (real and non-negative) solutions

9 t —— 7 r r—1
_g 0 1 2
Te \/§cosl7T—6 ﬁsin% \/§c0516 2sin {&
_?_g ﬁsin% V2sin {¢ \/_sm —|—2c0516
—% V2sin & ﬁcos?—g v2sin{& 4+ 2cos{¢
Note:
cos & = \/2+\/T and sinf—6=\/2_\/m

2



Four (real and non-negative) solutions

Yy °
0 t m—— r :B_]‘
-z 0 1 2
. 3
e \/§cosl7r—6 ﬁsm% V2 cosZ e — 2sin{¢

Him
o E

\/Esin‘;’—g V2sin X V2sin 3% —|—2cos16 (3)

V2sin X ﬁcos?—g V2sin % + 2cos &

I—“\l
ol

Four local identities = proof for (weighted) growth constants?



Four (real and non-negative) solutions

g |t = Y r 21

_g 0 1 2

Te \/§cosl7r—6 \/§sin:1”—g \/§cosl6 2sin {¢
_?_767 \/_sm?m \/§sin1”—6 \/_sm —|—2cos16 (3)
—% \/§sin177—6 ﬁcosi’—g \/§Sm1l6-|-2C0517T—6

e Four local identities = proof for (weighted) growth constants?

= cf. [Glazman 13] for a proof in Case (3), and an asymmetric model wich
interpolates between (3) and the honeycomb lattice.



Some questions

e Another global identity: for z* = 1/4/2 + V2,

2 -2 § . 1
5 Ap (™) + By, o(z™) + 7

Epo(z¥) =1



Some questions

e Another global identity: for z* = 1/y/2 — /2,

V2 4+ V2 1
— A x* B ) — — By () =1
5 ne(x™) + By (") 7 he(z™)
T his value of x is supposed to correspond to a dense phase of SAWs. Meaning,
and proof?




Some questions

e Another global identity: for z* = 1/y/2 — /2,

V2 4+ V2 1
— A x* B ) — — By () =1
5 ne(x™) + By (") 7 he(z™)
T his value of x is supposed to correspond to a dense phase of SAWs. Meaning,
and proof?

e A global identity for the O(n) loop model [Smirnov 10] = critical point?
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In 5 dimensions and above: Brownian behaviour

e [ he critical exponents are those of the simple random walk:

cn ~ u'™nb, E(Dy) ~ nt/2.

e [ he limit exists and is the d-dimensional Brownian motion

[Hara-Slade 92]



