Decreasing subsequences and

Wilf-equivalence for involutions

Mireille Bousquet-Mélou, CNRS, Univ. Bordeaux 1

Einar Steingrímsson, Göteborg Univ. and Reykjavik Univ.

Two papers

- quences and Wilf-equivalence for involutions, to appear in JACO. [BMS] M. Bousquet-Mélou, E. Steingrímsson, Decreasing subse-
- classes, FPSAC 2001, Tempe, AZ. To appear in Adv. Appl. Math. [BWX] J. Backelin, J. West, G. Xin, Wilf-equivalence for singleton

$$\triangle$$
 \Diamond \Diamond ∇

the permutation $\pi=\pi_1\cdots\pi_n$ is a subsequence $\pi_{i_1}\pi_{i_2}\cdots\pi_{i_k}$ of π that is order isomorphic to τ . Permutation patterns: an occurrence of the pattern $\tau = \tau_1 \cdots \tau_k$ in

pattern $\tau = 4 \ 3 \ 2 \ 1$. Example: the permutation $\pi=8$ 6 3 5 7 1 4 2 9 contains the

 $S_n(\tau)$ is the set of permutations in S_n avoiding the pattern τ

863571429

Find the lexicographically least occurrence of the pattern 4321

Find the lexicographically least occurrence of the pattern 4321 a.k.a. the A-sequence

Shift it cyclically to the left

new occurrence of 3214

The new A-sequence

No more occurrences of 4321

(But several occurrences of 3214)

 $\mathcal{A} ext{-sequence}$ (the lexicographically least occurrence of $k\cdots 21$) Let ϕ_k be the map that performs the cyclic shift of the

are left: ullet Let ϕ_k^* be the map that iterates ϕ_k until no occurrences of $k\cdots 21$

$$\phi_k^*: \mathcal{S}_n \to \mathcal{S}_n(k \cdots 21)$$

The BWX result (weak version): For all k and n,

$$\phi_k^*: \quad \mathcal{S}_n((k-1)\cdots 21k) \longrightarrow \quad \mathcal{S}_n(k\cdots 21)$$

is a bijection.

The patterns $(k-1)\cdots 21k$ and $k\cdots 21$ are Wilf-equivalent.

The BWX result (weak version)

For any k and n,

$$\phi_k^*: S_n((k-1)\cdots 21k) \longrightarrow S_n(k\cdots 21)$$

is a bijection.

ing the pattern τ . Here, $\mathcal{S}_n(au)$ denotes the number of permutations of length n avoid-

For any k and any Ferrers shape λ ,

$$\phi_k^*: \quad \mathcal{S}_{\lambda}((k-1)\cdots 21k) \longrightarrow \quad \mathcal{S}_{\lambda}(k\cdots 21)$$

is a bijection.

board λ avoiding the pattern τ . Here, $\mathcal{S}_{\lambda}(au)$ denotes the number of full rook placements on the

For any k and any Ferrers shape λ ,

$$\phi_k^*: \quad \mathcal{S}_{\lambda}((k-1)\cdots 21k) \quad \longrightarrow \quad \mathcal{S}_{\lambda}(k\cdots 21)$$

is a bijection.

board λ avoiding the pattern τ . Here, $\mathcal{S}_{\lambda}(au)$ denotes the number of full rook placements on the

$$\triangle$$
 \triangle \Diamond ∇

(one dot in each row and each column) A full rook placement on a Ferrers board λ

564231

For any k and any Ferrers shape λ ,

$$\phi_k^*: \quad \mathcal{S}_{\lambda}((k-1)\cdots 21k) \longrightarrow \quad \mathcal{S}_{\lambda}(k\cdots 21)$$

is a bijection.

board λ avoiding the pattern τ . Here, $\mathcal{S}_{\lambda}(au)$ denotes the number of full rook placements on the

$$\triangle$$
 \triangle \Diamond ∇

(one dot in each row and each column) A full rook placement on a Ferrers board λ

564231

For any k and any Ferrers shape λ ,

$$\phi_k^*: \quad \mathcal{S}_{\lambda}((k-1)\cdots 21k) \longrightarrow \quad \mathcal{S}_{\lambda}(k\cdots 21)$$

is a bijection.

board λ avoiding the pattern τ . Here, $\mathcal{S}_{\lambda}(au)$ denotes the number of full rook placements on the

$$\triangle$$
 \Diamond
 \Diamond
 ∇

Not an occurrence of 321 because rectangle is not contained in board

For any k and any Ferrers shape λ ,

$$\phi_k^*: \quad \mathcal{S}_{\lambda}((k-1)\cdots 21k) \quad \longrightarrow \quad \mathcal{S}_{\lambda}(k\cdots 21)$$

is a bijection.

board λ avoiding the pattern τ . Here, $\mathcal{S}_{\lambda}(au)$ denotes the number of full rook placements on the

$$\triangle$$
 \Diamond
 \Diamond
 ∇

Lex-least occurrence of 321 on this board (A-sequence)

For any k and any Ferrers shape λ ,

$$\phi_k^*: \quad \mathcal{S}_{\lambda}((k-1)\cdots 21k) \longrightarrow \quad \mathcal{S}_{\lambda}(k\cdots 21)$$

is a bijection.

board λ avoiding the pattern τ . Here, $\mathcal{S}_{\lambda}(au)$ denotes the number of full rook placements on the

$$\triangle$$
 \Diamond \Diamond ∇

For any k and any Ferrers shape λ ,

$$\phi_k^*: \quad \mathcal{S}_{\lambda}((k-1)\cdots 21k) \quad \longrightarrow \quad \mathcal{S}_{\lambda}(k\cdots 21)$$

is a bijection.

$$\triangle$$
 \Diamond \Diamond ∇

For any k and any Ferrers shape λ ,

$$\phi_k^*: \quad \mathcal{S}_{\lambda}((k-1)\cdots 21k) \longrightarrow \quad \mathcal{S}_{\lambda}(k\cdots 21)$$

is a bijection.

The patterns $(k-1)\cdots 21k$ and $k\cdots 21$ are shape-equivalent.

This is much stronger than the case where λ is a square!

Why patterns on Ferrers boards?

Let τ be a permutation on $\{k+1, k+2, \ldots, \ell\}$. Let σ and σ' be two shape-equivalent permutations on $\{1, 2, \ldots, k\}$.

Then $\sigma \tau$ and $\sigma' \tau$ are also shape-equivalent.

0

[BWX] A family of shape-equivalences

Since $k \cdots 21$ and $(k-1) \cdots 21k$ are shape-equivalent...

equivalent, for any pattern τ on the letters $k+1,\ldots,\ell$. **Coro**: The patterns $k\cdots 21_{\mathcal{T}}$ and $(k-1)\cdots 21_{k_{\mathcal{T}}}$ are shape-That is, for any Ferrers shape λ ,

$$|\mathcal{S}_{\lambda}(k\cdots 21 au)| = |\mathcal{S}_{\lambda}((k-1)\cdots 21k au)| = \cdots = |\mathcal{S}_{\lambda}(12\cdots k au)|.$$

 \triangle \triangle \Diamond ∇

"Reversing a small decreasing prefix gives a shape-equivalent permutation".

Example:
$$|S_n(432168597)| = |S_n(123468597)|$$

[BMS] A family of symmetric shape-equivalences

Analogous result for *involutions* and *symmetric* rook placements

shape-equivalent, for any pattern τ on the letters $k+1,\ldots,\ell$. **Coro**: The patterns $k \cdots 21\tau$ and $(k-1)\cdots 21k\tau$ are symmetric That is, for any *self-conjugate* shape λ ,

$$|\mathcal{I}_{\lambda}(k\cdots 21\tau)| = |\mathcal{I}_{\lambda}((k-1)\cdots 21k\tau)| = \cdots = |\mathcal{I}_{\lambda}(12\cdots k\tau)|,$$

where $\mathcal{I}_{\lambda}(\sigma)$ is the number of diagonally symmetric rook placements on the board λ that avoid σ .

$$\triangle$$
 \Diamond ∇

"Reversing a small decreasing prefix gives a symmetric shapeequivalent permutation".

Example:
$$|\mathcal{I}_n(3214)| = |\mathcal{I}_n(1234)|$$
 (= Motzkin)

(conjectured by Guibert in 95, proved by Jaggard in 2003).

An unexpected property of the transformation ϕ_k^* [BMS]

ullet The map ϕ_k^* preserve involutions.

$$\triangle$$
 \Diamond \Diamond ∇

BUT: The elementary step ϕ_k does not!

Example: try ϕ and ϕ^* on the involution 86435271, with k=4.

- ullet The map ϕ_k^* preserve involutions.
- Even better, it commutes with taking the inverse of a permutation:

$$\phi^*(\pi^{-1}) = (\phi^*(\pi))^{-1}$$
.

placement w.r.t. the main diagonal. Even better, it commutes with taking the symmetric of a rook

$$\triangle$$
 \Diamond
 \Diamond
 ∇

BUT: The elementary step ϕ_k does not!

Example: try ϕ and ϕ^* on the involution 86435271, with k=4.

What does it mean?

"The map ϕ_k^* commutes with the taking the symmetric of placements"

Equivalently: Let ψ be the symmetric of the transformation ϕ :

$$\psi(\pi) := \left(\phi\left(\pi^{-1}\right)\right)^{-1}.$$

The map ψ_k shifts to the left the "leftmost" decreasing subsequence The map ϕ_k shifts to the left the "lowest" decreasing subsequence.

The transformations ϕ and ψ have similar definitions

avoiding placement: For all placements π , iterating ϕ_k or ψ_k results in the same $k\cdots 21$ -

$$\psi^*(\pi) = \phi^*(\pi).$$

An even stronger property: local convergence

For any placement π ,

Coro [Global convergence]

to the same placement avoiding $k \dots 21$ Any iterated application of ϕ and ψ to a placement π yields ultimately

Example (k=4)

placement avoiding $k \dots 21$. Any iterated application of ϕ and ψ yields ultimately to the same

Problem

- Give better explanations of the properties of ϕ_k^*
- Maybe via another description of ϕ_k^* (or ϕ_k)?
- Connection with the RSK correspondence?

$$\mathcal{I}_n(12\cdots k) = \mathcal{I}_n(k\cdots 21)$$

follows from the properties of the RSK correspondence by taking conjugates of standard tableaux.

Wilf-equivalence of permutations/involutions

$$12...k_T \equiv k...21_T$$
 (BWX 01) $12...k_T \equiv_I k...21_T$ (BMS 04)

$$231\tau \equiv 312\tau$$
 (Stankova-West

$$231\tau \equiv 312\tau$$
 (Stankova-West 02)
 $4132 \equiv 3142$ (Stankova 94)
 $54321 \equiv_I 45321$?
 $54321 \equiv_I 45312$?

Is this true? Is this all?