Decreasing subsequences and ### Wilf-equivalence for involutions Mireille Bousquet-Mélou, CNRS, Univ. Bordeaux 1 Einar Steingrímsson, Göteborg Univ. and Reykjavik Univ. #### Two papers - quences and Wilf-equivalence for involutions, to appear in JACO. [BMS] M. Bousquet-Mélou, E. Steingrímsson, Decreasing subse- - classes, FPSAC 2001, Tempe, AZ. To appear in Adv. Appl. Math. [BWX] J. Backelin, J. West, G. Xin, Wilf-equivalence for singleton $$\triangle$$ \Diamond \Diamond ∇ the permutation $\pi=\pi_1\cdots\pi_n$ is a subsequence $\pi_{i_1}\pi_{i_2}\cdots\pi_{i_k}$ of π that is order isomorphic to τ . Permutation patterns: an occurrence of the pattern $\tau = \tau_1 \cdots \tau_k$ in pattern $\tau = 4 \ 3 \ 2 \ 1$. Example: the permutation $\pi=8$ 6 3 5 7 1 4 2 9 contains the $S_n(\tau)$ is the set of permutations in S_n avoiding the pattern τ 863571429 Find the lexicographically least occurrence of the pattern 4321 Find the lexicographically least occurrence of the pattern 4321 a.k.a. the A-sequence Shift it cyclically to the left new occurrence of 3214 The new A-sequence No more occurrences of 4321 (But several occurrences of 3214) $\mathcal{A} ext{-sequence}$ (the lexicographically least occurrence of $k\cdots 21$) Let ϕ_k be the map that performs the cyclic shift of the are left: ullet Let ϕ_k^* be the map that iterates ϕ_k until no occurrences of $k\cdots 21$ $$\phi_k^*: \mathcal{S}_n \to \mathcal{S}_n(k \cdots 21)$$ The BWX result (weak version): For all k and n, $$\phi_k^*: \quad \mathcal{S}_n((k-1)\cdots 21k) \longrightarrow \quad \mathcal{S}_n(k\cdots 21)$$ is a bijection. The patterns $(k-1)\cdots 21k$ and $k\cdots 21$ are Wilf-equivalent. #### The BWX result (weak version) For any k and n, $$\phi_k^*: S_n((k-1)\cdots 21k) \longrightarrow S_n(k\cdots 21)$$ is a bijection. ing the pattern τ . Here, $\mathcal{S}_n(au)$ denotes the number of permutations of length n avoid- For any k and any Ferrers shape λ , $$\phi_k^*: \quad \mathcal{S}_{\lambda}((k-1)\cdots 21k) \longrightarrow \quad \mathcal{S}_{\lambda}(k\cdots 21)$$ is a bijection. board λ avoiding the pattern τ . Here, $\mathcal{S}_{\lambda}(au)$ denotes the number of full rook placements on the For any k and any Ferrers shape λ , $$\phi_k^*: \quad \mathcal{S}_{\lambda}((k-1)\cdots 21k) \quad \longrightarrow \quad \mathcal{S}_{\lambda}(k\cdots 21)$$ is a bijection. board λ avoiding the pattern τ . Here, $\mathcal{S}_{\lambda}(au)$ denotes the number of full rook placements on the $$\triangle$$ \triangle \Diamond ∇ (one dot in each row and each column) A full rook placement on a Ferrers board λ 564231 For any k and any Ferrers shape λ , $$\phi_k^*: \quad \mathcal{S}_{\lambda}((k-1)\cdots 21k) \longrightarrow \quad \mathcal{S}_{\lambda}(k\cdots 21)$$ is a bijection. board λ avoiding the pattern τ . Here, $\mathcal{S}_{\lambda}(au)$ denotes the number of full rook placements on the $$\triangle$$ \triangle \Diamond ∇ (one dot in each row and each column) A full rook placement on a Ferrers board λ 564231 For any k and any Ferrers shape λ , $$\phi_k^*: \quad \mathcal{S}_{\lambda}((k-1)\cdots 21k) \longrightarrow \quad \mathcal{S}_{\lambda}(k\cdots 21)$$ is a bijection. board λ avoiding the pattern τ . Here, $\mathcal{S}_{\lambda}(au)$ denotes the number of full rook placements on the $$\triangle$$ \Diamond \Diamond ∇ Not an occurrence of 321 because rectangle is not contained in board For any k and any Ferrers shape λ , $$\phi_k^*: \quad \mathcal{S}_{\lambda}((k-1)\cdots 21k) \quad \longrightarrow \quad \mathcal{S}_{\lambda}(k\cdots 21)$$ is a bijection. board λ avoiding the pattern τ . Here, $\mathcal{S}_{\lambda}(au)$ denotes the number of full rook placements on the $$\triangle$$ \Diamond \Diamond ∇ Lex-least occurrence of 321 on this board (A-sequence) For any k and any Ferrers shape λ , $$\phi_k^*: \quad \mathcal{S}_{\lambda}((k-1)\cdots 21k) \longrightarrow \quad \mathcal{S}_{\lambda}(k\cdots 21)$$ is a bijection. board λ avoiding the pattern τ . Here, $\mathcal{S}_{\lambda}(au)$ denotes the number of full rook placements on the $$\triangle$$ \Diamond \Diamond ∇ For any k and any Ferrers shape λ , $$\phi_k^*: \quad \mathcal{S}_{\lambda}((k-1)\cdots 21k) \quad \longrightarrow \quad \mathcal{S}_{\lambda}(k\cdots 21)$$ is a bijection. $$\triangle$$ \Diamond \Diamond ∇ For any k and any Ferrers shape λ , $$\phi_k^*: \quad \mathcal{S}_{\lambda}((k-1)\cdots 21k) \longrightarrow \quad \mathcal{S}_{\lambda}(k\cdots 21)$$ is a bijection. The patterns $(k-1)\cdots 21k$ and $k\cdots 21$ are shape-equivalent. This is much stronger than the case where λ is a square! ### Why patterns on Ferrers boards? Let τ be a permutation on $\{k+1, k+2, \ldots, \ell\}$. Let σ and σ' be two shape-equivalent permutations on $\{1, 2, \ldots, k\}$. Then $\sigma \tau$ and $\sigma' \tau$ are also shape-equivalent. 0 ### [BWX] A family of shape-equivalences Since $k \cdots 21$ and $(k-1) \cdots 21k$ are shape-equivalent... equivalent, for any pattern τ on the letters $k+1,\ldots,\ell$. **Coro**: The patterns $k\cdots 21_{\mathcal{T}}$ and $(k-1)\cdots 21_{k_{\mathcal{T}}}$ are shape-That is, for any Ferrers shape λ , $$|\mathcal{S}_{\lambda}(k\cdots 21 au)| = |\mathcal{S}_{\lambda}((k-1)\cdots 21k au)| = \cdots = |\mathcal{S}_{\lambda}(12\cdots k au)|.$$ \triangle \triangle \Diamond ∇ "Reversing a small decreasing prefix gives a shape-equivalent permutation". **Example:** $$|S_n(432168597)| = |S_n(123468597)|$$ # [BMS] A family of symmetric shape-equivalences Analogous result for *involutions* and *symmetric* rook placements shape-equivalent, for any pattern τ on the letters $k+1,\ldots,\ell$. **Coro**: The patterns $k \cdots 21\tau$ and $(k-1)\cdots 21k\tau$ are symmetric That is, for any *self-conjugate* shape λ , $$|\mathcal{I}_{\lambda}(k\cdots 21\tau)| = |\mathcal{I}_{\lambda}((k-1)\cdots 21k\tau)| = \cdots = |\mathcal{I}_{\lambda}(12\cdots k\tau)|,$$ where $\mathcal{I}_{\lambda}(\sigma)$ is the number of diagonally symmetric rook placements on the board λ that avoid σ . $$\triangle$$ \Diamond ∇ "Reversing a small decreasing prefix gives a symmetric shapeequivalent permutation". **Example:** $$|\mathcal{I}_n(3214)| = |\mathcal{I}_n(1234)|$$ (= Motzkin) (conjectured by Guibert in 95, proved by Jaggard in 2003). #### An unexpected property of the transformation ϕ_k^* [BMS] ullet The map ϕ_k^* preserve involutions. $$\triangle$$ \Diamond \Diamond ∇ BUT: The elementary step ϕ_k does not! Example: try ϕ and ϕ^* on the involution 86435271, with k=4. - ullet The map ϕ_k^* preserve involutions. - Even better, it commutes with taking the inverse of a permutation: $$\phi^*(\pi^{-1}) = (\phi^*(\pi))^{-1}$$. placement w.r.t. the main diagonal. Even better, it commutes with taking the symmetric of a rook $$\triangle$$ \Diamond \Diamond ∇ BUT: The elementary step ϕ_k does not! Example: try ϕ and ϕ^* on the involution 86435271, with k=4. #### What does it mean? "The map ϕ_k^* commutes with the taking the symmetric of placements" **Equivalently**: Let ψ be the symmetric of the transformation ϕ : $$\psi(\pi) := \left(\phi\left(\pi^{-1}\right)\right)^{-1}.$$ The map ψ_k shifts to the left the "leftmost" decreasing subsequence The map ϕ_k shifts to the left the "lowest" decreasing subsequence. The transformations ϕ and ψ have similar definitions avoiding placement: For all placements π , iterating ϕ_k or ψ_k results in the same $k\cdots 21$ - $$\psi^*(\pi) = \phi^*(\pi).$$ ### An even stronger property: local convergence For any placement π , #### Coro [Global convergence] to the same placement avoiding $k \dots 21$ Any iterated application of ϕ and ψ to a placement π yields ultimately #### Example (k=4) placement avoiding $k \dots 21$. Any iterated application of ϕ and ψ yields ultimately to the same #### Problem - Give better explanations of the properties of ϕ_k^* - Maybe via another description of ϕ_k^* (or ϕ_k)? - Connection with the RSK correspondence? $$\mathcal{I}_n(12\cdots k) = \mathcal{I}_n(k\cdots 21)$$ follows from the properties of the RSK correspondence by taking conjugates of standard tableaux. ### Wilf-equivalence of permutations/involutions $$12...k_T \equiv k...21_T$$ (BWX 01) $12...k_T \equiv_I k...21_T$ (BMS 04) $$231\tau \equiv 312\tau$$ (Stankova-West $$231\tau \equiv 312\tau$$ (Stankova-West 02) $4132 \equiv 3142$ (Stankova 94) $54321 \equiv_I 45321$? $54321 \equiv_I 45312$? Is this true? Is this all?