An elementary solution of Gessel's walks in the quadrant

Mireille Bousquet-Mélou, CNRS, LaBRI, Bordeaux

Walks in the quadrant

Let \mathcal{S} be a finite subset of \mathbb{Z}^{2} (set of steps) and $p_{0} \in \mathbb{N}^{2}$ (starting point).

Questions

- What is the number $a(n)$ of n-step walks starting at p_{0} and contained in the non-negative quadrant \mathbb{N}^{2} ?
- For $(i, j) \in \mathbb{N}^{2}$, what is the number $a(i, j ; n)$ of such walks that end at (i, j) ?

Example. $\mathcal{S}=\{10, \overline{1} 0,1 \overline{1}, \overline{1} 1\}, p_{0}=(0,0)$.

Example [Gouyou-Beauchamps 86], [mbm-Mishna 10]

Take $\mathcal{S}=\{10, \overline{1} 0,1 \overline{1}, \overline{1} 1\}$ and $p_{0}=(0,0)$

Example [Gouyou-Beauchamps 86], [mbm-Mishna 10]
Take $\mathcal{S}=\{10, \overline{1} 0,1 \overline{1}, \overline{1} 1\}$ and $p_{0}=(0,0)$

Nice numbers
If $n=2 m+\delta$, with $\delta \in\{0,1\}$,

$$
a(n)=\frac{n!(n+1)!}{m!(m+1)!(m+\delta)!(m+\delta+1)!} .
$$

Moreover, if $n=2 m+i$,

$$
a(i, j ; n)=\frac{(i+1)(j+1)(i+j+2)(i+2 j+3) n!(n+2)!}{(m-j)!(m+1)!(m+i+2)!(m+i+j+3)!} .
$$

Many contributions

Adan, Banderier, Bernardi, Bostan, Cori, Denisov, Duchon, Dulucq, Fayolle, Gessel, Fisher, Flajolet, Gouyou-Beauchamps, Guttmann, Guy, Janse van Rensburg, Johnson, Kauers, Koutschan, Krattenthaler, Kurkova, Kreweras, van Leeuwarden, MacMahon, Melczer, Mishna, Niederhausen, Petkovšek, Prellberg, Raschel, Rechnitzer, Sagan, Salvy, Viennot, Wachtel, Wilf, Yeats, Zeilberger...

etc.

Generating functions

- Our original question:

$$
a(n)=? \quad a(i, j ; n)=?
$$

Generating functions

- Our original question:

$$
a(n)=? \quad a(i, j ; n)=?
$$

- Generating functions and their nature

$$
A(t)=\sum_{n \geq 0} a(n) t^{n}, \quad A(x, y ; t)=\sum_{i, j, n} a(i, j ; n) x^{i} y^{j} t^{n}
$$

Generating functions

- Our original question:

$$
a(n)=? \quad a(i, j ; n)=?
$$

- Generating functions and their nature

$$
A(t)=\sum_{n \geq 0} a(n) t^{n}, \quad A(x, y ; t)=\sum_{i, j, n} a(i, j ; n) x^{i} y^{j} t^{n}
$$

Remarks

- $A(1,1 ; t)=A(t)$
- $A(0,0 ; t)$ counts walks ending at $(0,0)$
- $A(x, 0 ; t)$ counts walks ending on the x-axis

Generating functions

- Our original question:

$$
a(n)=? \quad a(i, j ; n)=?
$$

- Generating functions and their nature

$$
A(t)=\sum_{n \geq 0} a(n) t^{n}, \quad A(x, y ; t)=\sum_{i, j, n} a(i, j ; n) x^{i} y^{j} t^{n}
$$

Can one express these series? Are they rational? algebraic? D-finite?
Remarks

- $A(1,1 ; t)=A(t)$
- $A(0,0 ; t)$ counts walks ending at $(0,0)$
- $A(x, 0 ; t)$ counts walks ending on the x-axis

A hierarchy of formal power series

- The formal power series $A(t)$ is rational if it can be written

$$
A(t)=P(t) / Q(t)
$$

where $P(t)$ and $Q(t)$ are polynomials in t.

- The formal power series $A(t)$ is algebraic (over $\mathbb{Q}(t))$ if it satisfies a (non-trivial) polynomial equation:

$$
P(t, A(t))=0 .
$$

- The formal power series $A(t)$ is D-finite (holonomic) if it satisfies a (non-trivial) linear differential equation with polynomial coefficients:

$$
P_{k}(t) A^{(k)}(t)+\cdots+P_{0}(t) A(t)=0
$$

- Nice closure properties + asymptotics of the coefficients
- Extension to several variables (D-finite: one DE per variable)

Walks in the full space

Rational series

A rational generating function:

$$
a(n)=|\mathcal{S}|^{n} \quad \Leftrightarrow \quad A(t)=\sum_{n \geq 0} a(n) t^{n}=\frac{1}{1-|\mathcal{S}| t}
$$

More generally:

$$
A(x, y ; t)=\frac{1}{1-t \sum_{(i, j) \in \mathcal{S}} x^{i} y^{j}} .
$$

Walks in a rational half-space

Algebraic series

The associated generating function is algebraic, given by an explicit system of polynomial equations.
[Gessel 80], [Duchon 00], [mbm-Petkovšek 00]...

Walks in the quadrant

- Start from $p_{0}=(0,0)$

$$
A(x, y ; t)=\sum_{i, j, n \geq 0} a(i, j ; n) x^{i} y^{j} t^{n}=?
$$

Walks in the quadrant

- Start from $p_{0}=(0,0)$

$$
A(x, y ; t)=\sum_{i, j, n \geq 0} a(i, j ; n) x^{i} y^{j} t^{n}=?
$$

D-finite

D-finite

D-finite

Walks in the quadrant

- Start from $p_{0}=(0,0)$

$$
A(x, y ; t)=\sum_{i, j, n \geq 0} a(i, j ; n) x^{i} y^{j} t^{n}=?
$$

D-finite

D-finite

D-finite

Algebraic

Walks in the quadrant

- Start from $p_{0}=(0,0)$

$$
A(x, y ; t)=\sum_{i, j, n \geq 0} a(i, j ; n) x^{i} y^{j} t^{n}=?
$$

D-finite

D-finite

D-finite

Algebraic

Non-D-finite

Walks in the quadrant

- Start from $p_{0}=(0,0)$

$$
A(x, y ; t)=\sum_{i, j, n \geq 0} a(i, j ; n) x^{i} y^{j} t^{n}=?
$$

D-finite

D-finite

D-finite

Algebraic

Non-D-finite

Non-D-finite

D-finite

Quadrant walks with small steps: classification

- $\mathcal{S} \subset\{\overline{1}, 0,1\} \backslash\{00\} \Rightarrow 2^{8}=256$ step sets (or: models)

Quadrant walks with small steps: classification

- $\mathcal{S} \subset\{\overline{1}, 0,1\} \backslash\{00\} \Rightarrow 2^{8}=256$ step sets (or: models)
- However, some models are equivalent:
- to a model of walks in the full or half-plane (\Rightarrow algebraic)

- to another model in the collection (diagonal symmetry)

- One is left with 79 interesting distinct models.

Singular

Non-singular

Singular

Classification of quadrant walks with small steps

Theorem

The series $A(x, y ; t)$ is D-finite iff the associated group G is finite.
It is algebraic iff, in addition, the orbit sum is zero.
[mbm-Mishna 10], [Bostan-Kauers 10]
D-finite
[Kurkova-Raschel 12] non-singular non-D-finite
[Mishna-Rechnitzer 07], [Melczer-Mishna 13] singular non-D-finite
quadrant models: 79

Classification of quadrant walks with small steps

quadrant models: 79

When the orbit sum is zero: the four algebraic models

Kreweras

reverse Kreweras

double Kreweras

Gessel

- Kreweras walks
- expression for a(i,0;n) [Kreweras 65], simplified by [Niederhausen 83]
- $A(x, y ; t)$ is algebraic [Gessel $86, \mathrm{mbm} 02 / 05$]
- Unified approach for the Kreweras trilogy [mbm-Mishna 10]

When the orbit sum is zero: the four algebraic models

Kreweras

reverse Kreweras

double Kreweras

Gessel

- Kreweras walks
- expression for a(i,0;n) [Kreweras 65], simplified by [Niederhausen 83]
- $A(x, y ; t)$ is algebraic [Gessel $86, \mathrm{mbm} 02 / 05$]
- Unified approach for the Kreweras trilogy [mbm-Mishna 10]
- Gessel walks:
- conjecture for $a(0,0 ; n)$ [Gessel $\simeq 00$]
- proof of this conjecture [Kauers, Koutschan \& Zeilberger 08]
- $A(t)$ and $A(x, y ; t)$ are algebraic! [Bostan \& Kauers 09a]
- new proof via complex analysis [Bostan, Kurkova \& Raschel 13]
- an elementary and constructive proof [mbm 15]

Kreweras' walks

\square

Theorem

- The number of walks of length $n=3 m+2 i$ ending at $(i, 0)$ is

$$
a(i, 0 ; n)=\frac{4^{m}(2 i+1)}{(m+i+1)(2 m+2 i+1)}\binom{2 i}{i}\binom{3 m+2 i}{m}
$$

[Kreweras 65]

- The generating function $A(x, y ; t)$ is algebraic [Gessel 86].

For instance, the series $Q(t):=A\left(0,0 ; t^{1 / 3}\right)$ has degree 3:

$$
54 t-1+(1-72 t) Q(t)+16 t Q(t)^{2}+64 t^{2} Q(t)^{3}=0
$$

Gessel's walks

\square

Theorem

- The number of walks of length $n=2 m$ ending at $(0,0)$ is

$$
a(0,0 ; n)=16^{m} \frac{(5 / 6)_{m}(1 / 2)_{m}}{(5 / 3)_{m}(2)_{m}},
$$

where $(a)_{m}=a(a+1) \cdots(a+m-1)$ is the ascending factorial. [Kauers, Koutschan, Zeilberger 08]

- The generating function $A(x, y ; t)$ is algebraic.
[Bostan, Kauers 09]

For instance, the series $Q(t):=A(0,0 ; \sqrt{t})$ has degree 8 :

$$
\begin{gathered}
27 t^{7} Q^{8}+108 t^{6} Q^{7}+189 t^{5} Q^{6}+189 t^{4} Q^{5}-9 t^{3}\left(32 t^{2}+28 t-13\right) Q^{4} \\
-9 t^{2}\left(64 t^{2}+56 t-5\right) Q^{3}-2 t\left(256 t^{3}-312 t^{2}+156 t-5\right) Q^{2} \\
\quad-(32 t-1)\left(16 t^{2}-28 t+1\right) Q-256 t^{3}-576 t^{2}-48 t+1=0 .
\end{gathered}
$$

I. A solution of...

I. A solution of Kreweras' model

[mbm 02]

I. A solution of Kreweras' model

[mbm 02]

1. functional equation for $A(x, y ; t)$
2. canceling the kernel: the roots Y_{0} and Y_{1}
3. the group of the walk
4. symmetric functions of Y_{0} and Y_{1}
5. Brown's quadratic method (1969)

1. A functional equation

Set step: $\mathcal{S}=\{11, \overline{1} 0,0 \overline{1}\}$. Denote $\bar{x}=1 / x$ and $\bar{y}=1 / y$.

$$
A(x, y ; t) \equiv A(x, y)=1+t(x y+\bar{x}+\bar{y}) A(x, y)-t \bar{x} A(0, y)-t \bar{y} A(x, 0)
$$

Θ

1. A functional equation

Set step: $\mathcal{S}=\{11, \overline{1} 0,0 \overline{1}\}$. Denote $\bar{x}=1 / x$ and $\bar{y}=1 / y$.
$A(x, y ; t) \equiv A(x, y)=1+t(x y+\bar{x}+\bar{y}) A(x, y)-t \bar{x} A(0, y)-t \bar{y} A(x, 0)$
or

$$
(1-t(x y+\bar{x}+\bar{y})) A(x, y)=1-t \bar{x} A(0, y)-t \bar{y} A(x, 0),
$$

1. A functional equation

Set step: $\mathcal{S}=\{11, \overline{1} 0,0 \overline{1}\}$. Denote $\bar{x}=1 / x$ and $\bar{y}=1 / y$.

$$
A(x, y ; t) \equiv A(x, y)=1+t(x y+\bar{x}+\bar{y}) A(x, y)-t \bar{x} A(0, y)-t \bar{y} A(x, 0)
$$

or

$$
(1-t(x y+\bar{x}+\bar{y})) A(x, y)=1-t \bar{x} A(0, y)-t \bar{y} A(x, 0),
$$

or

$$
(1-t(x y+\bar{x}+\bar{y})) x y A(x, y)=x y-t y A(0, y)-t x A(x, 0)
$$

- The polynomial $1-t(x y+\bar{x}+\bar{y})$ is the kernel of this equation
- The equation is linear, with two catalytic variables x and y (tautological at $x=0$ or $y=0$)

2. Canceling the kernel

- The equation:

$$
(1-t(x y+\bar{x}+\bar{y})) x y A(x, y)=x y-t y A(0, y)-t x A(x, 0)
$$

2. Canceling the kernel

- The equation:

$$
(1-t(x y+\bar{x}+\bar{y})) x y A(x, y)=x y-t y A(0, y)-t x A(x, 0)
$$

- The kernel $(1-t(x y+\bar{x}+\bar{y}))$, as a polynomial in y, has two roots:

$$
\begin{array}{lc}
Y_{0}(x)=\frac{1-t \bar{x}-\sqrt{(1-t \bar{x})^{2}-4 t^{2} x}}{2 t x}= & t+\bar{x} t^{2}+O\left(t^{3}\right), \\
Y_{1}(x)=\frac{1-t \bar{x}+\sqrt{(1-t \bar{x})^{2}-4 t^{2} x}}{2 t x}=\frac{\bar{x}}{t}-\bar{x}^{2} & -t-\bar{x} t^{2}+O\left(t^{3}\right) .
\end{array}
$$

2. Canceling the kernel

- The equation:

$$
(1-t(x y+\bar{x}+\bar{y})) x y A(x, y)=x y-t y A(0, y)-t x A(x, 0)
$$

- The kernel $(1-t(x y+\bar{x}+\bar{y}))$, as a polynomial in y, has two roots:

$$
\begin{array}{lc}
Y_{0}(x)=\frac{1-t \bar{x}-\sqrt{(1-t \bar{x})^{2}-4 t^{2} x}}{2 t x}= & t+\bar{x} t^{2}+O\left(t^{3}\right), \\
Y_{1}(x)=\frac{1-t \bar{x}+\sqrt{(1-t \bar{x})^{2}-4 t^{2} x}}{2 t x}=\frac{\bar{x}}{t}-\bar{x}^{2} & -t-\bar{x} t^{2}+O\left(t^{3}\right) .
\end{array}
$$

- Specializing y to Y_{0} in the equation gives:

$$
R(x)+R\left(Y_{0}\right)=x Y_{0}
$$

with $R(x)=t x A(x, 0)=t x A(0, x)$ (symmetry).
This equation characterizes $R(x)$ but... why algebraicity?

3. The group of the model

The kernel

$$
K(x, y)=1-t(x y+\bar{x}+\bar{y})
$$

is left unchanged by the rational transformations

$$
\Phi:(x, y) \mapsto(\bar{x} \bar{y}, y) \quad \text { and } \quad \psi:(x, y) \mapsto(x, \bar{x} \bar{y}) .
$$

3. The group of the model

The kernel

$$
K(x, y)=1-t(x y+\bar{x}+\bar{y})
$$

is left unchanged by the rational transformations

$$
\Phi:(x, y) \mapsto(\bar{x} \bar{y}, y) \quad \text { and } \quad \Psi:(x, y) \mapsto(x, \bar{x} \bar{y}) .
$$

They are involutions, and generate a dihedral group G of order 6 :

Build more pairs that cancel the kernel

- Since $K\left(x, Y_{0}\right)=0$ and the transformations of G preserve the kernel, any element of the orbit of $\left(x, Y_{0}\right)$ cancels the kernel.

Build more pairs that cancel the kernel

- Since $K\left(x, Y_{0}\right)=0$ and the transformations of G preserve the kernel, any element of the orbit of $\left(x, Y_{0}\right)$ cancels the kernel.

Build more pairs that cancel the kernel

- Since $K\left(x, Y_{0}\right)=0$ and the transformations of G preserve the kernel, any element of the orbit of $\left(x, Y_{0}\right)$ cancels the kernel.

Gives two equations for R :

$$
\begin{aligned}
R(x)+R\left(Y_{0}\right) & =x Y_{0} \\
R\left(Y_{0}\right)+R\left(Y_{1}\right) & =Y_{0} Y_{1}=\bar{x}
\end{aligned}
$$

with $R(x)=t x A(x, 0)$.

4. Symmetric functions of Y_{0} and Y_{1}

- The elementary symmetric functions of the Y_{i} are polynomials in \bar{x} :

$$
Y_{0}+Y_{1}=\frac{\bar{x}}{t}-\bar{x}^{2} \quad \text { and } \quad Y_{0} Y_{1}=\bar{x}
$$

4. Symmetric functions of Y_{0} and Y_{1}

- The elementary symmetric functions of the Y_{i} are polynomials in \bar{x} :

$$
Y_{0}+Y_{1}=\frac{\bar{x}}{t}-\bar{x}^{2} \quad \text { and } \quad Y_{0} Y_{1}=\bar{x}
$$

- Rewrite the equations for R as

$$
\begin{aligned}
& R\left(Y_{0}\right)-x Y_{0}=-R(x) \\
& R\left(Y_{1}\right)-x Y_{1}=R(x)+2 \bar{x}-1 / t
\end{aligned}
$$

4. Symmetric functions of Y_{0} and Y_{1}

- The elementary symmetric functions of the Y_{i} are polynomials in \bar{x} :

$$
Y_{0}+Y_{1}=\frac{\bar{x}}{t}-\bar{x}^{2} \quad \text { and } \quad Y_{0} Y_{1}=\bar{x}
$$

- Rewrite the equations for R as

$$
\begin{aligned}
& R\left(Y_{0}\right)-x Y_{0}=-R(x) \\
& R\left(Y_{1}\right)-x Y_{1}=R(x)+2 \bar{x}-1 / t
\end{aligned}
$$

- The product is symmetric in Y_{0} and Y_{1} :

$$
\left(R\left(Y_{0}\right)-x Y_{0}\right)\left(R\left(Y_{1}\right)-x Y_{1}\right)=-R(x)(R(x)+2 \bar{x}-1 / t)
$$

4. Symmetric functions of Y_{0} and Y_{1}

- The elementary symmetric functions of the Y_{i} are polynomials in \bar{x} :

$$
Y_{0}+Y_{1}=\frac{\bar{x}}{t}-\bar{x}^{2} \quad \text { and } \quad Y_{0} Y_{1}=\bar{x}
$$

- Rewrite the equations for R as

$$
\begin{aligned}
& R\left(Y_{0}\right)-x Y_{0}=-R(x) \\
& R\left(Y_{1}\right)-x Y_{1}=R(x)+2 \bar{x}-1 / t
\end{aligned}
$$

- The product is symmetric in Y_{0} and Y_{1} :

$$
\left(R\left(Y_{0}\right)-x Y_{0}\right)\left(R\left(Y_{1}\right)-x Y_{1}\right)=-R(x)(R(x)+2 \bar{x}-1 / t)
$$

- Extracting the non-negative powers of x gives:

$$
x-2 R^{\prime}(0)=-R(x)(R(x)+2 \bar{x}-1 / t)
$$

No more Y_{i} ! Equivalently,

$$
x t R(x)^{2}+(2 t-x) R(x)+t x^{2}-2 t x R^{\prime}(0)=0
$$

5. Finish: the quadratic method

The series $R(x)=t x A(x, 0)$ satisfies

$$
x t R(x)^{2}+(2 t-x) R(x)+t x^{2}-2 t x R^{\prime}(0)=0
$$

or

$$
t^{2} x^{2} A(x, 0)^{2}+(2 t-x) A(x, 0)-2 t A(0,0)+x=0
$$

Tautological at $x=0$: a quadratic equation with one catalytic variable x, and one additional unknown one-variable series $A(0,0)$
\Rightarrow Brown's quadratic method [Brown 69]

5. Finish: the quadratic method

The series $R(x)=t x A(x, 0)$ satisfies

$$
x t R(x)^{2}+(2 t-x) R(x)+t x^{2}-2 t x R^{\prime}(0)=0
$$

or

$$
t^{2} x^{2} A(x, 0)^{2}+(2 t-x) A(x, 0)-2 t A(0,0)+x=0
$$

Tautological at $x=0$: a quadratic equation with one catalytic variable x, and one additional unknown one-variable series $A(0,0)$
\Rightarrow Brown's quadratic method [Brown 69]
Theorem
Let $X \equiv X(t)$ be the unique series in t defined by

$$
X=t\left(2+X^{3}\right) .
$$

Then the generating function of Kreweras' walks ending on the x-axis is

$$
A(x, 0 ; t)=\frac{1}{t x}\left(\frac{1}{2 t}-\frac{1}{x}-\left(\frac{1}{X}-\frac{1}{x}\right) \sqrt{1-x X^{2}}\right) .
$$

II. A solution of Gessel's model

[mbm 15]

II. A solution of Gessel's model

[mbm 15]

- functional equation for $A(x, y)$
- canceling the kernel: the roots Y_{0} and Y_{1}
- the group of the walk
- symmetric functions of Y_{0} and Y_{1}
- ...
- the generalized quadratic method [mbm-Jehanne 06]

1. A functional equation

Set step: $\mathcal{S}=\{11,10, \overline{1} \overline{1}, 0 \overline{1}\}$

$$
A(x, y)=1+t(x y+x+\bar{x} \bar{y}+\bar{x}) A(x, y)
$$

$$
-t \bar{x}(1+\bar{y}) A(0, y)-t \bar{x} \bar{y}(A(x, 0)-A(0,0))
$$

Θ

1. A functional equation

Set step: $\mathcal{S}=\{11,10, \overline{1} \overline{1}, 0 \overline{1}\}$

$$
\begin{aligned}
A(x, y)=1+t(x y+x & +\bar{x} \bar{y}+\bar{x}) A(x, y) \\
& -t \bar{x}(1+\bar{y}) A(0, y)-t \bar{x} \bar{y}(A(x, 0)-A(0,0))
\end{aligned}
$$

or

$$
(1-t(x y+x+\bar{x} \bar{y}+\bar{x})) x y A(x, y)=x y-S(y)-R(x)
$$

with

$$
S(y)=t(1+y) A(0, y) \quad \text { and } \quad R(x)=t(A(x, 0)-A(0,0))
$$

- Main difference with K' walks: no x / y symmetry, two bivariate unknown series $R(x)$ and $S(y)$

2. Canceling the kernel

- The equation:

$$
(1-t(x y+x+\bar{x} \bar{y}+\bar{x})) x y A(x, y)=x y-S(y)-R(x)
$$

2. Canceling the kernel

- The equation:

$$
(1-t(x y+x+\bar{x} \bar{y}+\bar{x})) x y A(x, y)=x y-S(y)-R(x)
$$

- The kernel, as a polynomial in y, has two roots:

$$
\begin{aligned}
& Y_{0}(x)=\frac{1-t(x+\bar{x})-\sqrt{(1-t(x+\bar{x}))^{2}-4 t^{2}}}{2 t x}= \\
& \bar{x} t+\cdots \\
& Y_{1}(x)=\frac{1-t(x+\bar{x})+\sqrt{(1-t(x+\bar{x}))^{2}-4 t^{2}}}{2 t x}=\frac{\bar{x}}{t}-\left(1+\bar{x}^{2}\right)-\bar{x} t+\cdots
\end{aligned}
$$

Observe that $x Y_{i}(x)$ is symmetric in x and \bar{x}.

2. Canceling the kernel

- The equation:

$$
(1-t(x y+x+\bar{x} \bar{y}+\bar{x})) x y A(x, y)=x y-S(y)-R(x)
$$

- The kernel, as a polynomial in y, has two roots:

$$
\begin{aligned}
& Y_{0}(x)=\frac{1-t(x+\bar{x})-\sqrt{(1-t(x+\bar{x}))^{2}-4 t^{2}}}{2 t x}= \\
& \bar{x} t+\cdots \\
& Y_{1}(x)=\frac{1-t(x+\bar{x})+\sqrt{(1-t(x+\bar{x}))^{2}-4 t^{2}}}{2 t x}=\frac{\bar{x}}{t}-\left(1+\bar{x}^{2}\right)-\bar{x} t+\cdots
\end{aligned}
$$

Observe that $x Y_{i}(x)$ is symmetric in x and \bar{x}.

- Specializing y to Y_{0} in the equation gives:

$$
R(x)+S\left(Y_{0}\right)=x Y_{0}
$$

3. The group of the model

\square

The kernel

$$
K(x, y)=1-t(x y+x+\bar{x} \bar{y}+\bar{x})
$$

is left unchanged by the rational transformations

$$
\Phi:(x, y) \mapsto(\bar{x} \bar{y}, y) \quad \text { and } \quad \psi:(x, y) \mapsto\left(x, \bar{x}^{2} \bar{y}\right) .
$$

3. The group of the model

\square

The kernel

$$
K(x, y)=1-t(x y+x+\bar{x} \bar{y}+\bar{x})
$$

is left unchanged by the rational transformations

$$
\Phi:(x, y) \mapsto(\bar{x} \bar{y}, y) \quad \text { and } \quad \psi:(x, y) \mapsto\left(x, \bar{x}^{2} \bar{y}\right) .
$$

They are involutions, and generate a dihedral group of order 8 :

Build more pairs that cancel the kernel

Since $K\left(x, Y_{0}\right)=0$ and the transformations of G preserve the kernel, any element of the orbit of $\left(x, Y_{0}\right)$ cancels the kernel.

$$
\begin{aligned}
& \Phi\left(x Y_{1}, Y_{0}\right) \frac{\Psi}{\frac{\Psi}{\Psi}}\left(x Y_{1}, x^{2} Y_{0}\right) \frac{\Phi}{\frac{\Phi}{x}}\left(x, Y_{1}\right) \frac{-}{\Phi}\left(x Y_{0}, Y_{1}\right) \frac{}{\psi}\left(x Y_{0}, x^{2} Y_{1}\right) \frac{\Psi}{\Phi}
\end{aligned}
$$

Build more pairs that cancel the kernel

Since $K\left(x, Y_{0}\right)=0$ and the transformations of G preserve the kernel, any element of the orbit of $\left(x, Y_{0}\right)$ cancels the kernel.

Build more pairs that cancel the kernel

Since $K\left(x, Y_{0}\right)=0$ and the transformations of G preserve the kernel, any element of the orbit of $\left(x, Y_{0}\right)$ cancels the kernel.

Gives four equations for R and S :

$$
\begin{aligned}
R(x)+S\left(Y_{0}\right) & =x Y_{0} \\
R\left(Y_{0}\right)+S\left(Y_{1}\right) & =Y_{0} Y_{1}=\bar{x} \\
R(\bar{x})+S\left(x^{2} Y_{0}\right) & =x Y_{0} \\
R\left(x Y_{0}\right)+S\left(x^{2} Y_{1}\right) & =x^{3} Y_{0} Y_{1}=x
\end{aligned}
$$

4. Symmetric functions of Y_{0} and Y_{1}

- The elementary symmetric functions of the Y_{i} are polynomials in \bar{x} :

$$
Y_{0}+Y_{1}=-1+\frac{\bar{x}}{t}-\bar{x}^{2} \quad \text { and } \quad Y_{0} Y_{1}=\bar{x}^{2}
$$

4. Symmetric functions of Y_{0} and Y_{1}

- The elementary symmetric functions of the Y_{i} are polynomials in \bar{x} :

$$
Y_{0}+Y_{1}=-1+\frac{\bar{x}}{t}-\bar{x}^{2} \quad \text { and } \quad Y_{0} Y_{1}=\bar{x}^{2}
$$

- From the four equations:

$$
\begin{aligned}
R(x)+S\left(Y_{0}\right) & =x Y_{0} \\
R\left(x Y_{0}\right)+S\left(Y_{1}\right) & =Y_{0} Y_{1}=\bar{x} \\
R(\bar{x})+S\left(x^{2} Y_{0}\right) & =x Y_{0} \\
R\left(x Y_{0}\right)+S\left(x^{2} Y_{1}\right) & =x^{3} Y_{0} Y_{1}=x
\end{aligned}
$$

one constructs two symmetric functions of Y_{0} and Y_{1}, and extracts non-negative powers of x.
This gives an equation without any $Y_{i} \ldots$ but with $R(x)$ and $R(\bar{x})$.

4. Symmetric functions of Y_{0} and Y_{1} (cont'd)

This gives:

$$
\begin{aligned}
& R(x)^{2}+R(x) R(\bar{x})+R(\bar{x})^{2}+(2 \bar{x}-1 / t+x+S(0)) R(x) \\
& \quad+(2 x-1 / t+\bar{x}+S(0)) R(\bar{x})=2 R^{\prime}(0)-(\bar{x}+x-1 / t) S(0)-1
\end{aligned}
$$

while for Kreweras' walks:

$$
x t R(x)^{2}+(2 t-x) R(x)+t x^{2}-2 t x R^{\prime}(0)=0
$$

- Main difference: the terms $R(\bar{x})$
- Main difficulty: the hybrid term $R(x) R(\bar{x})$

5. Les identités remarquables à notre secours

The equation reads:

$$
\begin{aligned}
& R(x)^{2}+R(x) R(\bar{x})+R(\bar{x})^{2}+(2 \bar{x}-1 / t+x+S(0)) R(x) \\
& \quad+(2 x-1 / t+\bar{x}+S(0)) R(\bar{x})=2 R^{\prime}(0)-(\bar{x}+x-1 / t) S(0)-1 .
\end{aligned}
$$

But but but...

$$
\left(a^{2}+a b+b^{2}\right)(a-b)=a^{3}-b^{3}
$$

5. Les identités remarquables à notre secours

The equation reads:

$$
\begin{aligned}
& R(x)^{2}+R(x) R(\bar{x})+R(\bar{x})^{2}+(2 \bar{x}-1 / t+x+S(0)) R(x) \\
& \quad+(2 x-1 / t+\bar{x}+S(0)) R(\bar{x})=2 R^{\prime}(0)-(\bar{x}+x-1 / t) S(0)-1 .
\end{aligned}
$$

But but but...

$$
\left(a^{2}+a b+b^{2}\right)(a-b)=a^{3}-b^{3}
$$

\Rightarrow Multiply by $R(x)-R(\bar{x})+\bar{x}-x$!

5. Les identités remarquables à notre secours

The equation reads:

$$
\begin{aligned}
& R(x)^{2}+R(x) R(\bar{x})+R(\bar{x})^{2}+(2 \bar{x}-1 / t+x+S(0)) R(x) \\
& \quad+(2 x-1 / t+\bar{x}+S(0)) R(\bar{x})=2 R^{\prime}(0)-(\bar{x}+x-1 / t) S(0)-1 .
\end{aligned}
$$

But but but...

$$
\left(a^{2}+a b+b^{2}\right)(a-b)=a^{3}-b^{3}
$$

\Rightarrow Multiply by $R(x)-R(\bar{x})+\bar{x}-x$! This gives $P(x)=P(\bar{x})$, with

$$
\begin{aligned}
& P(x)=R(x)^{3}+(S(0)+3 \bar{x}-1 / t) R(x)^{2} \\
& +\left(2 \bar{x}^{2}-\bar{x} / t+x / t-x^{2}-2 R^{\prime}(0)+(2 \bar{x}-1 / t) S(0)\right) R(x) \\
& \quad-x^{2} S(0)+x\left(2 R^{\prime}(0)+S(0) / t-1\right) .
\end{aligned}
$$

5. Les identités remarquables à notre secours

We have obtained $P(x)=P(\bar{x})$, with

$$
\begin{aligned}
& P(x)=R(x)^{3}+(S(0)+3 \bar{x}-1 / t) R(x)^{2} \\
& +\left(2 \bar{x}^{2}-\bar{x} / t+x / t-x^{2}-2 R^{\prime}(0)+(2 \bar{x}-1 / t) S(0)\right) R(x) \\
& \quad-x^{2} S(0)+x\left(2 R^{\prime}(0)+S(0) / t-1\right) .
\end{aligned}
$$

Extract nonnegative powers of x :

$$
\begin{aligned}
& R(x)^{3}+(S(0)+3 \bar{x}-1 / t) R(x)^{2} \\
& +\left(2 \bar{x}^{2}-\bar{x} / t+x / t-x^{2}-2 R^{\prime}(0)+(2 \bar{x}-1 / t) S(0)\right) R(x) \\
& \quad=R^{\prime \prime}(0)+R^{\prime}(0)(2 S(0)+2 \bar{x}-1 / t)+x S(0)(x-1 / t)+x
\end{aligned}
$$

A cubic equation in one catalytic variable x, with three additional unknown one-variable series $S(0), R^{\prime}(0)$ and $R^{\prime \prime}(0)$.

6. Finish: the generalized quadratic method

$$
\begin{aligned}
& R(x)^{3}+(S(0)+3 \bar{x}-1 / t) R(x)^{2} \\
& +\left(2 \bar{x}^{2}-\bar{x} / t+x / t-x^{2}-2 R^{\prime}(0)+(2 \bar{x}-1 / t) S(0)\right) R(x) \\
& \quad=R^{\prime \prime}(0)+R^{\prime}(0)(2 S(0)+2 \bar{x}-1 / t)+x S(0)(x-1 / t)+x
\end{aligned}
$$

Theorem

Every series $R(x ; t) \equiv R(x)$ solution of a (proper) polynomial equation with one catalytic variable x is algebraic. That is, if

$$
P\left(t, x, R(x), A_{1}, \ldots, A_{k}\right)=0
$$

for some polynomial P with coefficients in \mathbb{Q}, then $R(x)$ is algebraic over $\mathbb{Q}(t, x)$, and each A_{i} is algebraic over $\mathbb{Q}(t)$.

[mbm-Jehanne 2006] (after [Knuth 72] and [Brown 65])

6. Finish: the generalized quadratic method

Theorem

The generating function $A(x, y ; t)$ is algebraic of degree 72 (explicit equations and rational parametrizations for $A(x, 0)$ and $A(0, y)$)

- In particular, the series $Q(t):=A(0,0 ; \sqrt{t})$ has degree 8 :

$$
\begin{gathered}
27 t^{7} Q^{8}+108 t^{6} Q^{7}+189 t^{5} Q^{6}+189 t^{4} Q^{5}-9 t^{3}\left(32 t^{2}+28 t-13\right) Q^{4} \\
-9 t^{2}\left(64 t^{2}+56 t-5\right) Q^{3}-2 t\left(256 t^{3}-312 t^{2}+156 t-5\right) Q^{2} \\
\quad-(32 t-1)\left(16 t^{2}-28 t+1\right) Q-256 t^{3}-576 t^{2}-48 t+1=0 .
\end{gathered}
$$

- The number of walks of length $n=2 m$ ending at $(0,0)$ is

$$
a(0,0 ; 2 m)=16^{m} \frac{(5 / 6)_{m}(1 / 2)_{m}}{(5 / 3)_{m}(2)_{m}}
$$

where $(a)_{m}=a(a+1) \cdots(a+m-1)$ is the ascending factorial.

Comments

- other elementary proofs will come for sure
- 3D Kreweras' walks remain mysterious
- works for other algebraic models with repeated steps, proved so far by computer algebra [Kauers, Yatchak 14(a)]

Comments

- other elementary proofs will come for sure
- 3D Kreweras' walks remain mysterious
- works for other algebraic models with repeated steps, proved so far by computer algebra [Kauers, Yatchak 14(a)]

- Open: Find elementary proofs for

Algebraic
Conj. [Kauers, Yatchak 14(a)]
Proof via complex analysis [R. et al.]

D-finite
Proof via computer algebra [Kauers, Yatchak 14(a)]

Polynomial equations with one catalytic variable

- Assume

$$
P\left(F(x), A_{1}, \ldots, A_{k}, t, x\right)=0
$$

where $P\left(x_{0}, x_{1}, \ldots, x_{k}, t, x\right)$ is a polynomial with coefficients in \mathbb{K}, $F(x) \equiv F(x ; t) \in \mathbb{K}[x][[t]]$, and $A_{i} \in \mathbb{K}[[t]]$ for all i.

Polynomial equations with one catalytic variable

- Assume

$$
P\left(F(x), A_{1}, \ldots, A_{k}, t, x\right)=0
$$

where $P\left(x_{0}, x_{1}, \ldots, x_{k}, t, x\right)$ is a polynomial with coefficients in \mathbb{K}, $F(x) \equiv F(x ; t) \in \mathbb{K}[x][[t]]$, and $A_{i} \in \mathbb{K}[[t]]$ for all i.

- For any series $X \equiv X(t)$ such that
- the series $F(X) \equiv F(X ; t)$ is well-defined
- $\frac{\partial P}{\partial x_{0}}\left(F(X), A_{1}, \ldots, A_{k}, t, X\right)=0$,
one has

$$
\frac{\partial P}{\partial x}\left(F(X), A_{1}, \ldots, A_{k}, t, X\right)=0
$$

Polynomial equations with one catalytic variable

- Assume

$$
P\left(F(x), A_{1}, \ldots, A_{k}, t, x\right)=0
$$

where $P\left(x_{0}, x_{1}, \ldots, x_{k}, t, x\right)$ is a polynomial with coefficients in \mathbb{K}, $F(x) \equiv F(x ; t) \in \mathbb{K}[x][[t]]$, and $A_{i} \in \mathbb{K}[[t]]$ for all i.

- For any series $X \equiv X(t)$ such that
- the series $F(X) \equiv F(X ; t)$ is well-defined
- $\frac{\partial P}{\partial x_{0}}\left(F(X), A_{1}, \ldots, A_{k}, t, X\right)=0$,
one has

$$
\frac{\partial P}{\partial x}\left(F(X), A_{1}, \ldots, A_{k}, t, X\right)=0
$$

Proof: differentiate (1) with respect to x

$$
F^{\prime}(x) \frac{\partial P}{\partial x_{0}}\left(F(x), A_{1}, \ldots, A_{k}, t, x\right)+\frac{\partial P}{\partial x}\left(F(x), A_{1}, \ldots, A_{k}, t, x\right)=0
$$

Polynomial equations with one catalytic variable

- Assume there exist k series X_{1}, \ldots, X_{k} such that

$$
\frac{\partial P}{\partial x_{0}}\left(F\left(X_{i}\right), A_{1}, \ldots, A_{k}, t, X_{i}\right)=0
$$

In this case, for each X_{i},

$$
\frac{\partial P}{\partial x}\left(F\left(X_{i}\right), A_{1}, \ldots, A_{k}, t, X_{i}\right)=0
$$

and

$$
P\left(F\left(X_{i}\right), A_{1}, \ldots, A_{k}, t, X_{i}\right)=0
$$

- This system of $3 k$ polynomial equations in $3 k$ unknowns A_{1}, \ldots, A_{k}, $X_{1}, \ldots, X_{k}, F\left(X_{1}\right), \ldots, F\left(X_{k}\right)$ may imply (together with the fact that the X_{i} are distinct) the algebraicity of the A_{i}.

A computer algebra approach

Example. When $\mathcal{S}=\{\overline{1} 0,0 \overline{1}, 11\}$, the equation reads

$$
(1-t(\bar{x}+\bar{y}+x y)) x y A(x, y ; t)=x y-t y A(0, y ; t)-t x A(x, 0 ; t) .
$$

Naïve route: guess and check!

- Guess a polynomial equation Pol satisfied by $A(x, y ; t)$ (degrees $[18,18,17,12]$ in x, y, t, A)
- Prove that $F(x, y ; t)$ is a formal power series in t with polynomial coefficients in x and $y \Rightarrow F(x, 0 ; t)$ and $F(0, y ; t)$ are well-defined
- By taking resultants, prove that $F(x, y ; t)$ satisfies the above functional equation.

A computer algebra approach

Example. When $\mathcal{S}=\{\overline{1} 0,0 \overline{1}, 11\}$, the equation reads

$$
(1-t(\bar{x}+\bar{y}+x y)) x y A(x, y ; t)=x y-t y A(0, y ; t)-t x A(x, 0 ; t) .
$$

Naïve route: guess and check!

- Guess a polynomial equation Pol satisfied by $A(x, y ; t)$ (degrees $[18,18,17,12]$ in x, y, t, A)
- Let $F(x, y ; t)$ be the solution of Pol that coincides with $A(x, y ; t)$ up to high order (in t)
- Prove that $F(x, y ; t)$ is a formal power series in t with polynomial
coefficients in x and $y \Rightarrow F(x, 0 ; t)$ and $F(0, y ; t)$ are well-defined
- By taking resultants, prove that $F(x, y ; t)$ satisfies the above functional equation.

A computer algebra approach

Example. When $\mathcal{S}=\{\overline{1} 0,0 \overline{1}, 11\}$, the equation reads

$$
(1-t(\bar{x}+\bar{y}+x y)) x y A(x, y ; t)=x y-t y A(0, y ; t)-t x A(x, 0 ; t)
$$

Naïve route: guess and check!

- Guess a polynomial equation Pol satisfied by $A(x, y ; t)$ (degrees $[18,18,17,12]$ in x, y, t, A)
- Let $F(x, y ; t)$ be the solution of Pol that coincides with $A(x, y ; t)$ up to high order (in t)
- Prove that $F(x, y ; t)$ is a formal power series in t with polynomial coefficients in x and $y \Rightarrow F(x, 0 ; t)$ and $F(0, y ; t)$ are well-defined functional equation.

A computer algebra approach

Example. When $\mathcal{S}=\{\overline{1} 0,0 \overline{1}, 11\}$, the equation reads

$$
(1-t(\bar{x}+\bar{y}+x y)) x y A(x, y ; t)=x y-t y A(0, y ; t)-t x A(x, 0 ; t)
$$

Naïve route: guess and check!

- Guess a polynomial equation Pol satisfied by $A(x, y ; t)$ (degrees $[18,18,17,12]$ in x, y, t, A)
- Let $F(x, y ; t)$ be the solution of Pol that coincides with $A(x, y ; t)$ up to high order (in t)
- Prove that $F(x, y ; t)$ is a formal power series in t with polynomial coefficients in x and $y \Rightarrow F(x, 0 ; t)$ and $F(0, y ; t)$ are well-defined
- By taking resultants, prove that $F(x, y ; t)$ satisfies the above functional equation.

A computer algebra approach

Example. When $\mathcal{S}=\{\overline{1} 0,0 \overline{1}, 11\}$, the equation reads

$$
(1-t(\bar{x}+\bar{y}+x y)) x y A(x, y ; t)=x y-t y A(0, y ; t)-t x A(x, 0 ; t)
$$

Naïve route: guess and check!

- Guess a polynomial equation Pol satisfied by $A(x, y ; t)$ (degrees $[18,18,17,12]$ in x, y, t, A)
- Let $F(x, y ; t)$ be the solution of Pol that coincides with $A(x, y ; t)$ up to high order (in t)
- Prove that $F(x, y ; t)$ is a formal power series in t with polynomial coefficients in x and $y \Rightarrow F(x, 0 ; t)$ and $F(0, y ; t)$ are well-defined
- By taking resultants, prove that $F(x, y ; t)$ satisfies the above functional equation.
- Then

$$
(1-t(\bar{x}+\bar{y}+x y)) x y A(x, y ; t)=x y-t y F(y, 0 ; t)-t x F(x, 0 ; t)
$$

A computer algebra approach

Example. When $\mathcal{S}=\{\overline{1} 0,0 \overline{1}, 11\}$, the equation reads

$$
(1-t(\bar{x}+\bar{y}+x y)) x y A(x, y ; t)=x y-t y A(0, y ; t)-t x A(x, 0 ; t)
$$

A less naïve route

- Guess a polynomial equation Pol satisfied by $A(x, 0 ; t)=A(0, x ; t)$ (degrees $[6,10,6]$ in x, t, A)
- Let $F(x, 0 ; t)$ be the solution of Pol that coincides with $A(x, 0 ; t)$ up to high order (in t)
- Prove that $F(x, 0 ; t)$ is a formal power series in t with polynomial
- By taking resultants, prove that F satisfies the equation obtained by canceling the kernel:

A computer algebra approach

Example. When $\mathcal{S}=\{\overline{1} 0,0 \overline{1}, 11\}$, the equation reads

$$
(1-t(\bar{x}+\bar{y}+x y)) x y A(x, y ; t)=x y-t y A(0, y ; t)-t x A(x, 0 ; t)
$$

A less naïve route

- Guess a polynomial equation Pol satisfied by $A(x, 0 ; t)=A(0, x ; t)$ (degrees $[6,10,6]$ in x, t, A)
- Let $F(x, 0 ; t)$ be the solution of Pol that coincides with $A(x, 0 ; t)$ up to high order (in t)
- By taking resultants, prove that F satisfies the equation obtained by canceling the kernel:

A computer algebra approach

Example. When $\mathcal{S}=\{\overline{1} 0,0 \overline{1}, 11\}$, the equation reads

$$
(1-t(\bar{x}+\bar{y}+x y)) x y A(x, y ; t)=x y-t y A(0, y ; t)-t x A(x, 0 ; t)
$$

A less naïve route

- Guess a polynomial equation Pol satisfied by $A(x, 0 ; t)=A(0, x ; t)$ (degrees $[6,10,6]$ in x, t, A)
- Let $F(x, 0 ; t)$ be the solution of Pol that coincides with $A(x, 0 ; t)$ up to high order (in t)
- Prove that $F(x, 0 ; t)$ is a formal power series in t with polynomial coefficients in x canceling the kernel:

A computer algebra approach

Example. When $\mathcal{S}=\{\overline{1} 0,0 \overline{1}, 11\}$, the equation reads

$$
(1-t(\bar{x}+\bar{y}+x y)) x y A(x, y ; t)=x y-t y A(0, y ; t)-t x A(x, 0 ; t)
$$

A less naïve route

- Guess a polynomial equation Pol satisfied by $A(x, 0 ; t)=A(0, x ; t)$ (degrees $[6,10,6]$ in x, t, A)
- Let $F(x, 0 ; t)$ be the solution of Pol that coincides with $A(x, 0 ; t)$ up to high order (in t)
- Prove that $F(x, 0 ; t)$ is a formal power series in t with polynomial coefficients in x
- By taking resultants, prove that F satisfies the equation obtained by canceling the kernel:

$$
t x F(x, 0 ; t)+t Y_{0} F\left(Y_{0}, 0 ; t\right)=x Y_{0}
$$

A computer algebra approach

Example. When $\mathcal{S}=\{\overline{1} 0,0 \overline{1}, 11\}$, the equation reads

$$
(1-t(\bar{x}+\bar{y}+x y)) x y A(x, y ; t)=x y-t y A(0, y ; t)-t x A(x, 0 ; t)
$$

A less naïve route

- Guess a polynomial equation Pol satisfied by $A(x, 0 ; t)=A(0, x ; t)$ (degrees $[6,10,6]$ in x, t, A)
- Let $F(x, 0 ; t)$ be the solution of Pol that coincides with $A(x, 0 ; t)$ up to high order (in t)
- Prove that $F(x, 0 ; t)$ is a formal power series in t with polynomial coefficients in x
- By taking resultants, prove that F satisfies the equation obtained by canceling the kernel:

$$
t x F(x, 0 ; t)+t Y_{0} F\left(Y_{0}, 0 ; t\right)=x Y_{0}
$$

- Then

$$
(1-t(\bar{x}+\bar{y}+x y)) x y A(x, y ; t)=x y-\operatorname{ty} F(y, 0 ; t)-t x F(x, 0 ; t)
$$

A computer algebra approach: climax

Algebraicity of Gessel's model [Bostan-Kauers 10]

- When $\mathcal{S}=\{10, \overline{1} 0,11, \overline{1}\}$, the series $A(x, y ; t)$ is algebraic (degree 72).
- In particular, the series $A(0,0 ; t)$, which counts loops, has degree 8 , and the following expansion:

$$
\begin{equation*}
A(0,0 ; t)=\sum_{n \geq 0} 16^{n} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(5 / 3)_{n}(2)_{n}} t^{2 n} \tag{1}
\end{equation*}
$$

with $(i)_{n}=i(i+1) \cdots(i+n-1)$.
(1): Conjectured around 2001, first proof by [Kauers, Koutschan \& Zeilberger 09] using computer algebra.

The algebraicity of $A(x, y ; t)$ has now been re-proved using a complex analysis approach [Bostan, Kurkova \& Raschel 13(a)]

A complex analysis approach

Markov chains with small steps in the quadrant: stationary distribution(s) [Malyshev 71+]

Le petit livre jaune [Fayolle, lasnogorodski \& Malyshev 99]

\Rightarrow Reduction to a boundary value problem of the Riemann-Carleman type

A complex analysis approach

An expression of Q for any non-singular model \mathcal{S}

$$
\tilde{K}(x, 0 ; t) A(x, 0 ; t)-\tilde{K}(0,0 ; t) A(0,0 ; t)=x Y_{0}(x ; t)+
$$

$$
\frac{1}{2 i \pi} \int_{x_{1}(t)}^{x_{2}(t)} u\left[Y_{0}(u ; t)-Y_{1}(u ; t)\right]\left[\frac{\partial_{u} w(u ; t)}{w(u ; t)-w(x ; t)}-\frac{\partial_{u} w(u ; t)}{w(u ; t)-w(0 ; t)}\right] d u
$$

where Y_{0}, Y_{1}, x_{1} and x_{2} are explicit algebraic series and w is explicit/ very well understood.
[Raschel 12] + Fayolle, Kurkova

+ other formulas that complete the characterization of $A(x, y ; t)$

A complex analysis approach

An expression of Q for any non-singular model \mathcal{S}

$$
\tilde{K}(x, 0 ; t) A(x, 0 ; t)-\tilde{K}(0,0 ; t) A(0,0 ; t)=x Y_{0}(x ; t)+
$$

$$
\frac{1}{2 i \pi} \int_{x_{1}(t)}^{x_{2}(t)} u\left[Y_{0}(u ; t)-Y_{1}(u ; t)\right]\left[\frac{\partial_{u} w(u ; t)}{w(u ; t)-w(x ; t)}-\frac{\partial_{u} w(u ; t)}{w(u ; t)-w(0 ; t)}\right] d u
$$

where Y_{0}, Y_{1}, x_{1} and x_{2} are explicit algebraic series and w is explicit/ very well understood.
In particular, w is D-finite (in fact, algebraic!) iff the group is finite.
[Raschel 12] + Fayolle, Kurkova

+ other formulas that complete the characterization of $A(x, y ; t)$

A complex analysis approach: climax(es)

Theorems

- If \mathcal{S} has an infinite group and is not singular, then $A(x, y ; t)$ is not D-finite in x (\equiv no differential equation with respect to x)
[Kurkova \& Raschel 12]
- A new proof of the algebraicity of Gessel's model

[Bostan, Kurkova \& Raschel 13(a)]

