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Walks in the quadrant

Let S be a finite subset of Z2 (set of steps) and p0 ∈ N2 (starting point).

Questions
What is the number a(n) of n-step walks starting at p0 and
contained in the non-negative quadrant N2?
For (i , j) ∈ N2, what is the number a(i , j ; n) of such walks that end
at (i , j)?

Example. S = {10, 1̄0, 11̄, 1̄1}, p0 = (0, 0).
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(i , j) = (5, 1)



Example [Gouyou-Beauchamps 86], [mbm-Mishna 10]

Take S = {10, 1̄0, 11̄, 1̄1} and p0 = (0, 0)

(i , j) = (5, 1) '

Nice numbers
If n = 2m + δ, with δ ∈ {0, 1},

a(n) =
n!(n + 1)!

m!(m + 1)!(m + δ)!(m + δ + 1)!
.

Moreover, if n = 2m + i ,

a(i , j ; n) =
(i + 1)(j + 1)(i + j + 2)(i + 2j + 3)n!(n + 2)!

(m − j)!(m + 1)!(m + i + 2)!(m + i + j + 3)!
.
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Generating functions

• Our original question:

a(n) = ? a(i , j ; n) = ?

• Generating functions and their nature

A(t) =
∑
n≥0

a(n)tn, A(x , y ; t) =
∑
i ,j ,n

a(i , j ; n)x iy j tn

Can one express these series? Are they rational? algebraic? D-finite?

Remarks
A(1, 1; t) = A(t)

A(0, 0; t) counts walks ending at (0, 0)

A(x , 0; t) counts walks ending on the x-axis
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A hierarchy of formal power series

• The formal power series A(t) is rational if it can be written

A(t) = P(t)/Q(t)

where P(t) and Q(t) are polynomials in t.

• The formal power series A(t) is algebraic (over Q(t)) if it satisfies a
(non-trivial) polynomial equation:

P(t,A(t)) = 0.

• The formal power series A(t) is D-finite (holonomic) if it satisfies a
(non-trivial) linear differential equation with polynomial coefficients:

Pk(t)A(k)(t) + · · ·+ P0(t)A(t) = 0.

◦ Nice closure properties + asymptotics of the coefficients
◦ Extension to several variables (D-finite: one DE per variable)



Walks in the full space

Rational series
A rational generating function:

a(n) = |S|n ⇔ A(t) =
∑
n≥0

a(n)tn =
1

1− |S| t

More generally:

A(x , y ; t) =
1

1− t
∑

(i ,j)∈S x iy j .



Walks in a rational half-space

Algebraic series
The associated generating function is algebraic, given by an explicit
system of polynomial equations.

[Gessel 80], [Duchon 00], [mbm-Petkovšek 00]...



Walks in the quadrant

• Start from p0 = (0, 0)

A(x , y ; t) =
∑

i ,j ,n≥0

a(i , j ; n)x iy j tn = ?

i

j
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Quadrant walks with small steps: classification

• S ⊂ {1̄, 0, 1} \ {00} ⇒ 28 = 256 step sets (or: models)

• However, some models are equivalent:
– to a model of walks in the full or half-plane (⇒ algebraic)

– to another model in the collection (diagonal symmetry)

'

• One is left with 79 interesting distinct models.

[mbm-Mishna 10]
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Classification of quadrant walks with small steps

Theorem
The series A(x , y ; t) is D-finite iff the associated group G is finite.
It is algebraic iff, in addition, the orbit sum is zero.

[mbm-Mishna 10], [Bostan-Kauers 10] D-finite
[Kurkova-Raschel 12] non-singular non-D-finite
[Mishna-Rechnitzer 07], [Melczer-Mishna 13] singular non-D-finite

quadrant models: 79

|G |<∞: 23

OS 6=0: 19

D-finite

OS=0: 3 + 1

algebraic

|G |=∞: 56

not D-finite



Classification of quadrant walks with small steps

quadrant models: 79

|G |<∞: 23

OS6=0: 19

D-finite

OS=0: 3 + 1

algebraic

|G |=∞: 56

Not D-finite

in probability
Random walks

Formal power
series algebra

Complex analysis

Computer algebra effective closure properties
arithmetic properties

G-functions
asymptotics

D-finite series



When the orbit sum is zero: the four algebraic models

Kreweras reverse Kreweras double Kreweras Gessel

Kreweras walks
I expression for a(i , 0; n) [Kreweras 65], simplified by [Niederhausen 83]
I A(x , y ; t) is algebraic [Gessel 86, mbm 02/05]

Unified approach for the Kreweras trilogy [mbm-Mishna 10]

Gessel walks:
I conjecture for a(0, 0; n) [Gessel ' 00]
I proof of this conjecture [Kauers, Koutschan & Zeilberger 08]
I A(t) and A(x , y ; t) are algebraic! [Bostan & Kauers 09a]
I new proof via complex analysis [Bostan, Kurkova & Raschel 13]
I an elementary and constructive proof [mbm 15]
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Kreweras’ walks

Theorem
• The number of walks of length n = 3m + 2i ending at (i , 0) is

a(i , 0; n) =
4m(2i + 1)

(m + i + 1)(2m + 2i + 1)

(
2i
i

)(
3m + 2i

m

)
[Kreweras 65]

• The generating function A(x , y ; t) is algebraic [Gessel 86].

For instance, the series Q(t) := A(0, 0; t1/3) has degree 3:

54t − 1 + (1− 72t)Q(t) + 16tQ(t)2 + 64t2Q(t)3 = 0



Gessel’s walks

Theorem
• The number of walks of length n = 2m ending at (0, 0) is

a(0, 0; n) = 16m (5/6)m(1/2)m

(5/3)m(2)m
,

where (a)m = a(a + 1) · · · (a + m − 1) is the ascending factorial.
[Kauers, Koutschan, Zeilberger 08]

• The generating function A(x , y ; t) is algebraic.
[Bostan, Kauers 09]

For instance, the series Q(t) := A(0, 0;
√

t) has degree 8:

27t7Q8 + 108t6Q7 + 189t5Q6 + 189t4Q5 − 9t3(32t2 + 28t − 13)Q4

− 9t2(64t2 + 56t − 5)Q3 − 2t(256t3 − 312t2 + 156t − 5)Q2

− (32t − 1)(16t2 − 28t + 1)Q − 256t3 − 576t2 − 48t + 1 = 0.



I. A solution of...

[mbm 02]

1. functional equation for A(x , y ; t)

2. canceling the kernel: the roots Y0 and Y1

3. the group of the walk
4. symmetric functions of Y0 and Y1

5. Brown’s quadratic method (1969)
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1. A functional equation

Set step: S = {11, 1̄0, 01̄}. Denote x̄ = 1/x and ȳ = 1/y .

A(x , y ; t) ≡ A(x , y) = 1 + t(xy + x̄ + ȳ)A(x , y)− tx̄A(0, y)− tȳA(x , 0)

or(
1− t(xy + x̄ + ȳ)

)
xyA(x , y) = xy − tyA(0, y)− txA(x , 0)

• The polynomial 1− t(xy + x̄ + ȳ) is the kernel of this equation

• The equation is linear, with two catalytic variables x and y (tautological
at x = 0 or y = 0)
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or (
1− t(xy + x̄ + ȳ)
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or (
1− t(xy + x̄ + ȳ)
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2. Canceling the kernel

• The equation:(
1− t(xy + x̄ + ȳ)

)
xyA(x , y) = xy − tyA(0, y)− txA(x , 0)

• The kernel
(
1− t(xy + x̄ + ȳ)

)
, as a polynomial in y , has two roots:

Y0(x) =
1− tx̄ −

√
(1− tx̄)2 − 4t2x
2tx

= t + x̄ t2 + O(t3),

Y1(x) =
1− tx̄ +

√
(1− tx̄)2 − 4t2x
2tx

=
x̄
t
− x̄2 − t − x̄ t2 + O(t3).

• Specializing y to Y0 in the equation gives:

R(x) + R(Y0) = xY0

with R(x) = txA(x , 0) = txA(0, x) (symmetry).

This equation characterizes R(x) but... why algebraicity?
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3. The group of the model

The kernel
K (x , y) = 1− t(xy + x̄ + ȳ)

is left unchanged by the rational transformations

Φ : (x , y) 7→ (x̄ ȳ , y) and Ψ : (x , y) 7→ (x , x̄ ȳ) .

They are involutions, and generate a dihedral group G of order 6:

Ψ

ΦΨ

Φ

(x , y)

Ψ

Φ(x̄ ȳ , y) (x̄ ȳ , x)

(y , x)

(y , x̄ ȳ)(x , x̄ ȳ)
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Build more pairs that cancel the kernel

• Since K (x ,Y0) = 0 and the transformations of G preserve the kernel,
any element of the orbit of (x ,Y0) cancels the kernel.

Ψ

ΦΨ

Φ

Ψ

Φ

(x ,Y0) (Y0, x)

(Y0,Y1)(x ,Y1)

(Y1, x)(Y1,Y0)

Gives two equations for R :

R(x) + R(Y0) = xY0

R(Y0) + R(Y1) = Y0Y1 = x̄

with R(x) = txA(x , 0).
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4. Symmetric functions of Y0 and Y1

• The elementary symmetric functions of the Yi are polynomials in x̄ :

Y0 + Y1 =
x̄
t
− x̄2 and Y0Y1 = x̄ .

• Rewrite the equations for R as

R(Y0)− xY0 = −R(x)

R(Y1)− xY1 = R(x) + 2x̄ − 1/t

• The product is symmetric in Y0 and Y1:

(R(Y0)− xY0)(R(Y1)− xY1) = −R(x) (R(x) + 2x̄ − 1/t)

• Extracting the non-negative powers of x gives:

x − 2R ′(0) = −R(x)(R(x) + 2x̄ − 1/t).

No more Yi ! Equivalently,

xtR(x)2 + (2t − x)R(x) + tx2 − 2txR ′(0) = 0.
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5. Finish: the quadratic method

The series R(x) = txA(x , 0) satisfies

xtR(x)2 + (2t − x)R(x) + tx2 − 2txR ′(0) = 0.

or
t2x2A(x , 0)2 + (2t − x)A(x , 0)− 2tA(0, 0) + x = 0.

Tautological at x = 0: a quadratic equation with one catalytic variable x ,
and one additional unknown one-variable series A(0, 0)
⇒ Brown’s quadratic method [Brown 69]

Theorem
Let X ≡ X (t) be the unique series in t defined by

X = t(2 + X 3).

Then the generating function of Kreweras’ walks ending on the x-axis is

A(x , 0; t) =
1
tx

(
1
2t
− 1

x
−
(

1
X
− 1

x

)√
1− xX 2

)
.
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II. A solution of Gessel’s model

[mbm 15]

functional equation for A(x , y)

canceling the kernel: the roots Y0 and Y1

the group of the walk
symmetric functions of Y0 and Y1

...
the generalized quadratic method [mbm-Jehanne 06]
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1. A functional equation

Set step: S = {11, 10, 1̄1̄, 01̄}

A(x , y) = 1 + t(xy + x + x̄ ȳ + x̄)A(x , y)

− tx̄(1 + ȳ)A(0, y)− tx̄ ȳ (A(x , 0)− A(0, 0))



1. A functional equation

Set step: S = {11, 10, 1̄1̄, 01̄}

A(x , y) = 1 + t(xy + x + x̄ ȳ + x̄)A(x , y)

− tx̄(1 + ȳ)A(0, y)− tx̄ ȳ (A(x , 0)− A(0, 0))

or (
1− t(xy + x + x̄ ȳ + x̄)

)
xyA(x , y) = xy − S(y)− R(x)

with

S(y) = t(1 + y)A(0, y) and R(x) = t (A(x , 0)− A(0, 0)).

• Main difference with K’ walks: no x/y symmetry, two bivariate
unknown series R(x) and S(y)



2. Canceling the kernel

• The equation:(
1− t(xy + x + x̄ ȳ + x̄)

)
xyA(x , y) = xy − S(y)− R(x)

• The kernel, as a polynomial in y , has two roots:

Y0(x) =
1− t(x + x̄)−

√
(1− t(x + x̄))2 − 4t2

2tx
= x̄ t + · · ·

Y1(x) =
1− t(x + x̄) +

√
(1− t(x + x̄))2 − 4t2

2tx
=

x̄
t
− (1 + x̄2) − x̄ t + · · ·

Observe that xYi (x) is symmetric in x and x̄ .

• Specializing y to Y0 in the equation gives:

R(x) + S(Y0) = xY0
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3. The group of the model

The kernel
K (x , y) = 1− t(xy + x + x̄ ȳ + x̄)

is left unchanged by the rational transformations

Φ : (x , y) 7→ (x̄ ȳ , y) and Ψ : (x , y) 7→
(
x , x̄2ȳ

)
.

They are involutions, and generate a dihedral group of order 8:

Ψ

Φ

ΨΦ

Ψ Φ

Φ

Ψ(x̄ ȳ , y) (x̄ ȳ , x2y) (x̄ , x2y)

(xy , x̄2ȳ)

(x , y) (x̄ , ȳ)

(xy , ȳ)(x , x̄2ȳ)
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Build more pairs that cancel the kernel

Since K (x ,Y0) = 0 and the transformations of G preserve the kernel, any
element of the orbit of (x ,Y0) cancels the kernel.

Ψ

Φ

ΨΦ

Ψ

(x ,Y0)

(xY1, x2Y0)

(xY0, x2Y1)

(xY1,Y0)

(x ,Y1)

(x̄ , x2Y1)

(xY0,Y1)

Φ

Φ

(x̄ , x2Y0) Ψ

Ψ

Φ

ΨΦ

Ψ

(x ,Y0)

(xY1, x2Y0)

(xY0, x2Y1)

(xY1,Y0)

(x ,Y1)

(x̄ , x2Y1)

(xY0,Y1)

Φ

Φ

(x̄ , x2Y0) Ψ

Gives four equations for R and S :

R(x) + S(Y0) = xY0

R(Y0) + S(Y1) = Y0Y1 = x̄

R(x̄) + S(x2Y0) = xY0

R(xY0) + S(x2Y1) = x3Y0Y1 = x .
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4. Symmetric functions of Y0 and Y1

• The elementary symmetric functions of the Yi are polynomials in x̄ :

Y0 + Y1 = −1 +
x̄
t
− x̄2 and Y0Y1 = x̄2.

• From the four equations:

R(x) + S(Y0) = xY0

R(xY0) + S(Y1) = Y0Y1 = x̄

R(x̄) + S(x2Y0) = xY0

R(xY0) + S(x2Y1) = x3Y0Y1 = x ,

one constructs two symmetric functions of Y0 and Y1, and extracts
non-negative powers of x .
This gives an equation without any Yi ... but with R(x) and R(x̄).
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4. Symmetric functions of Y0 and Y1 (cont’d)

This gives:

R(x)2 + R(x)R(x̄) + R(x̄)2 + (2x̄ − 1/t + x + S(0))R(x)

+(2x − 1/t + x̄ + S(0))R(x̄) = 2R ′(0)− (x̄ + x − 1/t)S(0)− 1

while for Kreweras’ walks:

xtR(x)2 + (2t − x)R(x) + tx2 − 2txR ′(0) = 0.

• Main difference: the terms R(x̄)

• Main difficulty: the hybrid term R(x)R(x̄)



5. Les identités remarquables à notre secours

The equation reads:

R(x)2 + R(x)R(x̄) + R(x̄)2 + (2x̄ − 1/t + x + S(0))R(x)

+ (2x − 1/t + x̄ + S(0))R(x̄) = 2R ′(0)− (x̄ + x − 1/t)S(0)− 1.

But but but...
(a2 + ab + b2)(a − b) = a3 − b3

⇒ Multiply by R(x)− R(x̄) + x̄ − x !

This gives P(x) = P(x̄), with

P(x) = R(x)3 + (S(0) + 3x̄ − 1/t)R(x)2

+
(
2x̄2 − x̄/t + x/t − x2 − 2R ′(0) + (2x̄ − 1/t)S(0)

)
R(x)

−x2S(0) + x
(
2R ′(0) + S(0)/t − 1

)
.
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⇒ Multiply by R(x)− R(x̄) + x̄ − x ! This gives P(x) = P(x̄), with
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+
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)
R(x)

−x2S(0) + x
(
2R ′(0) + S(0)/t − 1

)
.



5. Les identités remarquables à notre secours

We have obtained P(x) = P(x̄), with

P(x) = R(x)3 + (S(0) + 3x̄ − 1/t)R(x)2

+
(
2x̄2 − x̄/t + x/t − x2 − 2R ′(0) + (2x̄ − 1/t)S(0)

)
R(x)

−x2S(0) + x
(
2R ′(0) + S(0)/t − 1

)
.

Extract nonnegative powers of x :

R(x)3 + (S(0) + 3x̄ − 1/t)R(x)2

+
(
2x̄2 − x̄/t + x/t − x2 − 2R ′(0) + (2x̄ − 1/t)S(0)

)
R(x)

= R ′′(0) + R ′(0)(2S(0) + 2x̄ − 1/t) + xS(0)(x − 1/t) + x .

A cubic equation in one catalytic variable x , with three additional
unknown one-variable series S(0),R ′(0) and R ′′(0).



6. Finish: the generalized quadratic method

R(x)3 + (S(0) + 3x̄ − 1/t)R(x)2

+
(
2x̄2 − x̄/t + x/t − x2 − 2R ′(0) + (2x̄ − 1/t)S(0)

)
R(x)

= R ′′(0) + R ′(0)(2S(0) + 2x̄ − 1/t) + xS(0)(x − 1/t) + x .

Theorem
Every series R(x ; t) ≡ R(x) solution of a (proper) polynomial equation
with one catalytic variable x is algebraic. That is, if

P(t, x ,R(x),A1, . . . ,Ak) = 0

for some polynomial P with coefficients in Q, then R(x) is algebraic over
Q(t, x), and each Ai is algebraic over Q(t).

[mbm-Jehanne 2006] (after [Knuth 72] and [Brown 65])



6. Finish: the generalized quadratic method

Theorem
The generating function A(x , y ; t) is algebraic of degree 72
(explicit equations and rational parametrizations for A(x , 0) and A(0, y))

• In particular, the series Q(t) := A(0, 0;
√

t) has degree 8:

27t7Q8 + 108t6Q7 + 189t5Q6 + 189t4Q5 − 9t3(32t2 + 28t − 13)Q4

− 9t2(64t2 + 56t − 5)Q3 − 2t(256t3 − 312t2 + 156t − 5)Q2

− (32t − 1)(16t2 − 28t + 1)Q − 256t3 − 576t2 − 48t + 1 = 0.

• The number of walks of length n = 2m ending at (0, 0) is

a(0, 0; 2m) = 16m (5/6)m(1/2)m

(5/3)m(2)m
,

where (a)m = a(a + 1) · · · (a + m − 1) is the ascending factorial.



Comments
other elementary proofs will come for sure
3D Kreweras’ walks remain mysterious
works for other algebraic models with repeated steps, proved so far
by computer algebra [Kauers, Yatchak 14(a)]

λ

Open: Find elementary proofs for
λ

Algebraic D-finite

Conj. [Kauers, Yatchak 14(a)] Proof via computer algebra

Proof via complex analysis [R. et al.] [Kauers, Yatchak 14(a)]
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Polynomial equations with one catalytic variable

• Assume
P(F (x),A1, . . . ,Ak , t, x) = 0

where P(x0, x1, . . . , xk , t, x) is a polynomial with coefficients in K,
F (x) ≡ F (x ; t) ∈ K[x ][[t]], and Ai ∈ K[[t]] for all i .

• For any series X ≡ X (t) such that
the series F (X ) ≡ F (X ; t) is well-defined
∂P
∂x0

(F (X ),A1, . . . ,Ak , t,X ) = 0,
one has

∂P
∂x

(F (X ),A1, . . . ,Ak , t,X ) = 0.

Proof: differentiate (1) with respect to x

F ′(x)
∂P
∂x0

(F (x),A1, . . . ,Ak , t, x) +
∂P
∂x

(F (x),A1, . . . ,Ak , t, x) = 0.
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Polynomial equations with one catalytic variable

• Assume there exist k series X1, . . . ,Xk such that

∂P
∂x0

(F (Xi ),A1, . . . ,Ak , t,Xi ) = 0.

In this case, for each Xi ,

∂P
∂x

(F (Xi ),A1, . . . ,Ak , t,Xi ) = 0

and
P(F (Xi ),A1, . . . ,Ak , t,Xi ) = 0.

• This system of 3k polynomial equations in 3k unknowns A1, . . . ,Ak ,
X1, . . . ,Xk , F (X1), . . . ,F (Xk) may imply (together with the fact that the
Xi are distinct) the algebraicity of the Ai .

[mbm-Jehanne 06]



A computer algebra approach

Example. When S = {1̄0, 01̄, 11}, the equation reads

(1− t(x̄ + ȳ + xy))xyA(x , y ; t) = xy − tyA(0, y ; t)− txA(x , 0; t).

Naïve route: guess and check!
Guess a polynomial equation Pol satisfied by A(x , y ; t)
(degrees [18, 18, 17, 12] in x , y , t,A)
Let F (x , y ; t) be the solution of Pol that coincides with A(x , y ; t) up
to high order (in t)
Prove that F (x , y ; t) is a formal power series in t with polynomial
coefficients in x and y ⇒ F (x , 0; t) and F (0, y ; t) are well-defined
By taking resultants, prove that F (x , y ; t) satisfies the above
functional equation.

Then

(1− t(x̄ + ȳ + xy))xyA(x , y ; t) = xy − tyF (y , 0; t)− txF (x , 0; t).
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A computer algebra approach

Example. When S = {1̄0, 01̄, 11}, the equation reads

(1− t(x̄ + ȳ + xy))xyA(x , y ; t) = xy − tyA(0, y ; t)− txA(x , 0; t).

A less naïve route
Guess a polynomial equation Pol satisfied by A(x , 0; t) = A(0, x ; t)
(degrees [6, 10, 6] in x , t,A)
Let F (x , 0; t) be the solution of Pol that coincides with A(x , 0; t) up
to high order (in t)
Prove that F (x , 0; t) is a formal power series in t with polynomial
coefficients in x
By taking resultants, prove that F satisfies the equation obtained by
canceling the kernel:

txF (x , 0; t) + tY0F (Y0, 0; t) = xY0.

Then
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A computer algebra approach: climax

Algebraicity of Gessel’s model [Bostan-Kauers 10]

• When S = {10, 1̄0, 11, 1̄1̄}, the series A(x , y ; t) is algebraic (degree 72).

• In particular, the series A(0, 0; t), which counts loops, has degree 8, and
the following expansion:

A(0, 0; t) =
∑
n≥0

16n (5/6)n(1/2)n

(5/3)n(2)n
t2n, (1)

with (i)n = i(i + 1) · · · (i + n − 1).

(1): Conjectured around 2001, first proof by [Kauers, Koutschan &
Zeilberger 09] using computer algebra.

The algebraicity of A(x , y ; t) has now been re-proved using a complex
analysis approach [Bostan, Kurkova & Raschel 13(a)]



A complex analysis approach

Markov chains with small steps in the quadrant: stationary distribution(s)
[Malyshev 71+]

Le petit livre jaune
[Fayolle, Iasnogorodski & Malyshev 99]

⇒ Reduction to a boundary value problem of the Riemann-Carleman type



A complex analysis approach

An expression of Q for any non-singular model S

K̃ (x , 0; t)A(x , 0; t)− K̃ (0, 0; t)A(0, 0; t) = xY0(x ; t)+

1
2iπ

∫ x2(t)

x1(t)
u [Y0(u; t)− Y1(u; t)]

[
∂uw(u; t)

w(u; t)− w(x ; t)
− ∂uw(u; t)

w(u; t)− w(0; t)

]
du

where Y0, Y1, x1 and x2 are explicit algebraic series and w is explicit/
very well understood.

In particular, w is D-finite (in fact, algebraic!) iff the group is finite.

[Raschel 12] + Fayolle, Kurkova

+ other formulas that complete the characterization of A(x , y ; t)
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A complex analysis approach: climax(es)

Theorems
• If S has an infinite group and is not singular, then A(x , y ; t) is not
D-finite in x (≡ no differential equation with respect to x)

[Kurkova & Raschel 12]

• A new proof of the algebraicity of Gessel’s model

[Bostan, Kurkova & Raschel 13(a)]




