Self-avoiding walks

on the honeycomb lattice

d'après H. Duminil-Copin and S. Smirnov

ArXiv 1007.0575

Self-avoiding walks (SAW)

What is $c(n)$, the number of n-step SAW?

Not so easy! $c(n)$ is known up to $n=105$ [Jensen 06]

Problem: a highly non-markovian model

Simple bounds on $c(n)$

We have

$$
F_{n+1} \leq c(n) \leq 3 \cdot 2^{n-1}
$$

with $F_{0}=F_{1}=1$ and $F_{n+1}=F_{n}+F_{n-1}$ (Fibonacci numbers).

- Upper bound: at most two possible extensions at each step
- Lower bound: SAW that never move in the South direction (partially directed).

The connective constant

Clearly,

$$
c(m+n) \leq c(m) c(n)
$$

$\Rightarrow \lim c(n)^{1 / n}$ exists and

$$
\mu:=\lim c(n)^{1 / n}=\inf c(n)^{1 / n}
$$

The connective constant

$$
\mu:=\lim c(n)^{1 / n}=\inf c(n)^{1 / n}
$$

Given the bounds

$$
F_{n+1} \leq c(n) \leq 3 \cdot 2^{n-1}
$$

there holds

$$
\frac{1+\sqrt{5}}{2} \simeq 1.62 \leq \mu \leq 2
$$

Theorem [Duminil-Copin \& Smirnov 10]

$$
\mu=\sqrt{2+\sqrt{2}} \simeq 1.85
$$

Conjectured by Nienhuis in 1982

Sub-families of SAW

Self-avoiding polygons and self-avoiding bridges

- Same growth constant:

$$
p(n)^{1 / n} \rightarrow \mu \quad \text { and } b(n)^{1 / n} \rightarrow \mu
$$

[Hammersley 61]

Generating functions

For self-avoiding walks, polygons and bridges:

$$
C(t)=\sum c(n) t^{n}, \quad P(t)=\sum p(n) t^{n}, \quad B(t)=\sum b(n) t^{n}
$$

Theorem [Duminil-Copin \& Smirnov 10]
The radius of convergence of these series is

$$
t_{c}=\frac{1}{\sqrt{2+\sqrt{2}}}
$$

Moreover:

- $C(t)$ diverges at t_{c},
- $P(t)$ converges at t_{c}.

Conjectures:

$$
C(t) \sim \frac{1}{\left(1-t / t_{c}\right)^{43 / 32}}, \quad P(t)_{\operatorname{sing}} \sim\left(1-t / t_{c}\right)^{3 / 2}, \quad B(t) \sim \frac{1}{\left(1-t / t_{c}\right)^{9 / 16}}
$$

Walks starting and ending at mid-edges

A key identity

Consider the following domain $D_{h, \ell}$.

A key identity

Consider the following domain $D_{h, \ell}$.
Let $L_{h, \ell}(t)$ (resp. $\left.R_{h, \ell}(t), M_{h, \ell}(t)\right)$ be the generating function of walks that start from a and end on the left (resp. right, middle) border of the domain $D_{h, \ell}$. These series are polynomials in t.
Then for all h and ℓ, at $t=t_{c}=1 / \sqrt{2+\sqrt{2}}$,

$$
\frac{\sqrt{2-\sqrt{2}}}{2} L_{h, \ell}\left(t_{c}\right)+R_{h, \ell}\left(t_{c}\right)+\frac{1}{\sqrt{2}} M_{h, \ell}\left(t_{c}\right)=1
$$

An upper bound on μ

$$
\frac{\sqrt{2-\sqrt{2}}}{2} L_{h, \ell}\left(t_{c}\right)+R_{h, \ell}\left(t_{c}\right)+\frac{1}{\sqrt{2}} M_{h, \ell}\left(t_{c}\right)=1
$$

Consider walks in $D_{h, \ell}$ that go from a to a^{+} (\simeq self-avoiding polygons). Their generating function $\widetilde{P}_{h, \ell}(t)$ satisfies

$$
\tilde{P}_{h, \ell}\left(t_{c}\right) \leq L_{h, \ell}\left(t_{c}\right) \leq \frac{2}{\sqrt{2-\sqrt{2}}}
$$

But

$$
\tilde{P}_{h, \ell}\left(t_{c}\right) \rightarrow \tilde{P}\left(t_{c}\right) \geq t_{c}^{2} P\left(t_{c}\right)
$$

as $h, \ell \rightarrow \infty$. This implies that $P\left(t_{c}\right)$ is finite. Hence $\mu \leq 1 / t_{c}=\sqrt{2+\sqrt{2}}$.

A lower bound on μ

$$
\frac{\sqrt{2-\sqrt{2}}}{2} L_{h, \ell}\left(t_{c}\right)+R_{h, \ell}\left(t_{c}\right)+\frac{1}{\sqrt{2}} M_{h, \ell}\left(t_{c}\right)=1
$$

As $h \rightarrow \infty, L_{h, \ell}\left(t_{c}\right)$ and $R_{h, \ell}\left(t_{c}\right)$ increase to limit values $L_{\ell}\left(t_{c}\right)$ and $R_{\ell}\left(t_{c}\right)$. Hence $M_{h, \ell}\left(t_{c}\right)$ decreases to a limit value $M_{\ell}\left(t_{c}\right)$.

- If $M_{\ell}\left(t_{c}\right)>0$ for some ℓ, the series

$$
\sum_{h} M_{h, \ell}\left(t_{c}\right)
$$

diverges. As it counts certain SAW, this implies that $\mu \geq 1 / t_{c}$.

- If $M_{\ell}\left(t_{c}\right)=0$ for all ℓ, another argument shows that $\sum_{\ell} R_{\ell}\left(t_{c}\right)$ (the generating function of bridges) diverges.
In both cases, $\mu \geq 1 / t_{c}=\sqrt{2+\sqrt{2}}$.

A lower bound on μ (continued)

$$
\alpha L_{h, \ell}\left(t_{c}\right)+R_{h, \ell}\left(t_{c}\right)+\frac{1}{\sqrt{2}} M_{h, \ell}\left(t_{c}\right)=1
$$

- If $M_{\ell}\left(t_{c}\right)=0$ for all ℓ, then

$$
\begin{aligned}
& \alpha L_{\ell}\left(t_{c}\right)+R_{\ell}\left(t_{c}\right)=1 \\
\Rightarrow & \alpha\left(L_{\ell+1}\left(t_{c}\right)-L_{\ell}\left(t_{c}\right)\right)=R_{\ell}\left(t_{c}\right)-R_{\ell+1}\left(t_{c}\right) \\
\Rightarrow & 2 \alpha t_{c} R_{\ell} R_{\ell+1} \geq R_{\ell}\left(t_{c}\right)-R_{\ell+1}\left(t_{c}\right) \\
\Rightarrow & 2 \alpha t_{c} \geq \frac{1}{R_{\ell+1}\left(t_{c}\right)}-\frac{1}{R_{\ell}\left(t_{c}\right)} \\
\Rightarrow & 2 \ell \alpha t_{c}+\frac{1}{R_{1}} \geq \frac{1}{R_{\ell}} \\
& \Rightarrow R_{\ell} \geq \frac{1}{2 \ell \alpha t_{c}+\beta},
\end{aligned}
$$

so that $\sum_{\ell} R_{\ell}\left(t_{c}\right)$ (the generating function of bridges) diverges.

A key identity

$$
\frac{\sqrt{2-\sqrt{2}}}{2} L_{h, \ell}\left(t_{c}\right)+R_{h, \ell}\left(t_{c}\right)+\frac{1}{\sqrt{2}} M_{h, \ell}\left(t_{c}\right)=1
$$

Where does it come from?

From a local identity that is re-summed over all vertices of the domain.

A local identity

Let D be a finite, simply connected domain, and a a point on the boundary of D. For p a point in the domain, let

$$
F(p) \equiv F(t, \alpha ; p)=\sum_{\omega: a \rightsquigarrow p} t^{|\omega|} e^{i \alpha W(\omega)},
$$

where $|\omega|$ is the length of ω, and $W(\omega)$ its winding number.

$$
W(\omega)=0
$$

$$
W(\omega)=-2 \pi
$$

$$
W(\omega)=-\pi
$$

A local identity

Let D be a finite, simply connected domain, and a a point on the boundary of D. For p a point in the domain, let

$$
F(p) \equiv F(t, \alpha ; p)=\sum_{\omega: a \rightsquigarrow p} t^{|\omega|} e^{i \alpha W(\omega)},
$$

where $|\omega|$ is the length of ω, and $W(\omega)$ its winding number.

$W(\omega)=0$
$W(\omega)=-2 \pi$
$W(\omega)=-\pi$
Rem. W is additive:

$$
\begin{gathered}
W(\omega)=\frac{\pi}{3}(\text { left turns }- \text { right turns }) . \\
\frac{\pi}{3}
\end{gathered}
$$

A local identity

Let

$$
F(p) \equiv F(t, \alpha ; p)=\sum_{\omega: a \rightsquigarrow p \text { in } D} t^{|\omega|} e^{i \alpha W(\omega)},
$$

If p, q and r are the 3 mid-edges around a vertex v of the honeycomb lattice, taken in counterclockwise order, then, for $t=t_{c}$ and $\alpha=-5 / 8$,

$$
F(p)+j F(q)+j^{2} F(r)=0
$$

where $j=e^{2 i \pi / 3}$, or, more symmetrically,

$$
(p-v) F(p)+(q-v) F(q)+(r-v) F(r)=0
$$

A local identity

Proof: Group walks three by three or two by two as follows

- Walks that avoid $v+$ walks in which v is the last visited vertex:

- Walks that visit v before their last vertex:

The contribution of all walks in a group is zero.

A local identity

- Walks that avoid $v+$ walks in which v is the last visited vertex:

$$
1+j t_{c} e^{-i \alpha \pi / 3}+j^{2} t_{c} e^{i \alpha \pi / 3}=0
$$

A local identity

- Walks that avoid $v+$ walks in which v is the last visited vertex:

$$
1+j t_{c} e^{-i \alpha \pi / 3}+j^{2} t_{c} e^{i \alpha \pi / 3}=0
$$

- Walks that visit v before their last vertex:

$$
e^{4 i \alpha \pi / 3}+j^{2} e^{-4 i \alpha \pi / 3}=2 / j \cos \left(\frac{\pi}{3}+4 \alpha \frac{\pi}{3}\right)=0
$$

Proof of the key identity

Sum the local identity

$$
(p-v) F(p)+(q-v) F(q)+(r-v) F(r)=0
$$

over all vertices v of the domain $D_{h, \ell}$.

- The inner mid-edges do not contribute.
- The winding number of walks ending on the boundary is known.

Proof of the key identity

Sum the local identity

$$
(p-v) F(p)+(q-v) F(q)+(r-v) F(r)=0
$$

over all vertices v of the domain $D_{h, \ell}$.

- The inner mid-edges do not contribute.
- The domain has an up-down symmetry.
- The winding number of walks ending on the boundary is known.

This gives:

$$
\frac{\sqrt{2-\sqrt{2}}}{2} L_{h, \ell}\left(t_{c}\right)+R_{h, \ell}\left(t_{c}\right)+\frac{1}{\sqrt{2}} M_{h, \ell}\left(t_{c}\right)=1
$$

where $L_{h, \ell}(t)$ (resp. $R_{h, \ell}(t), M_{h, \ell}(t)$) are the generating function of walks that start from a and end on the left (resp. right, middle) border of the domain $D_{h, \ell}$.

References

- ArXiv 1007.0575
- Some slides:
- Smirnov's lecture at ICM
http://www.unige.ch/~smirnov/slides/slides-hyderabad.pdf
- A video of Duminil-Copin at Microsoft http://research.microsoft.com/apps/video/dl.aspx?id=133046

