Self-avoiding walks

on the honeycomb lattice

d'après H. Duminil-Copin and S. Smirnov

ArXiv 1007.0575

Self-avoiding walks (SAW)

What is c(n), the number of *n*-step SAW?

Not so easy! c(n) is known up to n = 105 [Jensen 06]

Problem: a highly non-markovian model

Simple bounds on c(n)

We have

 $F_{n+1} \le c(n) \le 3 \cdot 2^{n-1}$

with $F_0 = F_1 = 1$ and $F_{n+1} = F_n + F_{n-1}$ (Fibonacci numbers).

- Upper bound: at most two possible extensions at each step
- Lower bound: SAW that never move in the South direction (partially directed).

The connective constant

Clearly,

 $c(m+n) \le c(m)c(n)$

 $\Rightarrow \lim c(n)^{1/n}$ exists and

$$\mu := \lim c(n)^{1/n} = \inf c(n)^{1/n}$$

The connective constant

$$\mu := \lim c(n)^{1/n} = \inf c(n)^{1/n}$$

Given the bounds

$$F_{n+1} \leq c(n) \leq 3 \cdot 2^{n-1},$$

there holds

$$\frac{1+\sqrt{5}}{2} \simeq 1.62 \le \mu \le 2$$

Theorem [Duminil-Copin & Smirnov 10]

$$\mu = \sqrt{2 + \sqrt{2}} \simeq 1.85$$

Conjectured by Nienhuis in 1982

Sub-families of SAW

Self-avoiding polygons and self-avoiding bridges

• Same growth constant:

$$p(n)^{1/n} \to \mu$$
 and $b(n)^{1/n} \to \mu$

[Hammersley 61]

Generating functions

For self-avoiding walks, polygons and bridges:

$$C(t) = \sum c(n)t^n, \qquad P(t) = \sum p(n)t^n, \qquad B(t) = \sum b(n)t^n$$

Theorem [Duminil-Copin & Smirnov 10] The radius of convergence of these series is

$$t_c = \frac{1}{\sqrt{2 + \sqrt{2}}}.$$

Moreover:

- C(t) diverges at t_c ,
- P(t) converges at t_c .

Conjectures:

$$C(t) \sim rac{1}{(1-t/t_c)^{43/32}}, \quad P(t)_{sing} \sim (1-t/t_c)^{3/2}, \quad B(t) \sim rac{1}{(1-t/t_c)^{9/16}}$$

Walks starting and ending at mid-edges

A key identity

Consider the following domain $D_{h,\ell}$.

A key identity

Consider the following domain $D_{h,\ell}$.

Let $L_{h,\ell}(t)$ (resp. $R_{h,\ell}(t)$, $M_{h,\ell}(t)$) be the generating function of walks that start from a and end on the left (resp. right, middle) border of the domain $D_{h,\ell}$. These series are polynomials in t.

Then for all h and ℓ , at $t = t_c = 1/\sqrt{2 + \sqrt{2}}$,

$$\frac{\sqrt{2-\sqrt{2}}}{2} L_{h,\ell}(t_c) + R_{h,\ell}(t_c) + \frac{1}{\sqrt{2}} M_{h,\ell}(t_c) = 1$$

An upper bound on μ

$$\frac{\sqrt{2-\sqrt{2}}}{2} L_{h,\ell}(t_c) + R_{h,\ell}(t_c) + \frac{1}{\sqrt{2}} M_{h,\ell}(t_c) = 1$$

Consider walks in $D_{h,\ell}$ that go from a to a^+ (\simeq self-avoiding polygons). Their generating function $\tilde{P}_{h,\ell}(t)$ satisfies

$$ilde{P}_{h,\ell}(t_c) \leq L_{h,\ell}(t_c) \leq rac{2}{\sqrt{2-\sqrt{2}}}$$

But

$$\tilde{P}_{h,\ell}(t_c) \to \tilde{P}(t_c) \ge t_c^2 P(t_c)$$

as $h, \ell \to \infty$. This implies that $P(t_c)$ is finite. Hence $\mu \leq 1/t_c = \sqrt{2 + \sqrt{2}}$.

A lower bound on μ

$$\frac{\sqrt{2-\sqrt{2}}}{2} L_{h,\ell}(t_c) + R_{h,\ell}(t_c) + \frac{1}{\sqrt{2}} M_{h,\ell}(t_c) = 1$$

As $h \to \infty$, $L_{h,\ell}(t_c)$ and $R_{h,\ell}(t_c)$ increase to limit values $L_{\ell}(t_c)$ and $R_{\ell}(t_c)$. Hence $M_{h,\ell}(t_c)$ decreases to a limit value $M_{\ell}(t_c)$.

• If $M_{\ell}(t_c) > 0$ for some ℓ , the series

$$\sum_{h} M_{h,\ell}(t_c)$$

diverges. As it counts certain SAW, this implies that $\mu \ge 1/t_c$.

• If $M_{\ell}(t_c) = 0$ for all ℓ , another argument shows that $\sum_{\ell} R_{\ell}(t_c)$ (the generating function of bridges) diverges.

In both cases, $\mu \ge 1/t_c = \sqrt{2 + \sqrt{2}}$.

A lower bound on μ (continued)

$$\alpha L_{h,\ell}(t_c) + R_{h,\ell}(t_c) + \frac{1}{\sqrt{2}} M_{h,\ell}(t_c) = 1$$

• If $M_{\ell}(t_c) = 0$ for all ℓ , then $\alpha L_{\ell}(t_c) + R_{\ell}(t_c) = 1$ $\Rightarrow \alpha \left(L_{\ell+1}(t_c) - L_{\ell}(t_c) \right) = R_{\ell}(t_c) - R_{\ell+1}(t_c)$ $\Rightarrow 2\alpha t_c R_\ell R_{\ell+1} \geq R_\ell(t_c) - R_{\ell+1}(t_c)$ $\Rightarrow 2\alpha t_c \geq \frac{1}{R_{\ell+1}(t_c)} - \frac{1}{R_{\ell}(t_c)}$ $\Rightarrow 2\ell\alpha t_c + \frac{1}{R_1} \geq \frac{1}{R_\ell}$ $\Rightarrow R_{\ell} \geq \frac{1}{2\ell \alpha t_{c} + \beta},$

so that $\sum_{\ell} R_{\ell}(t_c)$ (the generating function of bridges) diverges.

A key identity

$$\frac{\sqrt{2-\sqrt{2}}}{2} L_{h,\ell}(t_c) + R_{h,\ell}(t_c) + \frac{1}{\sqrt{2}} M_{h,\ell}(t_c) = 1$$

Where does it come from?

From a local identity that is re-summed over all vertices of the domain.

Let D be a finite, simply connected domain, and a a point on the boundary of D. For p a point in the domain, let

$$F(p) \equiv F(t,\alpha;p) = \sum_{\omega:a \rightsquigarrow p} t^{|\omega|} e^{i\alpha W(\omega)},$$

where $|\omega|$ is the length of ω , and $W(\omega)$ its winding number.

Let D be a finite, simply connected domain, and a a point on the boundary of D. For p a point in the domain, let

$$F(p) \equiv F(t, \alpha; p) = \sum_{\omega: a \rightsquigarrow p} t^{|\omega|} e^{i\alpha W(\omega)},$$

where $|\omega|$ is the length of ω , and $W(\omega)$ its winding number.

$$W(\omega) = \frac{\pi}{3} (\text{left turns} - \text{right turns})$$
$$\frac{\pi}{3} - \frac{\pi}{3}$$

•

Let

$$F(p) \equiv F(t, \alpha; p) = \sum_{\omega: a \rightsquigarrow p \text{ in } D} t^{|\omega|} e^{i\alpha W(\omega)},$$

If p, q and r are the 3 mid-edges around a vertex v of the honeycomb lattice, taken in counterclockwise order, then, for $t = t_c$ and $\alpha = -5/8$,

$$F(p) + jF(q) + j^2F(r) = 0$$

where $j = e^{2i\pi/3}$, or, more symmetrically,

$$(p-v)F(p) + (q-v)F(q) + (r-v)F(r) = 0.$$

Proof: Group walks three by three or two by two as follows

• Walks that avoid v + walks in which v is the last visited vertex:

• Walks that visit v before their last vertex:

The contribution of all walks in a group is zero.

• Walks that avoid v + walks in which v is the last visited vertex:

• Walks that avoid v + walks in which v is the last visited vertex:

• Walks that visit v before their last vertex:

Proof of the key identity

Sum the local identity

$$(p-v)F(p) + (q-v)F(q) + (r-v)F(r) = 0$$

over all vertices v of the domain $D_{h,\ell}$.

- The inner mid-edges do not contribute.
- The winding number of walks ending on the boundary is known.

Proof of the key identity

Sum the local identity

$$(p-v)F(p) + (q-v)F(q) + (r-v)F(r) = 0$$

over all vertices v of the domain $D_{h,\ell}$.

- The inner mid-edges do not contribute.
- The domain has an up-down symmetry.
- The winding number of walks ending on the boundary is known.

This gives:

$$\frac{\sqrt{2-\sqrt{2}}}{2} L_{h,\ell}(t_c) + R_{h,\ell}(t_c) + \frac{1}{\sqrt{2}} M_{h,\ell}(t_c) = 1,$$

where $L_{h,\ell}(t)$ (resp. $R_{h,\ell}(t)$, $M_{h,\ell}(t)$) are the generating function of walks that start from a and end on the left (resp. right, middle) border of the domain $D_{h,\ell}$.

- ArXiv 1007.0575
- Some slides:
 - Smirnov's lecture at ICM

http://www.unige.ch/~smirnov/slides/slides-hyderabad.pdf

– A video of Duminil-Copin at Microsoft http://research.microsoft.com/apps/video/dl.aspx?id=133046