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Self-avoiding walks (SAW)

What is c(n), the number of n-step SAW?

Not so easy! c(n) is known up to n = 105 [Jensen 06]

Problem: a highly non-markovian model



Simple bounds on c(n)

We have

Fn+1 ≤ c(n) ≤ 3 · 2n−1

with F0 = F1 = 1 and Fn+1 = Fn + Fn−1 (Fibonacci numbers).

• Upper bound: at most two possible extensions at each step

• Lower bound: SAW that never move in the South direction (partially di-

rected).



The connective constant

Clearly,

c(m+ n) ≤ c(m)c(n)

⇒ lim c(n)1/n exists and

µ := lim c(n)1/n = inf c(n)1/n



The connective constant

µ := lim c(n)1/n = inf c(n)1/n

Given the bounds

Fn+1 ≤ c(n) ≤ 3 · 2n−1,

there holds

1+
√
5

2
≃ 1.62 ≤ µ ≤ 2

Theorem [Duminil-Copin & Smirnov 10]

µ =

√

2+
√
2 ≃ 1.85

Conjectured by Nienhuis in 1982



Sub-families of SAW

Self-avoiding polygons and self-avoiding bridges

• Same growth constant:

p(n)1/n → µ and b(n)1/n → µ

[Hammersley 61]



Generating functions

For self-avoiding walks, polygons and bridges:

C(t) =
∑

c(n)tn, P(t) =
∑

p(n)tn, B(t) =
∑

b(n)tn

Theorem [Duminil-Copin & Smirnov 10]

The radius of convergence of these series is

tc =
1

√

2+
√
2
.

Moreover:

• C(t) diverges at tc,

• P(t) converges at tc.

Conjectures:

C(t) ∼ 1

(1− t/tc)43/32
, P(t)sing ∼ (1− t/tc)

3/2, B(t) ∼ 1

(1− t/tc)9/16



Walks starting and ending at mid-edges



A key identity

Consider the following domain Dh,ℓ.
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A key identity

Consider the following domain Dh,ℓ.

Let Lh,ℓ(t) (resp. Rh,ℓ(t), Mh,ℓ(t)) be the gen-

erating function of walks that start from a and

end on the left (resp. right, middle) border of

the domain Dh,ℓ. These series are polynomials

in t.

Then for all h and ℓ, at t = tc = 1/
√

2+
√
2,

√

2−
√
2

2
Lh,ℓ(tc) +Rh,ℓ(tc) +

1√
2

Mh,ℓ(tc) = 1
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An upper bound on µ

√

2−
√
2

2
Lh,ℓ(tc) +Rh,ℓ(tc) +

1√
2

Mh,ℓ(tc) = 1

Consider walks in Dh,ℓ that go from a to a+

(≃ self-avoiding polygons). Their generating

function P̃h,ℓ(t) satisfies

P̃h,ℓ(tc) ≤ Lh,ℓ(tc) ≤ 2
√

2−
√
2

But

P̃h,ℓ(tc) → P̃ (tc) ≥ t2cP(tc)

as h, ℓ → ∞. This implies that P(tc) is finite.

Hence µ ≤ 1/tc =
√

2+
√
2.
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A lower bound on µ

√

2−
√
2

2
Lh,ℓ(tc) +Rh,ℓ(tc) +

1√
2

Mh,ℓ(tc) = 1

As h → ∞, Lh,ℓ(tc) and Rh,ℓ(tc) increase to limit

values Lℓ(tc) and Rℓ(tc). Hence Mh,ℓ(tc) de-

creases to a limit value Mℓ(tc).

• If Mℓ(tc) > 0 for some ℓ, the series

∑

h

Mh,ℓ(tc)

diverges. As it counts certain SAW, this implies

that µ ≥ 1/tc.

• If Mℓ(tc) = 0 for all ℓ, another argument

shows that
∑

ℓRℓ(tc) (the generating function

of bridges) diverges.

In both cases, µ ≥ 1/tc =
√

2+
√
2. Mh,ℓ
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A lower bound on µ (continued)

α Lh,ℓ(tc) +Rh,ℓ(tc) +
1√
2

Mh,ℓ(tc) = 1

• If Mℓ(tc) = 0 for all ℓ, then

α Lℓ(tc) +Rℓ(tc) = 1

⇒ α
(

Lℓ+1(tc)− Lℓ(tc)
)

= Rℓ(tc)−Rℓ+1(tc)

⇒ 2αtcRℓRℓ+1 ≥ Rℓ(tc)−Rℓ+1(tc)

⇒ 2αtc ≥ 1
Rℓ+1(tc)

− 1
Rℓ(tc)

⇒ 2ℓαtc +
1
R1

≥ 1
Rℓ

⇒ Rℓ ≥
1

2ℓαtc + β
,

so that
∑

ℓRℓ(tc) (the generating function of

bridges) diverges. ℓ

a

ℓ

a

Lℓ Rℓ+1



A key identity

√

2−
√
2

2
Lh,ℓ(tc) +Rh,ℓ(tc) +

1√
2

Mh,ℓ(tc) = 1

Where does it come from?

From a local identity that is re-summed over all vertices of the domain.



A local identity

Let D be a finite, simply connected domain, and a a point on the boundary of

D. For p a point in the domain, let

F(p) ≡ F(t, α; p) =
∑

ω:a p
t|ω|eiαW(ω),

where |ω| is the length of ω, and W (ω) its winding number.

a

p

W (ω) = 0 W (ω) = −2π W (ω) = −π



A local identity

Let D be a finite, simply connected domain, and a a point on the boundary of

D. For p a point in the domain, let

F(p) ≡ F(t, α; p) =
∑

ω:a p
t|ω|eiαW(ω),

where |ω| is the length of ω, and W (ω) its winding number.

a

p

W (ω) = 0 W (ω) = −2π W (ω) = −π

Rem. W is additive:

W (ω) =
π

3
(left turns − right turns) .

π
3

−π
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A local identity

Let

F(p) ≡ F(t, α; p) =
∑

ω:a p in D

t|ω|eiαW(ω),

If p, q and r are the 3 mid-edges around a vertex v of the honeycomb lattice,

taken in counterclockwise order, then, for t = tc and α = −5/8,

F(p) + jF(q) + j2F(r) = 0,

where j = e2iπ/3, or, more symmetrically,

(p− v)F(p) + (q − v)F(q) + (r − v)F(r) = 0.

p
q

vr
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A local identity

Proof: Group walks three by three or two by two as follows

• Walks that avoid v + walks in which v is the last visited vertex:

q

r p

q

r p

q

r p

v v v

• Walks that visit v before their last vertex:

q

r p

q

r p

v v

The contribution of all walks in a group is zero.



A local identity

• Walks that avoid v + walks in which v is the last visited vertex:
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r p

v v v

1 + jtc e−iαπ/3 + j2tc eiαπ/3 = 0



A local identity

• Walks that avoid v + walks in which v is the last visited vertex:

q

r p

q

r p

q

r p

v v v

1 + jtc e−iαπ/3 + j2tc eiαπ/3 = 0

• Walks that visit v before their last vertex:

q

r p

q

r p

v v

e4iαπ/3 + j2e−4iαπ/3 = 2/j cos

(

π

3
+ 4α

π

3

)

= 0



Proof of the key identity

Sum the local identity

(p− v)F(p) + (q − v)F(q) + (r − v)F(r) = 0

over all vertices v of the domain Dh,ℓ.

• The inner mid-edges do not contribute.

• The winding number of walks ending on the

boundary is known.
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Proof of the key identity

Sum the local identity

(p− v)F(p) + (q − v)F(q) + (r − v)F(r) = 0

over all vertices v of the domain Dh,ℓ.

• The inner mid-edges do not contribute.

• The domain has an up-down symmetry.

• The winding number of walks ending on the

boundary is known.

This gives:
√

2−
√
2

2
Lh,ℓ(tc) +Rh,ℓ(tc) +

1√
2

Mh,ℓ(tc) = 1,

Mh,ℓ

ℓ

Rh,ℓ

Mh,ℓ

Lh,ℓ

h

a

where Lh,ℓ(t) (resp. Rh,ℓ(t), Mh,ℓ(t)) are the generating function of walks that

start from a and end on the left (resp. right, middle) border of the domain

Dh,ℓ.
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