Walks with large steps in the quadrant

Mireille Bousquet-Mélou, LaBRI, CNRS, Université de Bordeaux

Alin Bostan, INRIA Saclay

Steve Melczer, U. Pennsylvania

Counting quadrant walks

Let \mathcal{S} be a finite subset of \mathbb{Z}^{2} (set of steps).
We look at walks starting at $(0,0)$ and formed of steps of \mathcal{S}.

Example. $\mathcal{S}=\{10, \overline{1} 0,1 \overline{1}, \overline{1} 1\}$

Counting quadrant walks

Let \mathcal{S} be a finite subset of \mathbb{Z}^{2} (set of steps).
We look at walks starting at $(0,0)$ and formed of steps of \mathcal{S}.

- What is the number $q(n)$ of n-step walks contained in \mathbb{N}^{2} ?
- For $(i, j) \in \mathbb{N}^{2}$, what is the number $q(i, j ; n)$ of such walks that end at (i, j) ?

Example. $\mathcal{S}=\{10, \overline{1} 0,1 \overline{1}, \overline{1} 1\}$

Counting quadrant walks

Let \mathcal{S} be a finite subset of \mathbb{Z}^{2} (set of steps).
We look at walks starting at $(0,0)$ and formed of steps of \mathcal{S}.

- What is the number $q(n)$ of n-step walks contained in \mathbb{N}^{2} ?
- For $(i, j) \in \mathbb{N}^{2}$, what is the number $q(i, j ; n)$ of such walks that end at (i, j) ?

The associated generating function:

$$
Q(x, y ; t)=\sum_{n \geq 0} \sum_{(i, j) \in \mathbb{N}^{2}} q(i, j ; n) x^{i} y^{j} t^{n}
$$

Counting quadrant walks

Let \mathcal{S} be a finite subset of \mathbb{Z}^{2} (set of steps).
We look at walks starting at $(0,0)$ and formed of steps of \mathcal{S}.

- What is the number $q(n)$ of n-step walks contained in \mathbb{N}^{2} ?
- For $(i, j) \in \mathbb{N}^{2}$, what is the number $q(i, j ; n)$ of such walks that end at (i, j) ?

The associated generating function:

$$
Q(x, y ; t)=\sum_{n \geq 0} \sum_{(i, j) \in \mathbb{N}^{2}} q(i, j ; n) x^{i} y^{j} t^{n}
$$

- Functional equation:

$$
\left(1-t\left(x+\frac{1}{x}+\frac{y}{x}+\frac{x}{y}\right)\right) Q(x, y ; t)=1-t \frac{1+y}{x} Q(0, y ; t)-t \frac{x}{y} Q(x, 0 ; t)
$$

What is the nature of this series?

A hierarchy of formal power series

- Rational series

$$
A(t)=\frac{P(t)}{Q(t)}
$$

- Algebraic series

$$
\operatorname{Pol}(t, A(t))=0
$$

- Differentially finite series (D-finite)

$$
\sum_{i=0}^{d} P_{i}(t) A^{(i)}(t)=0
$$

- D-algebraic series

$$
\operatorname{Pol}\left(t, A(t), A^{\prime}(t), \ldots, A^{(d)}(t)\right)=0
$$

A hierarchy of formal power series

- Rational series

$$
A(t)=\frac{P(t)}{Q(t)}
$$

- Algebraic series

$$
\operatorname{Pol}(t, A(t))=0
$$

- Differentially finite series (D-finite)

$$
\sum_{i=0}^{d} P_{i}(t) A^{(i)}(t)=0
$$

- D-algebraic series

$$
\operatorname{Pol}\left(t, A(t), A^{\prime}(t), \ldots, A^{(d)}(t)\right)=0
$$

Multi-variate series: one DE per variable

Classification of quadrant walks with small steps

quadrant models with small steps: 79

- G the group of the model
- OS the orbit sum
[mbm-Mishna 10] [Bostan-Kauers 10] [Mishna-Rechnitzer 07]
[Melczer-Mishna 13] [Kurkova-Raschel 12] [Bostan-Raschel-Salvy 14]
[Bernardi-mbm-Raschel 17(a)] [Dreyfus-Hardouin-Roques-Singer 17(a), 18]

Quadrant walks with arbitrary steps

- A mathematical challenge: the small step condition seems crucial in all approaches (apart from computer algebra)
- Large steps occur in "real life": simple walk models,

Quadrant walks with arbitrary steps

- A mathematical challenge: the small step condition seems crucial in all approaches (apart from computer algebra)
- Large steps occur in "real life": simple walk models,

Quadrant walks with arbitrary steps

- A mathematical challenge: the small step condition seems crucial in all approaches (apart from computer algebra)
- Large steps occur in "real life": simple walk models, queing theory,

Quadrant walks with arbitrary steps

- A mathematical challenge: the small step condition seems crucial in all approaches (apart from computer algebra)
- Large steps occur in "real life": simple walk models, queing theory, bipolar orientations ([Kenyon et al. 15(a)])

A general approach for quadrant walks...

which solves some cases.
quadrant models with small steps: 79

A four step approach

1. Write a functional equation for the tri-variate series $Q(x, y ; t)$. It involves bi-variate series $Q(x, 0 ; t), Q(0, y ; t), \ldots$ (called sections)
2. Compute the "orbit" of (x, y)
3. Combine the main equation and the orbit to find a functional equation free from sections
4. Extract from it $Q(x, y ; t)$

Step 1: Write a step-by-step functional equation

Example: $\mathcal{S}=\{01, \overline{1} 0,1 \overline{1}\}$ (bipolar triangulations)
$Q(x, y ; t) \equiv Q(x, y)=1+t(y+\bar{x}+x \bar{y}) Q(x, y)-t \bar{x} Q(0, y)-t x \bar{y} Q(x, 0)$ with $\bar{x}=1 / x$ and $\bar{y}=1 / y$.

Step 1: Write a step-by-step functional equation

Example: $\mathcal{S}=\{01, \overline{1} 0,1 \overline{1}\}$ (bipolar triangulations)

$$
Q(x, y ; t) \equiv Q(x, y)=1+t(y+\bar{x}+x \bar{y}) Q(x, y)-t \bar{x} Q(0, y)-t x \bar{y} Q(x, 0)
$$

or

$$
(1-t(y+\bar{x}+x \bar{y})) Q(x, y)=1-t \bar{x} Q(0, y)-t x \bar{y} Q(x, 0)
$$

- The polynomial $1-t(y+\bar{x}+x \bar{y})$ is the kernel of this equation

Step 1: Write a step-by-step functional equation

Example: $\mathcal{S}=\{01, \overline{1} 0,1 \overline{1}\}$ (bipolar triangulations)

$$
Q(x, y ; t) \equiv Q(x, y)=1+t(y+\bar{x}+x \bar{y}) Q(x, y)-t \bar{x} Q(0, y)-t x \bar{y} Q(x, 0)
$$

or

$$
(1-t(y+\bar{x}+x \bar{y})) Q(x, y)=1-t \bar{x} Q(0, y)-t x \bar{y} Q(x, 0)
$$

- The polynomial $1-t(y+\bar{x}+x \bar{y})$ is the kernel of this equation
- The series $Q(0, y)$ and $Q(x, 0)$ are the sections.

Step 1: Write a step-by-step functional equation

Example: $\mathcal{S}=\{01, \overline{1} 0,1 \overline{1}\}$ (bipolar triangulations)

$$
Q(x, y ; t) \equiv Q(x, y)=1+t(y+\bar{x}+x \bar{y}) Q(x, y)-t \bar{x} Q(0, y)-t x \bar{y} Q(x, 0)
$$

or

$$
(1-t(y+\bar{x}+x \bar{y})) Q(x, y)=1-t \bar{x} Q(0, y)-t x \bar{y} Q(x, 0)
$$

Example: Bipolar quadrangulations

$$
\begin{aligned}
\left(1-t\left(x \bar{y}+\bar{x}^{2}+\bar{x} y+y^{2}\right)\right) Q(& x, y)=1-t x \bar{y} Q(x, 0) \\
& -t \bar{x}^{2}\left(Q_{0}(y)+x Q_{1}(y)\right)-t \bar{x} y Q_{0}(y)
\end{aligned}
$$

where $Q_{i}(y)$ counts quadrant walks ending at abscissa i.
\Rightarrow More sections, kernel of higher degree

Step 2: the group of the model (and its orbit)

- The step polynomial:

$$
S(x, y)=\bar{x}+y+x \bar{y}
$$

Step 2: the group of the model (and its orbit)

- The step polynomial:

$$
S(x, y)=\bar{x}+y+x \bar{y}
$$

Observation: $S(x, y)$ is unchanged by the rational transformations

$$
\Phi:(x, y) \mapsto(\bar{x} y, y) \quad \text { and } \quad \Psi:(x, y) \mapsto(x, x \bar{y})
$$

Step 2: the group of the model (and its orbit)

- The step polynomial:

$$
S(x, y)=\bar{x}+y+x \bar{y}
$$

Observation: $S(x, y)$ is unchanged by the rational transformations

$$
\Phi:(x, y) \mapsto(\bar{x} y, y) \quad \text { and } \quad \psi:(x, y) \mapsto(x, x \bar{y})
$$

- Φ and Ψ are involutions
- They generate a (dihedral) group

Step 2: the group of the model (and its orbit)

- The step polynomial:

$$
S(x, y)=\bar{x}+y+x \bar{y}
$$

Observation: $S(x, y)$ is unchanged by the rational transformations

$$
\Phi:(x, y) \mapsto(\bar{x} y, y) \quad \text { and } \quad \psi:(x, y) \mapsto(x, x \bar{y})
$$

- The pairs $(\bar{x} y, y)$ and $(x, x \bar{y})$ are "adjacent" to (x, y) :
- they have one coordinate in common
- they give the same value to the step polynomial S

Step 2: the group of the model (and its orbit)

- The step polynomial:

$$
S(x, y)=\bar{x}+y+x \bar{y}
$$

Observation: $S(x, y)$ is unchanged by the rational transformations

$$
\Phi:(x, y) \mapsto(\bar{x} y, y) \quad \text { and } \quad \psi:(x, y) \mapsto(x, x \bar{y})
$$

- The pairs $(\bar{x} y, y)$ and $(x, x \bar{y})$ are "adjacent" to (x, y) :
- they have one coordinate in common
- they give the same value to the step polynomial S
- Let \sim be the transitive closure of the adjacency relation. The orbit of (x, y) is its equivalence class.

Step 2: the orbit of the model

Example: Bipolar quadrangulations

$$
S(x, y)=\bar{x}^{2}+\bar{x} y+y^{2}+x \bar{y}
$$

The equation (in x^{\prime}) $S(x, y)=S\left(x^{\prime}, y\right)$, has 3 solutions, namely x and

$$
x_{1,2}=\frac{x y^{2}+y \pm \sqrt{y\left(x^{2} y^{3}+4 x^{3}+2 x y^{2}+y\right)}}{2 x^{2}} .
$$

Step 2: the orbit of the model

Example: Bipolar quadrangulations

$$
S(x, y)=\bar{x}^{2}+\bar{x} y+y^{2}+x \bar{y}
$$

The equation (in x^{\prime}) $S(x, y)=S\left(x^{\prime}, y\right)$, has 3 solutions, namely x and

$$
x_{1,2}=\frac{x y^{2}+y \pm \sqrt{y\left(x^{2} y^{3}+4 x^{3}+2 x y^{2}+y\right)}}{2 x^{2}} .
$$

- the pairs $\left(x_{1}, y\right)$ and $\left(x_{2}, y\right)$ are adjacent to (x, y)

Step 2: the orbit of the model

Example: Bipolar quadrangulations

$$
S(x, y)=\bar{x}^{2}+\bar{x} y+y^{2}+x \bar{y}
$$

The equation (in x^{\prime}) $S(x, y)=S\left(x^{\prime}, y\right)$, has 3 solutions, namely x and

$$
x_{1,2}=\frac{x y^{2}+y \pm \sqrt{y\left(x^{2} y^{3}+4 x^{3}+2 x y^{2}+y\right)}}{2 x^{2}} .
$$

- the pairs $\left(x_{1}, y\right)$ and $\left(x_{2}, y\right)$ are adjacent to (x, y)
- there are also two pairs $\left(x, y^{\prime}\right)$ that are adjacent to (x, y), which happen to be $\left(x, \bar{x}_{1}\right)$ and $\left(x, \bar{x}_{2}\right)$

Step 2: the orbit of the model

Example: Bipolar quadrangulations

$$
S(x, y)=\bar{x}^{2}+\bar{x} y+y^{2}+x \bar{y}
$$

The equation (in x^{\prime}) $S(x, y)=S\left(x^{\prime}, y\right)$, has 3 solutions, namely x and

$$
x_{1,2}=\frac{x y^{2}+y \pm \sqrt{y\left(x^{2} y^{3}+4 x^{3}+2 x y^{2}+y\right)}}{2 x^{2}} .
$$

- the pairs $\left(x_{1}, y\right)$ and $\left(x_{2}, y\right)$ are adjacent to (x, y)
- there are also two pairs $\left(x, y^{\prime}\right)$ that are adjacent to (x, y), which happen to be $\left(x, \bar{x}_{1}\right)$ and $\left(x, \bar{x}_{2}\right)$
- which pairs $\left(x_{1}, y^{\prime}\right)$ are adjacent to $\left(x_{1}, y\right)$?

Step 2: the orbit of the model

Example: Bipolar quadrangulations

$$
S(x, y)=\bar{x}^{2}+\bar{x} y+y^{2}+x \bar{y}
$$

The equation (in x^{\prime}) $S(x, y)=S\left(x^{\prime}, y\right)$, has 3 solutions, namely x and

$$
x_{1,2}=\frac{x y^{2}+y \pm \sqrt{y\left(x^{2} y^{3}+4 x^{3}+2 x y^{2}+y\right)}}{2 x^{2}} .
$$

- the pairs $\left(x_{1}, y\right)$ and $\left(x_{2}, y\right)$ are adjacent to (x, y)
- there are also two pairs $\left(x, y^{\prime}\right)$ that are adjacent to (x, y), which happen to be $\left(x, \bar{x}_{1}\right)$ and $\left(x, \bar{x}_{2}\right)$
- which pairs $\left(x_{1}, y^{\prime}\right)$ are adjacent to $\left(x_{1}, y\right)$?
- and so on.

Step 2: the orbit of the model

Example: Bipolar quadrangulations

$$
S(x, y)=\bar{x}^{2}+\bar{x} y+y^{2}+x \bar{y}
$$

The equation (in x^{\prime}) $S(x, y)=S\left(x^{\prime}, y\right)$, has 3 solutions, namely x and

$$
x_{1,2}=\frac{x y^{2}+y \pm \sqrt{y\left(x^{2} y^{3}+4 x^{3}+2 x y^{2}+y\right)}}{2 x^{2}} .
$$

- Orbit

Step 3: Find a functional equation free from sections

- The equation reads (with $K(x, y)=1-t S(x, y)$):

$$
K(x, y) x y Q(x, y)=x y-t x^{2} Q(x, 0)-t y Q(0, y)
$$

- The orbit of (x, y) is

$$
(x, y) \approx(\bar{x} y, y) \approx(\bar{x} y, \bar{x}) \approx(\bar{y}, \bar{x}) \approx(\bar{y}, x \bar{y}) \approx(x, x \bar{y})
$$

Step 3: Find a functional equation free from sections

- The equation reads (with $K(x, y)=1-t S(x, y)$):

$$
K(x, y) x y Q(x, y)=x y-t x^{2} Q(x, 0)-t y Q(0, y)
$$

- The orbit of (x, y) is

$$
(x, y) \approx(\bar{x} y, y) \approx(\bar{x} y, \bar{x}) \approx(\bar{y}, \bar{x}) \approx(\bar{y}, x \bar{y}) \approx(x, x \bar{y})
$$

- The value of $S(x, y)$ (and $K(x, y))$ is the same over the orbit. Hence

$$
\begin{array}{rlcccc}
K(x, y) x y Q(x, y) & =x y & - & t x^{2} Q(x, 0) & - & t y Q(0, y) \\
K(x, y) \bar{x} y^{2} Q(\bar{x} y, y) & =\bar{x} y^{2} & -t \bar{x}^{2} y^{2} Q(\bar{x} y, 0) & - & t y Q(0, y) \\
K(x, y) \bar{x}^{2} y Q(\bar{x} y, \bar{x}) & = & \bar{x}^{2} y & -t \bar{x}^{2} y^{2} Q(\bar{x} y, 0) & - & t \bar{x} Q(0, \bar{x}) \\
\ldots & = & \ldots & & \\
K(x, y) x^{2} \bar{y} Q(x, x \bar{y}) & = & x^{2} \bar{y} & - & t x^{2} Q(x, 0) & - \\
t x \bar{y} Q(0, x \bar{y}) .
\end{array}
$$

Step 3: Find a functional equation free from sections

\Rightarrow Form the alternating sum of the equation over all elements of the orbit:

$$
\begin{aligned}
& K(x, y)\left(x y Q(x, y)-\bar{x} y^{2} Q(\bar{x} y, y)+\bar{x}^{2} y Q(\bar{x} y, \bar{x})\right. \\
& \left.-\bar{x} \bar{y} Q(\bar{y}, \bar{x})+x \bar{y}^{2} Q(\bar{y}, x \bar{y})-x^{2} \bar{y} Q(x, x \bar{y})\right)= \\
& x y-\bar{x} y^{2}+\bar{x}^{2} y-\bar{x} \bar{y}+x \bar{y}^{2}-x^{2} \bar{y} \\
& \text { (the orbit sum) }
\end{aligned}
$$

Step 3: Find a functional equation free from sections

\Rightarrow Form the alternating sum of the equation over all elements of the orbit:

$$
\begin{aligned}
& x y Q(x, y)-\bar{x} y^{2} Q(\bar{x} y, y)+\bar{x}^{2} y Q(\bar{x} y, \bar{x}) \\
& -\bar{x} \bar{y} Q(\bar{y}, \bar{x})+x \bar{y}^{2} Q(\bar{y}, x \bar{y})-x^{2} \bar{y} Q(x, x \bar{y})= \\
& \frac{x y-\bar{x} y^{2}+\bar{x}^{2} y-\bar{x} \bar{y}+x \bar{y}^{2}-x^{2} \bar{y}}{1-t(y+\bar{x}+x \bar{y})}
\end{aligned}
$$

Step 4: Extract $Q(x, y)$

\Rightarrow Form the alternating sum of the equation over all elements of the orbit:

$$
\begin{aligned}
& x y Q(x, y)-\bar{x} y^{2} Q(\bar{x} y, y)+\bar{x}^{2} y Q(\bar{x} y, \bar{x}) \\
& -\bar{x} \bar{y} Q(\bar{y}, \bar{x})+x \bar{y}^{2} Q(\bar{y}, x \bar{y})-x^{2} \bar{y} Q(x, x \bar{y})= \\
& \frac{x y-\bar{x} y^{2}+\bar{x}^{2} y-\bar{x} \bar{y}+x \bar{y}^{2}-x^{2} \bar{y}}{1-t(y+\bar{x}+x \bar{y})}
\end{aligned}
$$

- Both sides are power series in t, with coefficients in $\mathbb{Q}[x, \bar{x}, y, \bar{y}]$.

Step 4: Extract $Q(x, y)$

\Rightarrow Form the alternating sum of the equation over all elements of the orbit:

$$
\begin{aligned}
& x y Q(x, y)-\bar{x} y^{2} Q(\bar{x} y, y)+\bar{x}^{2} y Q(\bar{x} y, \bar{x}) \\
& -\bar{x} \bar{y} Q(\bar{y}, \bar{x})+x \bar{y}^{2} Q(\bar{y}, x \bar{y})-x^{2} \bar{y} Q(x, x \bar{y})= \\
& \frac{x y-\bar{x} y^{2}+\bar{x}^{2} y-\bar{x} \bar{y}+x \bar{y}^{2}-x^{2} \bar{y}}{1-t(y+\bar{x}+x \bar{y})}
\end{aligned}
$$

- Both sides are power series in t, with coefficients in $\mathbb{Q}[x, \bar{x}, y, \bar{y}]$.
- Extract the part with positive powers of x and y :

$$
x y Q(x, y)=\left[x^{>0} y^{>0}\right] \frac{x y-\bar{x} y^{2}+\bar{x}^{2} y-\bar{x} \bar{y}+x \bar{y}^{2}-x^{2} \bar{y}}{1-t(y+\bar{x}+x \bar{y})}
$$

is a D-finite series.
[Lipshitz 88]

Step 3: Find a functional equation free from sections

Example: Bipolar quadrangulations

$$
S(x, y)=\bar{x}^{2}+\bar{x} y+y^{2}+x \bar{y}
$$

The equation (in x^{\prime}) $S(x, y)=S\left(x^{\prime}, y\right)$, has 3 solutions, namely x and

$$
x_{1,2}=\frac{x y^{2}+y \pm \sqrt{y\left(x^{2} y^{3}+4 x^{3}+2 x y^{2}+y\right)}}{2 x^{2}} .
$$

- Orbit

Step 3: Find a functional equation free from sections

Example: Bipolar quadrangulations

$$
S(x, y)=\bar{x}^{2}+\bar{x} y+y^{2}+x \bar{y}
$$

Two section-free linear combinations (+ linear combinations):

$$
\begin{gathered}
x y Q(x, y)-\bar{x}_{1} x Q\left(x, \bar{x}_{1}\right)-\frac{x_{1}^{2} y\left(x-x_{2}\right) Q\left(x_{1}, y\right)}{x\left(x_{1}-x_{2}\right)}+\frac{x_{1}^{2}\left(x-x_{2}\right) Q\left(x_{1}, \bar{x}\right)}{\left(x_{1}-x_{2}\right) x^{2}} \\
+\frac{x_{2}^{2} y\left(x-x_{1}\right) Q\left(x_{2}, y\right)}{x\left(x_{1}-x_{2}\right)}-\frac{\left(x_{1} y-1\right) x_{2}^{2}\left(x-x_{2}\right) Q\left(x_{2}, \bar{x}\right)}{x^{2}\left(x_{1}-x_{2}\right)\left(x_{2} y-1\right)} \\
+\frac{(x y-1) x_{2}^{2} Q\left(x_{2}, \bar{x}_{1}\right)}{x_{1} x\left(x_{2} y-1\right)}+\frac{\left(x-x_{2}\right) Q(\bar{y}, \bar{x})}{y\left(x_{2} y-1\right) x^{2}}-\frac{\left(x-x_{2}\right) Q\left(\bar{y}, \bar{x}_{1}\right)}{y x_{1} x\left(x_{2} y-1\right)} \\
=\frac{\left(y-\bar{x}_{1}\right)(x y-1)\left(\bar{y}-\bar{x}^{2} y-2 \bar{x}^{3}\right)}{K(x, y)}
\end{gathered}
$$

and the same equation with x_{1} and x_{2} exchanged.

Step 4: Extract $Q(x, y)$

Example: Bipolar quadrangulations

$$
S(x, y)=\bar{x}^{2}+\bar{x} y+y^{2}+x \bar{y}
$$

- A section-free equation:

$$
\begin{array}{r}
x y Q(x, y)-\bar{x}_{1} x Q\left(x, \bar{x}_{1}\right)-\frac{x_{1}^{2} y\left(x-x_{2}\right) Q\left(x_{1}, y\right)}{x\left(x_{1}-x_{2}\right)}+\cdots \\
=\frac{\left(y-\bar{x}_{1}\right)(x y-1)\left(\bar{y}-\bar{x}^{2} y-2 \bar{x}^{3}\right)}{K(x, y)}
\end{array}
$$

- Then

$$
x y Q(x, y)=\left[x^{>0} y^{>0}\right] \frac{\left(y-\bar{x}_{1}\right)(x y-1)\left(\bar{y}-\bar{x}^{2} y-2 \bar{x}^{3}\right)}{K(x, y)},
$$

provided the RHS is expanded first in t, then in \bar{y}, and finally in x.

What can go wrong?

quadrant models with small steps: 79

1. Functional equation: OK
2. The "orbit" may be infinite
3. There may be several section-free equations (or none?) [NEW]
4. The extraction may be tricky [NEW], or impossible

Some cases that work

- Hadamard walks:

$$
S(x, y)=U(x)+V(x) T(y)
$$

(Small steps: 16 out of the 19 "simple" models)

- Bipolar maps [mbm, Fusy, Raschel 18]

$$
\mathcal{S}_{p}=\{(-p, 0),(-p+1,1), \ldots,(0, p),(1,-1)\}
$$

In all those cases, the orbit is finite and the series $Q(x, y ; t)$ D-finite, expressed as the non-negative part of an algebraic series.

Hadamard walks in 2D

Assume

$$
S(x, y)=U(x)+V(x) T(y)
$$

Proposition [Bostan, mbm, Melczer 18]

The series $Q(x, y)$ is D-finite, and reads

$$
Q(x, y)=\left[x^{\geq} y^{\geq} \geq\right] \frac{\prod_{i=1}^{m}\left(1-\bar{x} x_{i}(y)\right) \prod_{j=1}^{m^{\prime}}\left(1-\bar{y} y_{j}\right)}{1-t S(x, y)},
$$

where

- the $x_{i}(y)$ are the roots of $S(x, y)=S\left(x^{\prime}, y\right)$ (solved for x^{\prime}), whose expansion in \bar{x} involves no positive power of x,
- the y_{j} are the roots of $S(x, y)=S\left(x, y^{\prime}\right)$, or $T(y)=T\left(y^{\prime}\right)$ (solved for y^{\prime}) whose expansion in \bar{y} involve no positive powers of y.

Bipolar maps

Proposition [mbm, Fusy, Raschel 18]

The generating function of bipolar maps with faces of degree $p+2$ is

$$
Q(x, y)=\left[x^{\geq} y^{\geq} \geq\right] \frac{\left(y-\bar{x}_{1}\right)(1-\bar{x} \bar{y}) S_{x}(x, y)}{1-t S(x, y)},
$$

where $S(x, y)$ is the step polynomial:

$$
S(x, y)=x \bar{y}+\bar{x}^{p}+\bar{x}^{p-1} y+\cdots+\bar{x} y^{p-1}+y^{p} .
$$

and x_{1} is the only root of $S(x, y)=S\left(x^{\prime}, y\right)$ (solved for x^{\prime}) whose expansion in \bar{y} involves a positive power of y.
It is D-finite.

Quadrant walks with steps in $\{-2,-1,0,1\}^{2}$

- In all cases, a unique section-free equation

- 227 Hadamard models
$\left(^{*}\right)$ Models with at least one occurrence of -2

Some interesting models

- Non-Hadamard, solvable via our approach (and D-finite):

$\Rightarrow Q(x, y ; t)$ is the non-negative part (in x and y) of a rational series

Some interesting models

- Non-Hadamard, solvable via our approach (and D-finite):

$\Rightarrow Q(x, y ; t)$ is the non-negative part (in x and y) of a rational series
For the first model,

$$
Q(x, y)=\left[x^{\geq 0} y \geq^{\geq 0}\right] \frac{\left(x^{3}-2 y^{2}-x\right)\left(y^{2}-x\right)\left(x^{2} y^{2}-y^{2}-2 x\right)}{x^{5} y^{4}\left(1-t\left(y+x \bar{y}+\bar{x} \bar{y}+\bar{x}^{2} y\right)\right)}
$$

The coefficients are nice: for $n=2 i+j+4 m$,

$$
q(i, j ; n)=\frac{(i+1)(j+1)(i+j+2) n!(n+2)!}{m!(3 m+2 i+j+2)!(2 m+i+1)!(2 m+i+j+2)!}
$$

Some interesting models

- Non-Hadamard, solvable via our approach (and D-finite):

$\Rightarrow Q(x, y ; t)$ is the non-negative part (in x and $y)$ of a rational series
- Non-Hadamard, orbit sum zero: let's guess! (what $Q(0,0 ; t)$ is)

DF

DF

DF

Alg
DF

à la Kreweras
DF DF

DF

Alg
à la Gessel

Thanks to Axel Bacher!

Final comments

Still a lot to be done...

- Is there a unique section free equation when there are no large forward step?

Final comments

Still a lot to be done...

- Is there a unique section free equation when there are no large forward step?
- Closer study for tricky examples (the 9 analogues of Kreweras' and Gessel's algebraic models)
- Nature of models where α is rational but the orbit infinite quadrant models: 13 110*

Walks on a half-line $(d=1)$

Let $\mathcal{S} \subset \mathbb{Z}$ with $\min \mathcal{S}=-m$.
Proposition [Bostan, mbm, Melczer 18]

$$
Q(x)=\left[x^{\geq 0}\right] \frac{\prod_{j=1}^{m}\left(1-\bar{x} x_{j}\right)}{1-t S(x)}
$$

where the x_{j} are the roots of $S\left(x_{j}\right)=S(x)$ whose expansion in \bar{x} involves no positive power of x.

Walks on a half-line $(d=1)$

Let $\mathcal{S} \subset \mathbb{Z}$ with $\min \mathcal{S}=-m$.
Proposition [Bostan, mbm, Melczer 18]

$$
Q(x)=\left[x^{\geq 0}\right] \frac{\prod_{j=1}^{m}\left(1-\bar{x} x_{j}\right)}{1-t S(x)}
$$

where the x_{j} are the roots of $S\left(x_{j}\right)=S(x)$ whose expansion in \bar{x} involves no positive power of x.

Classical solution [Gessel 80, mbm-Petkovšek 00, Banderier-Flajolet 02...]

$$
Q(x)=\frac{\prod_{j=1}^{m}\left(1-\bar{x} X_{j}\right)}{1-t S(x)}
$$

where the $X_{j} \equiv X_{j}(t)$ are the roots of $1-t S(x)$ whose expansion in t involves no negative power of t. The series $Q(x)$ is algebraic.

These solutions are (of course) equivalent.

