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Counting quadrant walks

Let S be a finite subset of Z2 (set of steps).
We look at walks starting at (0, 0) and formed of steps of S.

What is the number q(n) of n-step walks contained in N2?
For (i , j) ∈ N2, what is the number q(i , j ; n) of such walks that end
at (i , j)?

Example. S = {10, 1̄0, 11̄, 1̄1}
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What is the nature of this series?



A hierarchy of formal power series

• Rational series

A(t) =
P(t)

Q(t)

• Algebraic series

Pol(t,A(t)) = 0

• Differentially finite series (D-finite)
d∑

i=0

Pi (t)A(i)(t) = 0

• D-algebraic series
Pol(t,A(t),A′(t), . . . ,A(d)(t)) = 0

Multi-variate series: one DE per variable



Classification of quadrant walks with small steps

quadrant models with small steps: 79

|G |<∞: 23

D-finite

OS=0: 4

algebraic

OS6=0: 19

DF transc.

|G |=∞: 56

Not D-finite

∃ invariant: 9

D-alg.

no invariant: 47

not D-alg. (in x)

G the group of the model
OS the orbit sum

[mbm-Mishna 10] [Bostan-Kauers 10] [Mishna-Rechnitzer 07]
[Melczer-Mishna 13] [Kurkova-Raschel 12] [Bostan-Raschel-Salvy 14]
[Bernardi-mbm-Raschel 17(a)] [Dreyfus-Hardouin-Roques-Singer 17(a), 18]



Quadrant walks with arbitrary steps

A mathematical challenge: the small step condition seems crucial in
all approaches (apart from computer algebra)
Large steps occur in “real life”: simple walk models,

queing theory,
bipolar orientations ([Kenyon et al. 15(a)])
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Quadrant walks with arbitrary steps

A mathematical challenge: the small step condition seems crucial in
all approaches (apart from computer algebra)
Large steps occur in “real life”: simple walk models, queing theory,
bipolar orientations ([Kenyon et al. 15(a)])

N
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A general approach for quadrant
walks...
which solves some cases.

quadrant models with small steps: 79

|G |<∞: 23

D-finite

OS=0: 4

algebraic

OS6=0: 19

DF transc.

|G |=∞: 56

Not D-finite

decoupled: 9

D-alg.

not decoupled: 47

not D-alg.

“The simple branch”
[mbm-Mishna 10]



A four step approach

1. Write a functional equation for the tri-variate series Q(x , y ; t).
It involves bi-variate series Q(x , 0; t),Q(0, y ; t), . . . (called sections)

2. Compute the “orbit” of (x , y)

3. Combine the main equation and the orbit to find a functional
equation free from sections

4. Extract from it Q(x , y ; t)



Step 1: Write a step-by-step functional equation

Example: S = {01, 1̄0, 11̄} (bipolar triangulations)
Q(x , y ; t) ≡ Q(x , y) = 1+t(y + x̄ + xȳ)Q(x , y)−tx̄Q(0, y)−txȳQ(x , 0)

with x̄ = 1/x and ȳ = 1/y .
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Step 1: Write a step-by-step functional equation

Example: S = {01, 1̄0, 11̄} (bipolar triangulations)
Q(x , y ; t) ≡ Q(x , y) = 1+t(y + x̄ + xȳ)Q(x , y)−tx̄Q(0, y)−txȳQ(x , 0)

or (
1− t(y + x̄ + xȳ)

)
Q(x , y) = 1− tx̄Q(0, y)− txȳQ(x , 0)

Example: Bipolar quadrangulations

(1− t(xȳ + x̄2 + x̄y + y2))Q(x , y) = 1− txȳQ(x , 0)

−tx̄2 (Q0(y) + xQ1(y))− tx̄yQ0(y),

where Qi (y) counts quadrant walks ending at abscissa i .

⇒ More sections, kernel of higher degree



Step 2: the group of the model (and its orbit)

• The step polynomial:

S(x , y) = x̄ + y + xȳ
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• Φ and Ψ are involutions
• They generate a (dihedral) group
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– they have one coordinate in common
– they give the same value to the step polynomial S



Step 2: the group of the model (and its orbit)

• The step polynomial:

S(x , y) = x̄ + y + xȳ

Observation: S(x , y) is unchanged by the rational transformations

Φ : (x , y) 7→ (x̄y , y) and Ψ : (x , y) 7→ (x , xȳ) .

• The pairs (x̄y , y) and (x , xȳ) are “adjacent” to (x , y):
– they have one coordinate in common
– they give the same value to the step polynomial S

• Let ∼ be the transitive closure of the adjacency relation. The orbit of
(x , y) is its equivalence class.

≈

≈

≈

≈

≈

≈

(ȳ , x̄)

(x , xȳ)

(x , y)

(x̄y , y) (x̄y , x̄)

(ȳ , xȳ)



Step 2: the orbit of the model

Example: Bipolar quadrangulations
S(x , y) = x̄2 + x̄y + y2 + xȳ

The equation (in x ’) S(x , y) = S(x ′, y), has 3 solutions, namely x and

x1,2 =
xy2 + y ±

√
y (x2y3 + 4 x3 + 2 xy2 + y)

2x2 .
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Step 2: the orbit of the model

Example: Bipolar quadrangulations
S(x , y) = x̄2 + x̄y + y2 + xȳ

The equation (in x ’) S(x , y) = S(x ′, y), has 3 solutions, namely x and

x1,2 =
xy2 + y ±

√
y (x2y3 + 4 x3 + 2 xy2 + y)

2x2 .

the pairs (x1, y) and (x2, y) are adjacent to (x , y)
there are also two pairs (x , y ′) that are adjacent to (x , y), which
happen to be (x , x̄1) and (x , x̄2)
which pairs (x1, y

′) are adjacent to (x1, y)?
and so on.



Step 2: the orbit of the model

Example: Bipolar quadrangulations
S(x , y) = x̄2 + x̄y + y2 + xȳ

The equation (in x ’) S(x , y) = S(x ′, y), has 3 solutions, namely x and

x1,2 =
xy2 + y ±

√
y (x2y3 + 4 x3 + 2 xy2 + y)

2x2 .

(x , y)
(x1, y)(x2, y)

(x2, x̄1)

(x , x̄1) (x , x̄2)

(x1, x̄2)

(x1, x̄)(x2, x̄)

• Orbit

(ȳ , x̄)

(ȳ , x̄1) (ȳ , x̄2)



Step 3: Find a functional equation free from sections

• The equation reads (with K (x , y) = 1− tS(x , y)):

K (x , y)xyQ(x , y) = xy − tx2Q(x , 0)− tyQ(0, y)

• The orbit of (x , y) is

(x , y) ≈ (x̄y , y) ≈ (x̄y , x̄) ≈ (ȳ , x̄) ≈ (ȳ , xȳ) ≈ (x , xȳ)

• The value of S(x , y) (and K (x , y)) is the same over the orbit. Hence

K (x , y) xyQ(x , y) = xy − tx2Q(x , 0) − tyQ(0, y)

K (x , y) x̄y2Q(x̄y , y) = x̄y2 − tx̄2y2Q(x̄y , 0) − tyQ(0, y)

K (x , y) x̄2yQ(x̄y , x̄) = x̄2y − tx̄2y2Q(x̄y , 0) − tx̄Q(0, x̄)

· · · = · · ·

K (x , y) x2ȳQ(x , xȳ) = x2ȳ − tx2Q(x , 0) − txȳQ(0, xȳ).
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Step 3: Find a functional equation free from sections

⇒ Form the alternating sum of the equation over all elements of the orbit:

K (x , y)
(
xyQ(x , y)− x̄y2Q(x̄y , y) + x̄2yQ(x̄y , x̄)

− x̄ ȳQ(ȳ , x̄) + xȳ2Q(ȳ , xȳ)− x2ȳQ(x , xȳ)
)

=

xy − x̄y2 + x̄2y − x̄ ȳ + xȳ2 − x2ȳ

(the orbit sum).



Step 3: Find a functional equation free from sections

⇒ Form the alternating sum of the equation over all elements of the orbit:

xyQ(x , y)− x̄y2Q(x̄y , y) + x̄2yQ(x̄y , x̄)

− x̄ ȳQ(ȳ , x̄) + xȳ2Q(ȳ , xȳ)− x2ȳQ(x , xȳ) =

xy − x̄y2 + x̄2y − x̄ ȳ + xȳ2 − x2ȳ

1− t(y + x̄ + xȳ)



Step 4: Extract Q(x , y)

⇒ Form the alternating sum of the equation over all elements of the orbit:

xyQ(x , y)− x̄y2Q(x̄y , y) + x̄2yQ(x̄y , x̄)

− x̄ ȳQ(ȳ , x̄) + xȳ2Q(ȳ , xȳ)− x2ȳQ(x , xȳ) =

xy − x̄y2 + x̄2y − x̄ ȳ + xȳ2 − x2ȳ

1− t(y + x̄ + xȳ)

• Both sides are power series in t, with coefficients in Q[x , x̄ , y , ȳ ].

• Extract the part with positive powers of x and y :

xyQ(x , y) = [x>0y>0]
xy − x̄y2 + x̄2y − x̄ ȳ + xȳ2 − x2ȳ

1− t(y + x̄ + xȳ)

is a D-finite series.
[Lipshitz 88]
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Step 3: Find a functional equation free from sections

Example: Bipolar quadrangulations
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where Qi (y) counts quadrant walks ending at abscissa i .
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Step 3: Find a functional equation free from sections

Example: Bipolar quadrangulations

S(x , y) = x̄2 + x̄y + y2 + xȳ

Two section-free linear combinations (+ linear combinations):

xyQ(x , y)−x̄1xQ(x , x̄1)−x1
2y (x − x2)Q(x1, y)

x (x1 − x2)
+
x1

2 (x − x2)Q(x1, x̄)

(x1 − x2) x2

+
x2

2y (x − x1)Q(x2, y)

x (x1 − x2)
− (x1 y − 1) x2

2 (x − x2)Q(x2, x̄)

x2 (x1 − x2) (x2 y − 1)

+
(xy − 1) x2

2Q(x2, x̄1)

x1 x (x2 y − 1)
+

(x − x2)Q(ȳ , x̄)

y (x2 y − 1) x2 −
(x − x2)Q(ȳ , x̄1)

yx1 x (x2 y − 1)

=
(y − x̄1)(xy − 1)(ȳ − x̄2y − 2x̄3)

K (x , y)
,

and the same equation with x1 and x2 exchanged.



Step 4: Extract Q(x , y)

Example: Bipolar quadrangulations

S(x , y) = x̄2 + x̄y + y2 + xȳ

• A section-free equation:

xyQ(x , y)− x̄1xQ(x , x̄1)− x1
2y (x − x2)Q(x1, y)

x (x1 − x2)
+ · · ·

=
(y − x̄1)(xy − 1)(ȳ − x̄2y − 2x̄3)

K (x , y)

• Then

xyQ(x , y) = [x>0y>0]
(y − x̄1)(xy − 1)(ȳ − x̄2y − 2x̄3)

K (x , y)
,

provided the RHS is expanded first in t, then in ȳ , and finally in x .



What can go wrong?

quadrant models with small steps: 79

|G |<∞: 23

D-finite

OS=0: 4

algebraic

OS6=0: 19

DF transc.

|G |=∞: 56

Not D-finite

decoupled: 9

D-alg.

not decoupled: 47

not D-alg.

1. Functional equation: OK
2. The “orbit” may be infinite
3. There may be several section-free equations (or none?) [NEW]
4. The extraction may be tricky [NEW], or impossible



Some cases that work

• Hadamard walks:

S(x , y) = U(x) + V (x)T (y)

(Small steps: 16 out of the 19 “simple” models)

• Bipolar maps [mbm, Fusy, Raschel 18]

Sp = {(−p, 0), (−p + 1, 1), . . . , (0, p), (1,−1)}

In all those cases, the orbit is finite and the series Q(x , y ; t) D-finite,
expressed as the non-negative part of an algebraic series.



Hadamard walks
Assume

S(x , y) = U(x) + V (x)T (y)

Proposition [Bostan, mbm, Melczer 18]
The series Q(x , y) is D-finite, and reads

Q(x , y) = [x≥y≥]

∏m
i=1(1− x̄xi (y))

∏m′

j=1(1− ȳ yj)

1− tS(x , y)
,

where
the xi (y) are the roots of S(x , y) = S(x ′, y) (solved for x ′), whose
expansion in x̄ involves no positive power of x ,
the yj are the roots of S(x , y) = S(x , y ′), or T (y) = T (y ′) (solved
for y ′) whose expansion in ȳ involve no positive powers of y .



Bipolar maps

Sp = {(−p, 0), (−p + 1, 1), . . . , (0, p), (1,−1)}

Proposition [mbm, Fusy, Raschel 18]
The generating function of quadrant walks with steps in Sp is

Q(x , y) = [x≥y≥]
(y − x̄1) (1− x̄ ȳ) Sx(x , y)

1− tS(x , y)
,

where S(x , y) is the step polynomial:

S(x , y) = xȳ + x̄p + x̄p−1y + · · ·+ x̄yp−1 + yp.

and x1 is the only root of S(x , y) = S(x ′, y) (solved for x ′) whose
expansion in ȳ involves a positive power of y .
It is D-finite.



Quadrant walks with steps in {−2,−1, 0, 1}2

quadrant models: 13 110∗

|orbit| <∞: 227+13

OS = 0: 9 OS6= 0: 227 + 4

DF

|orbit| =∞: 12 870

• In all cases, a unique section-free equation

• 227 Hadamard models

(*) Models with at least one occurrence of −2



Some interesting models

• Non-Hadamard, solvable via our approach (and D-finite):

⇒ Q(x , y ; t) is the non-negative part (in x and y) of a rational series



Some interesting models

• Non-Hadamard, solvable via our approach (and D-finite):

⇒ Q(x , y ; t) is the non-negative part (in x and y) of a rational series

For the first model,

Q(x , y) = [x≥0y≥0]

(
x3 − 2 y2 − x

) (
y2 − x

) (
x2y2 − y2 − 2 x

)
x5y4 (1− t(y + xȳ + x̄ ȳ + x̄2y))

.

The coefficients are nice: for n = 2i + j + 4m,

q(i , j ; n) =
(i + 1)(j + 1)(i + j + 2)n!(n + 2)!

m!(3m + 2i + j + 2)!(2m + i + 1)!(2m + i + j + 2)!
.



Some interesting models

• Non-Hadamard, solvable via our approach (and D-finite):

⇒ Q(x , y ; t) is the non-negative part (in x and y) of a rational series
• Non-Hadamard, orbit sum zero: let’s guess! (what Q(0, 0; t) is)

x/y symmetric

DF DF DF DF DF

not symmetric

DF Alg Alg DF

Thanks to Axel Bacher!



Final comments

Still a lot to be done...
Is there a unique section free equation when there are no large
forward step?

Closer study for tricky examples (the 9 analogues of Kreweras’ and
Gessel’s algebraic models)
Nature of models where α is rational but the orbit infinite

quadrant models: 13 110∗

|orbit| <∞: 227+13

OS = 0: 9

DF ?

OS 6= 0: 227 + 4

DF

|orbit| =∞: 12 870

α rational: 16

not DF ?

α irrat.: 12 854

not DF
[Bostan-Raschel-Salvy 14]
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steps α steps α steps α

-5 -7 -4

-4 -11/5 -4

-7 -7/3 -3

-5 -7/3 -4

-7/3 -5/2

-11/5 -4



Walks on a half-line (d = 1)

Let S ⊂ Z with minS = −m.

Proposition [Bostan, mbm, Melczer 18]

Q(x) = [x≥0]

∏m
j=1(1− x̄xj)

1− tS(x)
,

where the xj are the roots of S(xj) = S(x) whose expansion in x̄ involves
no positive power of x .

Classical solution [Gessel 80, mbm-Petkovšek 00, Banderier-Flajolet
02...]

Q(x) =

∏m
j=1(1− x̄Xj)

1− tS(x)

where the Xj ≡ Xj(t) are the roots of 1− tS(x) whose expansion in t
involves no negative power of t. The series Q(x) is algebraic.

These solutions are (of course) equivalent.
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