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Degree constraints: 4-valent maps and quadrangulations

A quadrangulation

with outer degree 6 
A near−quadrangulation 



A chronology of planar maps

1960 1978 1981 1995 2000

Random maps

Recursive approach (enumeration)

Matrix integrals (enumeration)

Bijections (enumeration)

• Recursive approach: Tutte, Brown, Bender, Canfield, Richmond, Goulden,
Jackson, Wormald, Walsh, Lehman, Gao, Wanless...

• Matrix integrals: Brézin, Itzykson, Parisi, Zuber, Bessis, Ginsparg,
Zinn-Justin, Boulatov, Kazakov, Mehta, Bouttier, Di Francesco, Guitter, Eynard...

• Bijections: Cori & Vauquelin, Schaeffer, Bouttier, Di Francesco & Guitter
(BDG), Bernardi, Fusy, Poulalhon, mbm, Chapuy...

• Geometric properties of random maps: Chassaing & Schaeffer, BDG,
Marckert & Mokkadem, Jean-François Le Gall, Miermont, Curien, Albenque,
Bettinelli, Ménard, Angel, Sheffield, Miller, Gwynne...
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I. Counting planar maps:
the early days
William Tutte and the recursive method



Counting quadrangulations by edge deletion

q(n, d) near-quadrangulations with n inner faces and outer degree d

Recurrence relation: q(0, 0) = 1 and

q(n, d) =
∑

n1+n2=n

∑
d1+d2=d−2

q(n1, d1)q(n2, d2) + q(n − 1, d + 2)

Generating function: Q(t, x) =
∑

n,d≥0 q(n, d)t
nxd

Q(t, x) = 1+ x2Q(t, x)2 +
t

x2

(
Q(t, x)− 1− x2Q2(t)

)
,

with
Q2(t) = [x2]Q(t, x) =

∑
n≥0

q(n, 2)tn.
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Counting quadrangulations by edge deletion

Functional equation:

Q(t, x) = 1+ x2Q(t, x)2 +
t

x2

(
Q(t, x)− 1− x2Q2(t)

)
,

with
Q2(t) =

∑
n≥0

q(n, 2)tn.

The original solution: guess and check

Q2(t) =
(1− 12t)3/2 − 1+ 18t

54t2
and q(n, 2) = 2 · 3n (2n)!

n!(n + 2)!
.

This is also the number of quadrangulations with n faces.
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The recursive method

One may have to
I introduce more general objects (near-quadrangulations)
I introduce new enumeration parameters (the outer degree)

Solving can be non-trivial!

Q(t, x) = 1+ x2Q(t, x)2 +
t

x2

(
Q(t, x)− 1− x2Q2(t)

)



II. Maps with an additional
structure
Eulerian orientations
and the 6-vertex model



Maps equipped with an additional structure

In combinatorics, probability and statistical physics

• How many maps equipped with...
a spanning tree [Mullin 67, Bernardi]
a spanning forest? [Bouttier et al., Sportiello et al., mbm & Courtiel]
a self-avoiding walk? [Duplantier & Kostov; Gwynne & Miller]
a proper q-colouring? [Tutte 74-83, Bouttier et al.]
a bipolar orientation? [Kenyon, Miller, Sheffield, Wilson, Fusy, mbm...]

• What is the expected partition function of...
the Ising model? [Boulatov, Kazakov, mbm, Schaeffer, Chen, Turunen,
Bouttier et al., Albenque, Ménard...]
the hard-particle model? [mbm, Schaeffer, Jehanne, Bouttier et al.]
the Potts model? [Eynard-Bonnet, Baxter, mbm-Bernardi, Guionnet et al.,
Borot et al., ...]
· · ·



Maps equipped with an additional structure

Matrix integrals 

1960 1978 1981 1995 2000

Geometric properties 

Bijections 

Recursive approach (Tutte)

We are here



Eulerian orientations

ω = 0

The 4-valent case: the ice model

ω = 1

The 6-vertex model

non-alternating (weight t)

alternating (weight tω)

Each vertex has equally many incoming as outgoing edges.
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The number of planar Eulerian orientations

Theorem [mbm & Elvey Price 18]

Let S ≡ S(t) = t − 2t2 − 4t3 − 20t4 − 132t5 − · · · be the unique power
series with constant term 0 satisfying

t =
∞∑
n=0

1
n + 1

(
2n
n

)2

Sn+1.

The generating function of planar Eulerian orientations counted by edges is

G (t) =
1
4t2

(t − 2t2 − S(t))

= t + 5t2 + 33t3 + · · ·



The number of planar Eulerian orientations

Theorem [mbm & Elvey Price 18]

Let S ≡ S(t) = t − 2t2 − 4t3 − 20t4 − 132t5 − · · · be the unique power
series with constant term 0 satisfying

t =
∞∑
n=0

1
n + 1

(
2n
n

)2

Sn+1.

The generating function of planar Eulerian orientations counted by edges is

G (t) =
1
4t2

(t − 2t2 − S(t))

= t + 5t2 + 33t3 + · · ·

Asymptotics: G (t) =
∑

n gnt
n where

gn ∼
1
16

(4π)n+2

n2(log n)2



III. Two bijections

1. The dual of an Eulerian orientation: a labelled map

2. A bijection between 4-valent Eulerian orientations with no alternating
vertex (n vertices) and general Eulerian orientations with n edges



1. From Eulerian orientations to labelled maps

The 4-valent case: labelled quadrangulations

Labelled maps are rooted
planar maps with labelled
vertices such that:

the root edge is
labelled from 0 to 1,
adjacent labels differ by
±1.
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For the 2-vertex model

Non-alternating (weight t)Alternating (weight tω)

`+ 1 `+ 1`

`+ 1`

`

`− 1`

bicoloured face colourful face (3 labels)

Colourful quadrangulation:

1 2 1−1

0
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2. From colourful labelled quadrangulations to labelled maps

0
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1
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1

−2

−2
−2

−2

−2

A bijection à la Cori-Vauquelin-Schaeffer [Miermont 09, Ambjörn & Budd 13]

Corollary
The number of labelled maps with n edges is half the number of colourful
quadrangulations with n faces.
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IV. Functional equations

c© Julien Courtiel



The recursive method

One may have to
I introduce more general objects (3 different classes of labelled maps)
I introduce new enumeration parameters (2 of them)

Solving can be non-trivial!



A system for colourful quadrangulations [mbm, Elvey Price]

• There exists a unique 3-tuple of series, denoted P(t, y), C(t, x , y) and
D(t, x , y), belonging to Q[[y , t]], Q[x ][[y , t]] and Q[[x , y , t]], such that:

P(t, y) =
1
y
[x1]C(t, x , y),

D(t, x , y) =
1

1− C
(
t, 1

1−x , y
) ,

C(t, x , y) = xy [x≥0]

(
P(t, tx)D

(
t,

1
x
, y

))
,

and P(t, 0) = 1.
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) ,

C(t, x , y) = xy [x≥0]

(
P(t, tx)D

(
t,

1
x
, y

))
,

and P(t, 0) = 1.

Notation: for a Laurent series F (x) =
∑

i∈Z Fix
i ,

[x1]F (x) := F1 and [x≥0]F (x) :=
∑
i≥0

Fix
i .



A system for colourful quadrangulations [mbm, Elvey Price]
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A system for colourful quadrangulations [mbm, Elvey Price]

• There exists a unique 3-tuple of series, denoted P(t, y), C(t, x , y) and
D(t, x , y), belonging to Q[[y , t]], Q[x ][[y , t]] and Q[[x , y , t]], such that:

P(t, y) =
1
y
[x1]C(t, x , y),

D(t, x , y) =
1

1− C
(
t, 1

1−x , y
) ,

C(t, x , y) = xy [x≥0]

(
P(t, tx)D

(
t,

1
x
, y

))
,

and P(t, 0) = 1.

• The generating function that counts colourful quadrangulations by faces is

Qc(t) = [y1]P(t, y)− 1.

• Recall that Qc(t) = 2G(t), where G(t) counts Eulerian orientations by
edges.



The most interesting equation

C(t, x , y) = xy [x≥0]

(
P(t, tx)D

(
t,

1
x
, y

))
A contraction operation of a whole submap

C

0
0

1

1

1

1

2
−1

0

01

−1

0
0

1

−1

0

1

−1

0

0

1

2

2 1

D
P

1

1

1

1

2

0



V. Solution: guess and check!



Solution for colourful quadrangulations

• Let S ≡ S(t) = t − 2t2 − 4t3 − 20t4 − 132t5 − · · · be the unique power
series with constant term 0 satisfying

t =
∞∑
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1
n + 1

(
2n
n

)2

Sn+1.

• The generating function of planar Eulerian orientations counted by edges is

G (t) = Qc(t)/2 =
1
4t2

(t − 2t2 − S)
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Solution for colourful quadrangulations

• Let S ≡ S(t) = t − 2t2 − 4t3 − 20t4 − 132t5 − · · · be the unique power
series with constant term 0 satisfying

t =
∞∑
n=0

1
n + 1

(
2n
n

)2

Sn+1.

• The whole solution:

tP(t, ty) =
∑
n≥0

n∑
j=0

1
n + 1

(
2n
n

)(
2n − j

n

)
y jSn+1,

C(t, x , ty) = 1−exp

−∑
n≥0

n∑
j=0

n∑
i=0

1
n + 1

(
2n − i

n

)(
2n − j

n

)
x i+1y j+1Sn+1

 ,

D(t, x , ty) = exp

∑
n≥0

n∑
j=0

∑
i≥0

1
n + 1

(
2n − j

n

)(
2n + i + 1

n

)
x iy j+1Sn+1





A similar solution for all labelled quadrangulations

(with a more complicated system of functional equations)

• Let R(t) ≡ R = t − 3t2 − 12t3 − 105t4 − 1206t5 − · · · , be the unique
formal power series with constant term 0 satisfying

t =
∑
n≥0

1
n + 1

(
2n
n

)(
3n
n

)
Rn+1.

• Then the generating function of 4-valent Eulerian orientations, counted by
vertices, is

Q(t)=
1
3t2

(
t − 3t2 − R(t)

)
= 4t + 35t2 + 402t3 + · · · .

• Asymptotics:

qn ∼
1
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(4
√
3π)n+2

n2(log n)2

How can one guess that?
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Guess and check: the story

Luck and Andrew EP

Let R = t − 3t2 + · · · satisfy:

t =
∑
n≥0

1
n + 1

(
2n
n

)(
3n
n

)
Rn+1.

Then the GF of labelled quadrangulations is:

Q(t) =
1
3t2

(
t − 3t2 − R(t)

)
.

[Elvey Price, Guttmann 18] a formidable system of functional equations
about 100 coefficients qn of Q(t)

guessed the growth constant: lim q
1/n
n = 4

√
3π

“oh, I’ve seen this constant in another map problem” [mbm-Courtiel 15]
a (guessed) relation between the solutions of the two problems
[Elvey Price]
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VI. The 6-vertex model

An additional weight ω on alternating vertices of 4-valent maps

alternating (weight tω) non-alternating (weight t)



This was already solved... [Kostov, Nucl. Physics B 00]
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Recall: solution when ω = 1

Let R(t) ≡ R = t − 3t2 − 12t3 − 105t4 − 1206t5 − · · · , be the unique formal
power series with constant term 0 satisfying

t =
∑
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Then the generating function of 4-valent Eulerian orientations, counted by
vertices, is
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This was already solved... [Kostov, Nucl. Physics B 00]

(Once digested/corrected by Paul Zinn-Justin)
Write ω = −2 cos(2α).

Let q(t, ω) ≡ q = t + (6ω + 6) t2 + · · · satisfy:

t =
cosα

64 sin3 α

(
−ϑ(α, q)ϑ

′′′(α, q)

ϑ′(α, q)2
+
ϑ′′(α, q)

ϑ′(α, q)

)
where

ϑ(z , q) = 2 sin(z)q1/8
∞∏
n=1

(1− 2 cos(2z)qn + q2n)(1− qn).

• Define the series R(t, ω) by

R(t, ω) =
cos2 α

96 sin4 α

ϑ(α, q)2

ϑ′(α, q)2

(
−ϑ
′′′(α, q)

ϑ′(α, q)
+
ϑ′′′(0, q)
ϑ′(0, q)

)
.

• Then the generating function of quartic rooted planar Eulerian
orientations, counted by vertices, with a weight ω per alternating vertex is

Q(t, ω) =
1

(ω + 2)t2
(
t − (ω + 2)t2 − R(t, ω)

)
.
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Two questions

• Relate this to the MBM-EP solution when ω = 0 or ω = 1
[Elvey Price & Zinn Justin 19+]

• Find a new proof of Kostov’s result via our functional equations
[mbm & Elvey Price 19+]



Complements and perspectives

record the number of faces in Eulerian orientations (equivalently, the
number of oriented faces in 4-valent Eulerian orientations) — done
record the label of a vertex in a pointed labelled map — in progress.
Scaling and limit law?
asymptotics and phase transitions when ω varies



Something to take home

Let R = t − 3t2 + · · · satisfy:

t =
∑
n≥0

1
n + 1

(
2n
n

)(
3n
n

)
Rn+1.

The GF of 4-valent Eulerian orientations is

Q(t) =
1
3t2

(
t − 3t2 − R(t)

)
.

Another interpretation [mbm-Courtiel 15]
Consider ternary trees with black and white leaves. Define the charge at a
node to be the number of white leaves minus the number of black leaves in
the associated subtree. Then (t − R)/t = 3t(1+ Q) counts (by the number
of nodes) trees in which the root is the only vertex of charge 1.

Bijection?
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