Prudent self-avoiding walks

Mireille Bousquet-Mélou, CNRS, Bordeaux, France
http://www.labri.fr/~bousquet

Enumerative combinatorics

Let \mathcal{A} be a set of discrete objects equipped with an integer size, and assume that for all n, the number of objects of \mathcal{A} of size n is finite. Let $a(n)$ be this number.

- Exact enumeration: determine the sequence $a(n)$

$$
a(n)=\cdots \quad \text { or } \quad A(t):=\sum_{n \geq 0} a(n) t^{n}=\cdots
$$

where $A(t)$ is the generating function of the objects of \mathcal{A}.

- Asymptotic enumeration: estimate the numbers $a(n)$, as $n \rightarrow \infty$

$$
a(n) \sim \cdots \quad \text { or } \quad a(n)=O(\cdots) \quad \text { or } \quad a(n)^{1 / n} \rightarrow \cdots
$$

- Applications: probability, algebra, computer science (analysis of algorithms), statistical physics... and curiosity!

Self-avoiding walks (SAW)

Conjectures ($d=2$)

- The number of n-step SAW is equivalent to $(\kappa) \mu^{n} n^{11 / 32}$ for n large.
- The endpoint lies on average at distance $n^{3 / 4}$ from the starting point.
- The scaling limit of SAW is SLE $_{8 / 3}$ (proved under an assumption of conformal invariance [Lawler, Schramm, Werner 02]).

Theorem [Hara-Slade 92]

- In dimension $d \geq 5$, the number of n-step SAW is equivalent to μ^{n}.
- The endpoint lies on average at distance $n^{1 / 2}$ from the starting point.

This is too hard!

... for exact enumeration
\Rightarrow Study of toy models, that should be as general as possible, but still tractable

- develop new techniques in exact enumeration
- solve better and better approximations of real SAW

Two toy models

Directed walks (N,E)

Partially directed walks (N,W,E)

Markovian with memory 1

$$
\begin{gathered}
a(n) \sim(1+\sqrt{2})^{n} \sim(2.41 \ldots)^{n} \\
\sum_{n} a(n) t^{n}=\frac{1+t}{1-2 t-t^{2}} \\
\mathbb{E}\left(\left|X_{n}\right|\right) \sim \sqrt{n}, \quad \mathbb{E}\left(Y_{n}\right) \sim n
\end{gathered}
$$

A hierarchy of formal power series

- The formal power series $A(t)$ is rational if it can be written

$$
A(t)=\frac{P(t)}{Q(t)}
$$

where $P(t)$ and $Q(t)$ are polynomials in t.

- The formal power series $A(t)$ is algebraic (over $\mathbb{Q}(t)$) if it satisfies a (nontrivial) polynomial equation:

$$
P(t, A(t))=0
$$

- The formal power series $A(t)$ is D-finite if it satisfies a (non-trivial) linear differential equation with polynomial coefficients:

$$
P_{0}(t) A^{(k)}(t)+P_{1}(t) A^{(k-1)}(t)+\cdots+P_{k}(t) A(t)=0
$$

$$
\text { Rat } \subset \mathrm{Alg} \subset \text { D-finite }
$$

I. Prudent self-avoiding walks

Self-directed walks [Turban-Debierre 86], Exterior walks [Préa 97], Outwardly directed SAW [Santra-Seitz-Klein 01]

Prudent walks [Duchi 05], [Dethridge, Guttmann, Jensen 07], [mbm 08]

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Prudent self-avoiding walks

Every new step can be repeated indefinitely without creating intersections.

Examples of prudent walks

Directed walks (N, E)
Partially directed walks (N, E, W)

Some properties of prudent walks

Some properties of prudent walks

The box of a prudent walk

Some properties of prudent walks

The endpoint of a prudent walk is always on the border of the box.

Each new step either inflates the box or walks (prudently) along the border.

Some properties of prudent walks

Each new step either inflates the box or walks (prudently) along the border.

- After an inflating step, 3 possibilities
- Otherwise, only 2.

A comparison with partially directed walks (N, E and W steps)

- After a North step, 3 possibilities (N, E, W)
- Otherwise, only 2 (N , or repeat)
\Rightarrow Count partially directed walks by looking for the last North step

Some properties of prudent walks

Each new step either inflates the box or walks (prudently) along the border.

- After an inflating step, 3 possibilities
- Otherwise, only 2.
\Rightarrow Count prudent walks by looking for the last inflating step

When do we create an inflating step?

Some properties of prudent walks

Each new step either inflates the box or walks (prudently) along the border.

- After an inflating step, 3 possibilities
- Otherwise, only 2.
\Rightarrow Count prudent walks by looking for the last inflating step

Some properties of prudent walks

Each new step either inflates the box or walks (prudently) along the border.

- After an inflating step, 3 possibilities
- Otherwise, only 2.
\Rightarrow Count prudent walks by looking for the last inflating step

Some properties of prudent walks

Each new step either inflates the box or walks (prudently) along the border.

- After an inflating step, 3 possibilities
- Otherwise, only 2.
\Rightarrow Count prudent walks by looking for the last inflating step

When do we create an inflating step?

Some properties of prudent walks

If one knows:

- the direction of the last step,
- whether it is inflating or not,
- the distances i, j and h,
then one can decide which steps can be appended to the walk, and the new values of these parameters.
\Rightarrow Count prudent walks by looking for the last inflating step, keeping track of the distances i, j, h

Simpler families of prudent walks [Préa 97]

3-sided

2-sided

1-sided

- The endpoint of a 3-sided walk lies always on the top, right or left side of the box
- The endpoint of a 2-sided walk lies always on the top or right side of the box
- The endpoint of a 1 -sided walk lies always on the top side of the box $(=$ partially directed!)

> Non-isotropic models

An isotropic model with only two additional parameters: triangular prudent walks

Definition: Every new step either inflates the box or walks (prudently) along the border

II. Results

Summary of the results

	Nature of the g.f.	Asympt. growth	End-to-end distance
1-sided (part. dir)	Rat.	$(2.41 \ldots)^{n}$	n
2-sided	Alg. [Duchi 05]	$(2.48 \ldots)^{n}$	n
3-sided	not D-finite	$(2.48 \ldots)^{n}$	n
4-sided (general)	not D-finite	$(2.48 \ldots)^{n}$	$n^{3 / 4}$
square lattice SAW	?	$(2.63 \ldots)^{n} n^{11 / 32}$	n
triangular prudent	not D-finite	$(3.56 \ldots)^{n}$	n
triangular SAW	?	$(4.15 \ldots)^{n} n^{11 / 32}$	$n^{3 / 4}$

Some tools

- Functional equations with "catalytic" variables
- The kernel method
- Singularity analysis and asymptotics

A functional equation for two-sided prudent walks

One keeps track of the distance between the endpoint and the NE corner of the box:

Generating function for walks ending on the top side of the box::

$$
T(t ; u)=\sum_{n ; i} a(n ; i) t^{n} u^{i}=\sum_{i} T_{i}(t) u^{i} \equiv T(u)
$$

- For 2-sided walks: series $P(t ; u) \equiv P(u)$

A functional equation for two-sided prudent walks

Walks ending on the top side of the box: where is the last step that moved the right or top side of the box?

- Either there was no such step:

$$
\frac{1}{1-t u}
$$

- ... or an East step moved the right side:

$$
t \sum_{i} T_{i}(t) t^{i}=t T(t ; t)
$$

A functional equation for two-sided prudent walks

... or a North step moved the top side:

(at least one West step)
$\frac{t^{2} u}{1-t u} T(t ; u)+t \sum_{i \geq 0} T_{i}(t) \sum_{k=0}^{i} t^{k} u^{i-k}=\frac{t^{2} u}{1-t u} T(t ; u)+\frac{t}{u-t}(u T(t ; u)-t T(t ; t))$.

A functional equation for two-sided prudent walks

- The generating function $T(t ; u)$ of 2-sided walks ending on the top side of their box satisfies

$$
\left(1-\frac{t u\left(1-t^{2}\right)}{(1-t u)(u-t)}\right) T(t ; u)=\frac{1}{1-t u}+t \frac{u-2 t}{u-t} T(t ; t)
$$

- The g.f. that counts all 2-sided walks is

$$
P(t ; u)=2 T(t ; u)-T(t ; 0)
$$

(inclusion-exclusion)

The more general the class, the more additional variables

1. Two-sided walks : one catalytic variable

$$
\left(1-\frac{t u\left(1-t^{2}\right)}{(1-t u)(u-t)}\right) T(t ; u)=\frac{1}{1-t u}+t \frac{u-2 t}{u-t} T(t ; t)
$$

2.a. Three-sided walks: two catalytic variables

$$
\left(1-\frac{u v t\left(1-t^{2}\right)}{(u-t v)(v-t u)}\right) T(t ; u, v)=1+\cdots-\frac{t^{2} v}{u-t v} T(t ; t v, v)-\frac{t^{2} u}{v-t u} T(t ; u, t u)
$$

2.b. Triangular prudent walks: two catalytic variables

$$
\begin{aligned}
& \left(1-\frac{t u v\left(1-t^{2}\right)(u+v)}{(u-t v)(v-t u)}\right) R(t ; u, v)= \\
& 1+t u(1+t) \frac{v-2 t u}{v-t u} R(t ; u, t u)+t v(1+t) \frac{u-2 t v}{u-t v} R(t ; t v, v)
\end{aligned}
$$

3. General prudent walks : three catalytic variables
$\left(1-\frac{u v w t\left(1-t^{2}\right)}{(u-t v)(v-t u)}\right) T(t ; u, v, w)=1+\mathcal{G}(w, u)+\mathcal{G}(w, v)-t v \frac{\mathcal{G}(v, w)}{u-t v}-t u \frac{\mathcal{G}(u, w)}{v-t u}$ with $\mathcal{G}(u, v)=t v T(t ; u, t u, v)$.

Two-sided walks: the kernel method

The generating function of 2-sided walks ending on the top side of their box satisfies:

$$
\left(1-\frac{t u\left(1-t^{2}\right)}{(1-t u)(u-t)}\right) T(t ; u)=\frac{1}{1-t u}+t \frac{u-2 t}{u-t} T(t ; t)
$$

The g.f. that counts all 2 -sided walks is

$$
P(t ; u)=2 T(t ; u)-T(t ; 0)
$$

\Rightarrow the kernel method
[Knuth 72], [mbm-Petkovšek 2000]

Two-sided walks: the kernel method

$$
\left((1-t u)(u-t)-t u\left(1-t^{2}\right)\right) T(t ; u)=u-t+t(u-2 t)(1-t u) T(t ; t)
$$

- If $u=U(t)$ cancels $(1-t u)(u-t)-t u\left(1-t^{2}\right)$, then

$$
U(t)-t+t(U(t)-2 t)(1-t U(t)) T(t ; t)=0
$$

that is,

$$
T(t ; t)=\frac{t-U(t)}{t(U(t)-2 t)(1-t U(t))}
$$

- We know such a series $U(t)$:

$$
U(t)=\frac{1-t+t^{2}+t^{3}-\sqrt{\left(1-t^{4}\right)\left(1-2 t-t^{2}\right)}}{2 t}
$$

Two-sided walks

- The length generating function of 2-sided walks is

$$
P(t)=\frac{1}{1-2 t-2 t^{2}+2 t^{3}}\left(1+t-t^{3}+t(1-t) \sqrt{\frac{1-t^{4}}{1-2 t-t^{2}}}\right)
$$

[Duchi 05]

- Dominant singularity: a simple pole for $1-2 t-2 t^{2}+2 t^{3}=0$, that is, $t_{c}=0.40303 \ldots$. Asymptotically,

$$
p(n) \sim \kappa(2.48 \ldots)^{n}
$$

Compare with $2.41 \ldots$ for partially directed walks.

- Another approach: factorization of walks [Duchi 05]

Triangular prudent walks: two catalytic variables

- Functional equation for $R(t ; u, v) \equiv R(u, v)$:

$$
\begin{aligned}
& \quad\left((u-t v)(v-t u)-t u v\left(1-t^{2}\right)(u+v)\right) R(u, v)= \\
& (u-t v)(v-t u)+t u(1+t)(u-t v)(v-2 t u) R(u, t u)+t v(1+t)(v-t u)(u-2 t v) R(v, t v)
\end{aligned}
$$

Let

$$
K(u, v) R(u, v)=A(u, v)+B(u, v) \Phi(u)+B(v, u) \Phi(v)
$$

Triangular prudent walks: two catalytic variables

- Functional equation for $R(t ; u, v) \equiv R(u, v)$:

$$
\begin{aligned}
& \quad\left((u-t v)(v-t u)-t u v\left(1-t^{2}\right)(u+v)\right) R(u, v)= \\
& (u-t v)(v-t u)+t u(1+t)(u-t v)(v-2 t u) R(u, t u)+t v(1+t)(v-t u)(u-2 t v) R(t v, v) .
\end{aligned}
$$

Let

$$
K(u, v) R(u, v)=A(u, v)+B(u, v) \Phi(u)+B(v, u) \Phi(v)
$$

- Cancellation of the kernel: $K(u, V(u))=0$ for a series $V(u) \equiv V(t ; u)$

$$
\Phi(u)=-\frac{A(u, V(u))}{B(u, V(u))}-\frac{B(V(u), u)}{B(u, V(u))} \Phi(V(u))
$$

Triangular prudent walks: two catalytic variables

- Functional equation for $R(t ; u, v) \equiv R(u, v)$:

$$
\begin{aligned}
& \quad\left((u-t v)(v-t u)-t u v\left(1-t^{2}\right)(u+v)\right) R(u, v)= \\
& (u-t v)(v-t u)+t u(1+t)(u-t v)(v-2 t u) R(u, t u)+t v(1+t)(v-t u)(u-2 t v) R(t v, v) .
\end{aligned}
$$

Let

$$
K(u, v) R(u, v)=A(u, v)+B(u, v) \Phi(u)+B(v, u) \Phi(v)
$$

- Cancellation of the kernel: $K(u, V(u))=0$ for a series $V(u) \equiv V(t ; u)$

$$
\Phi(u)=-\frac{A(u, V(u))}{B(u, V(u))}-\frac{B(V(u), u)}{B(u, V(u))} \Phi(V(u))
$$

- If it is possible to iterate (\ldots), denote $V^{(k)}=V(V(V(\cdots(u)))$) (k iterations):

$$
\Phi(u)=\sum_{k \geq 0}(-1)^{k-1} \frac{B\left(V^{(1)}, u\right) B\left(V^{(2)}, V^{(1)}\right) \cdots B\left(V^{(k)}, V^{(k-1)}\right) A\left(V^{(k)}, V^{(k+1)}\right)}{B\left(u, V^{(1)}\right) B\left(V^{(1)}, V^{(2)}\right) \cdots B\left(V^{(k-1)}, V^{(k)}\right) B\left(V^{(k)}, V^{(k+1)}\right)}
$$

Triangular prudent walks

The length generating function of triangular prudent walks is

$$
P(t ; 1)=\frac{6 t(1+t)}{1-3 t-2 t^{2}}(1+t(1+2 t) R(t ; 1, t))
$$

with

$$
R(t ; 1, t)=(1+Y)(1+t Y) \sum_{k \geq 0} \frac{t^{\binom{k+1}{2}}\left(Y\left(1-2 t^{2}\right)\right)^{k}}{\left(Y\left(1-2 t^{2}\right) ; t\right)_{k+1}}\left(\frac{Y t^{2}}{1-2 t^{2}} ; t\right)_{k}
$$

and

$$
Y=\frac{1-2 t-t^{2}-\sqrt{(1-t)\left(1-3 t-t^{2}-t^{3}\right)}}{2 t^{2}}
$$

Notation:

$$
(a ; q)_{n}=(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right)
$$

Triangular prudent walks

The length generating function of triangular prudent walks is

$$
P(t ; 1)=\frac{6 t(1+t)}{1-3 t-2 t^{2}}(1+t(1+2 t) R(t ; 1, t))
$$

with

$$
R(t ; 1, t)=(1+Y)(1+t Y) \sum_{k \geq 0} \frac{t^{\binom{k+1}{2}}\left(Y\left(1-2 t^{2}\right)\right)^{k}}{\left(Y\left(1-2 t^{2}\right) ; t\right)_{k+1}}\left(\frac{Y t^{2}}{1-2 t^{2}} ; t\right)_{k}
$$

- Dominant singularity: a simple pole for $1-3 t-2 t^{2}=0$. Asymptotically,

$$
p(n) \sim \kappa\left(\frac{3+\sqrt{17}}{2}\right)^{n}
$$

- The series $P(t ; 1)$ is neither algebraic, nor even D-finite (infinitely many poles at $\left.Y t^{k}\left(1-2 t^{2}\right)=0\right)$

Three-sided prudent walks

The generating function of three-sided prudent walks is:

$$
P(t ; 1)=\frac{1}{1-2 t-t^{2}}\left(\frac{1+3 t+t q\left(1-3 t-2 t^{2}\right)}{1-t q}+2 t^{2} q T(t ; 1, t)\right)
$$

where

$$
\begin{gathered}
q \equiv q(t)=\frac{1-t+t^{2}+t^{3}-\sqrt{\left(1-t^{4}\right)\left(1-2 t-t^{2}\right)}}{2 t} \\
T(t ; 1, t)=\sum_{k \geq 0}(-1)^{k} \frac{\prod_{i=0}^{k-1}\left(\frac{t}{1-t q}-U\left(q^{i+1}\right)\right)}{\prod_{i=0}^{k}\left(\frac{t q}{q-t}-U\left(q^{i}\right)\right)}\left(1+\frac{U\left(q^{k}\right)-t}{t\left(1-t U\left(q^{k}\right)\right)}+\frac{U\left(q^{k+1}\right)-t}{t\left(1-t U\left(q^{k+1}\right)\right)}\right)
\end{gathered}
$$

with

$$
U(w)=\frac{1-t w+t^{2}+t^{3} w-\sqrt{\left(1-t^{2}\right)\left(1+t-t w+t^{2} w\right)\left(1-t-t w-t^{2} w\right)}}{2 t}
$$

Three-sided prudent walks

The generating function of three-sided prudent walks is:

$$
\begin{gathered}
P(t ; 1)=\frac{1}{1-2 t-t^{2}}\left(\frac{1+3 t+t q\left(1-3 t-2 t^{2}\right)}{1-t q}+2 t^{2} q T(t ; 1, t)\right) \\
T(t ; 1, t)=\sum_{k \geq 0}(-1)^{k} \frac{\prod_{i=0}^{k-1}\left(\frac{t}{1-t q}-U\left(q^{i+1}\right)\right)}{\prod_{i=0}^{k}\left(\frac{t q}{q-t}-U\left(q^{i}\right)\right)}\left(1+\frac{U\left(q^{k}\right)-t}{t\left(1-t U\left(q^{k}\right)\right)}+\frac{U\left(q^{k+1}\right)-t}{t\left(1-t U\left(q^{k+1}\right)\right)}\right)
\end{gathered}
$$

- Dominant singularity: (again) a simple pole for $1-2 t-2 t^{2}+2 t^{3}=0$. Asymptotically,

$$
p(n) \sim \kappa(2.48 \ldots)^{n}
$$

- The series $P(t ; 1)$ is neither algebraic, nor even D-finite (infinitely many poles at $\left.\frac{t q}{q-t}=U\left(q^{i}\right)\right)$

General prudent walks: three catalytic variables

$$
\begin{aligned}
& \left(1-\frac{u v w t\left(1-t^{2}\right)}{(u-t v)(v-t u)}\right) T(u, v, w)=1+\mathcal{G}(w, u)+\mathcal{G}(w, v)-t v \frac{\mathcal{G}(v, w)}{u-t v}-t u \frac{\mathcal{G}(u, w)}{v-t u} \\
& \text { with } \mathcal{G}(u, v)=t v T(u, t u, v)
\end{aligned}
$$

Random generation

(step by step construction)

Two-sided prudent walks

500 steps

Two-sided prudent walks

500 steps

Three-sided prudent walks

400 steps

Three-sided prudent walks

400 steps

General prudent walks

195 steps (sic)

General prudent walks

195 steps

Triangular prudent walks

500 steps

Triangular prudent walks

500 steps

Some questions

- General prudent walks on the square lattice: growth constant? Exact enumeration?
- More efficient procedures for random generation (maximal length 200 for general prudent walks...)

- The number of triangular prudent walks whose box has size k is

$$
2^{k-1}(k+1)(k+2)!
$$

Combinatorial explanation?

- Limit processes?

