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Enumerative combinatorics

Let A be a set of discrete objects equipped with an integer size, and assume

that for all n, the number of objects of A of size n is finite. Let a(n) be this

number.

• Exact enumeration: determine the sequence a(n)

a(n) = · · · or A(t) :=
∑

n≥0

a(n)tn = · · ·

where A(t) is the generating function of the objects of A.

• Asymptotic enumeration: estimate the numbers a(n), as n → ∞

a(n) ∼ · · · or a(n) = O(· · · ) or a(n)1/n → · · ·

• Applications: probability, algebra, computer science (analysis of algorithms),

statistical physics... and curiosity!



Self-avoiding walks (SAW)

Conjectures (d = 2)

• The number of n-step SAW is equivalent to (κ)µn n11/32 for n large.

• The endpoint lies on average at distance n3/4 from the starting point.

• The scaling limit of SAW is SLE8/3 (proved under an assumption of conformal

invariance [Lawler, Schramm, Werner 02]).

Theorem [Hara-Slade 92]

• In dimension d ≥ 5, the number of n-step SAW is equivalent to µn.

• The endpoint lies on average at distance n1/2 from the starting point.



This is too hard!

... for exact enumeration

⇒ Study of toy models, that should be as general as possible, but still

tractable

• develop new techniques in exact enumeration

• solve better and better approximations of real SAW



Two toy models

Directed walks (N,E) Partially directed walks (N,W,E)

Memory-less Markovian with memory 1

a(n) = 2n a(n) ∼ (1 +
√

2)n ∼ (2.41...)n

∑

n
a(n)tn =

1

1 − 2t

∑

n
a(n)tn =

1 + t

1 − 2t − t2

E(Xn) = E(Yn) = n/2 E(|Xn|) ∼ √
n, E(Yn) ∼ n



A hierarchy of formal power series

• The formal power series A(t) is rational if it can be written

A(t) =
P(t)

Q(t)

where P(t) and Q(t) are polynomials in t.

• The formal power series A(t) is algebraic (over Q(t)) if it satisfies a (non-

trivial) polynomial equation:

P(t, A(t)) = 0.

• The formal power series A(t) is D-finite if it satisfies a (non-trivial) linear

differential equation with polynomial coefficients:

P0(t)A
(k)(t) + P1(t)A

(k−1)(t) + · · · + Pk(t)A(t) = 0.

Rat ⊂ Alg ⊂ D-finite



I. Prudent self-avoiding walks

Self-directed walks [Turban-Debierre 86], Exterior walks [Préa 97],

Outwardly directed SAW [Santra-Seitz-Klein 01]

Prudent walks [Duchi 05], [Dethridge, Guttmann, Jensen 07], [mbm 08]
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Examples of prudent walks

Directed walks (N, E) Partially directed walks (N, E, W)
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A comparison with partially directed walks (N, E and W steps)

• After a North step, 3 possibilities (N, E, W)

• Otherwise, only 2 (N, or repeat)

⇒ Count partially directed walks by looking for the last North step
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Some properties of prudent walks

i

h

j

If one knows:

• the direction of the last step,

• whether it is inflating or not,

• the distances i, j and h,

then one can decide which steps can be appended to the walk, and the new

values of these parameters.

⇒ Count prudent walks by looking for the last inflating step, keeping track of

the distances i, j, h



Simpler families of prudent walks [Préa 97]

ij i

3-sided 2-sided 1-sided

• The endpoint of a 3-sided walk lies always on the top, right or left side of

the box

• The endpoint of a 2-sided walk lies always on the top or right side of the box

• The endpoint of a 1-sided walk lies always on the top side of the box (=

partially directed!)

Non-isotropic models



An isotropic model with only two additional parameters:

triangular prudent walks

Definition: Every new step either inflates the box or walks (prudently) along

the border

i

j



II. Results



Summary of the results

Nature of the g.f. Asympt. growth End-to-end distance

1-sided (part. dir) Rat. (2.41...)n n

2-sided Alg. [Duchi 05] (2.48...)n n

3-sided not D-finite (2.48...)n n

4-sided (general) not D-finite (2.48...)n n

square lattice SAW ? (2.63...)n n11/32 n3/4

triangular prudent not D-finite (3.56...)n n

triangular SAW ? (4.15...)n n11/32 n3/4



Some tools

• Functional equations with “catalytic” variables

• The kernel method

• Singularity analysis and asymptotics



A functional equation for two-sided prudent walks

One keeps track of the distance between the endpoint and the NE corner of

the box: i

Generating function for walks ending on the top side of the box::

T(t; u) =
∑

n;i

a(n; i)tnui =
∑

i

Ti(t)u
i ≡ T(u)

• For 2-sided walks: series P(t; u) ≡ P(u)



A functional equation for two-sided prudent walks

Walks ending on the top side of the box: where is the last step that moved

the right or top side of the box?

• Either there was no such step:

1

1 − tu

• ... or an East step moved the right side:

i

t
∑

i

Ti(t)t
i = tT(t; t)



A functional equation for two-sided prudent walks

... or a North step moved the top side:

(at least one West step)

k

i

t2u

1 − tu
T(t; u) + t

∑

i≥0

Ti(t)
i
∑

k=0

tkui−k =
t2u

1 − tu
T(t; u) +

t

u − t
(uT(t;u) − tT(t; t)) .



A functional equation for two-sided prudent walks

• The generating function T(t; u) of 2-sided walks ending on the top side of

their box satisfies
(

1 − tu(1 − t2)

(1 − tu)(u − t)

)

T(t; u) =
1

1 − tu
+ t

u − 2t

u − t
T(t; t)

• The g.f. that counts all 2-sided walks is

P(t; u) = 2T(t; u) − T(t; 0)

(inclusion-exclusion)



The more general the class, the more additional variables

1. Two-sided walks : one catalytic variable
(

1 − tu(1 − t2)

(1 − tu)(u − t)

)

T(t; u) =
1

1 − tu
+ t

u − 2t

u − t
T(t; t).

2.a. Three-sided walks : two catalytic variables
(

1 − uvt(1 − t2)

(u − tv)(v − tu)

)

T(t; u, v) = 1 + · · · − t2v

u − tv
T(t; tv, v) − t2u

v − tu
T(t; u, tu)

2.b. Triangular prudent walks: two catalytic variables
(

1 − tuv(1 − t2)(u + v)

(u − tv)(v − tu)

)

R(t; u, v) =

1 + tu(1 + t)
v − 2tu

v − tu
R(t;u, tu) + tv(1 + t)

u − 2tv

u − tv
R(t; tv, v).

3. General prudent walks : three catalytic variables
(

1 − uvwt(1 − t2)

(u − tv)(v − tu)

)

T(t; u, v, w) = 1+G(w, u)+G(w, v)− tv
G(v,w)

u − tv
− tu

G(u, w)

v − tu

with G(u, v) = tvT(t; u, tu, v).



Two-sided walks: the kernel method

The generating function of 2-sided walks ending on the top side of their box

satisfies:
(

1 − tu(1 − t2)

(1 − tu)(u − t)

)

T(t; u) =
1

1 − tu
+ t

u − 2t

u − t
T(t; t).

The g.f. that counts all 2-sided walks is

P(t; u) = 2T(t; u) − T(t; 0).

⇒ the kernel method

[Knuth 72], [mbm-Petkovšek 2000]



Two-sided walks: the kernel method

(

(1 − tu)(u − t) − tu(1 − t2)
)

T(t; u) = u − t + t(u − 2t)(1 − tu)T(t; t).

• If u = U(t) cancels (1 − tu)(u − t) − tu(1 − t2), then

U(t) − t + t(U(t) − 2t)(1 − tU(t))T(t; t) = 0,

that is,

T(t; t) =
t − U(t)

t(U(t) − 2t)(1 − tU(t))

• We know such a series U(t) :

U(t) =
1 − t + t2 + t3 −

√

(1 − t4)(1 − 2t − t2)

2t



Two-sided walks

• The length generating function of 2-sided walks is

P(t) =
1

1 − 2t − 2t2 + 2t3





1 + t − t3 + t(1 − t)

√

√

√

√

1 − t4

1 − 2t − t2







[Duchi 05]

• Dominant singularity: a simple pole for 1 − 2t − 2t2 + 2t3 = 0, that is,

tc = 0.40303.... Asymptotically,

p(n) ∼ κ (2.48...)n

Compare with 2.41... for partially directed walks.

• Another approach: factorization of walks [Duchi 05]



Triangular prudent walks: two catalytic variables

• Functional equation for R(t; u, v) ≡ R(u, v):

(

(u − tv)(v − tu) − tuv(1 − t2)(u + v)
)

R(u, v) =

(u−tv)(v−tu)+tu(1+t)(u−tv)(v−2tu)R(u, tu)+tv(1+t)(v−tu)(u−2tv)R(v, tv).

Let K(u, v)R(u, v) = A(u, v) + B(u, v)Φ(u) + B(v, u)Φ(v)
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Triangular prudent walks: two catalytic variables

• Functional equation for R(t; u, v) ≡ R(u, v):

(

(u − tv)(v − tu) − tuv(1 − t2)(u + v)
)

R(u, v) =

(u−tv)(v−tu)+tu(1+t)(u−tv)(v−2tu)R(u, tu)+tv(1+t)(v−tu)(u−2tv)R(tv, v).

Let K(u, v)R(u, v) = A(u, v) + B(u, v)Φ(u) + B(v, u)Φ(v)

• Cancellation of the kernel: K(u, V (u)) = 0 for a series V (u) ≡ V (t; u)

Φ(u) = −A(u, V (u))

B(u, V (u))
− B(V (u), u)

B(u, V (u))
Φ(V (u))

• If it is possible to iterate (...), denote V (k) = V (V (V (· · · (u)))) (k iterations):

Φ(u) =
∑

k≥0

(−1)k−1B(V (1), u)B(V (2), V (1)) · · ·B(V (k), V (k−1))A(V (k), V (k+1))

B(u, V (1))B(V (1), V (2)) · · ·B(V (k−1), V (k))B(V (k), V (k+1))

Sum of algebraic series — iteration of algebraic functions



Triangular prudent walks

The length generating function of triangular prudent walks is

P(t; 1) =
6t(1 + t)

1 − 3t − 2t2

(

1 + t (1 + 2t)R(t; 1, t)
)

with

R(t; 1, t) = (1 + Y )(1 + tY )
∑

k≥0

t(
k+1
2 )

(

Y (1 − 2t2)
)k

(Y (1 − 2t2); t)k+1

(

Y t2

1 − 2t2
; t

)

k

and

Y =
1 − 2t − t2 −

√

(1 − t)(1 − 3t − t2 − t3)

2t2

Notation:

(a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1).



Triangular prudent walks

The length generating function of triangular prudent walks is

P(t; 1) =
6t(1 + t)

1 − 3t − 2t2

(

1 + t (1 + 2t)R(t; 1, t)
)

with

R(t; 1, t) = (1 + Y )(1 + tY )
∑

k≥0

t(
k+1
2 )

(

Y (1 − 2t2)
)k

(Y (1 − 2t2); t)k+1

(

Y t2

1 − 2t2
; t

)

k

• Dominant singularity: a simple pole for 1 − 3t − 2t2 = 0. Asymptotically,

p(n) ∼ κ

(

3 +
√

17

2

)n

• The series P(t; 1) is neither algebraic, nor even D-finite (infinitely many poles

at Y tk(1 − 2t2) = 0)



Three-sided prudent walks

The generating function of three-sided prudent walks is:

P(t; 1) =
1

1 − 2t − t2

(

1 + 3t + tq(1 − 3t − 2t2)

1 − tq
+ 2t2q T(t; 1, t)

)

where

q ≡ q(t) =
1 − t + t2 + t3 −

√

(1 − t4)(1 − 2t − t2)

2t
,

T(t; 1, t) =
∑

k≥0

(−1)k

∏k−1
i=0

(

t
1−tq − U(qi+1)

)

∏k
i=0

(

tq
q−t − U(qi)

)

(

1 +
U(qk) − t

t(1 − tU(qk))
+

U(qk+1) − t

t(1 − tU(qk+1))

)

with

U(w) =
1 − tw + t2 + t3w −

√

(1 − t2)(1 + t − tw + t2w)(1 − t − tw − t2w)

2t



Three-sided prudent walks

The generating function of three-sided prudent walks is:

P(t; 1) =
1

1 − 2t − t2

(

1 + 3t + tq(1 − 3t − 2t2)

1 − tq
+ 2t2q T(t; 1, t)

)

T(t; 1, t) =
∑

k≥0

(−1)k

∏k−1
i=0

(

t
1−tq − U(qi+1)

)

∏k
i=0

(

tq
q−t − U(qi)

)

(

1 +
U(qk) − t

t(1 − tU(qk))
+

U(qk+1) − t

t(1 − tU(qk+1))

)

• Dominant singularity: (again) a simple pole for 1−2t−2t2+2t3 = 0. Asymp-

totically,

p(n) ∼ κ (2.48...)n

• The series P(t; 1) is neither algebraic, nor even D-finite (infinitely many poles

at tq
q−t = U(qi) )



General prudent walks: three catalytic variables

(

1 − uvwt(1 − t2)

(u − tv)(v − tu)

)

T(u, v, w) = 1 + G(w, u) + G(w, v) − tv
G(v, w)

u − tv
− tu

G(u, w)

v − tu

with G(u, v) = tvT(u, tu, v).

?



Random generation

(step by step construction)
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Three-sided prudent walks
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Three-sided prudent walks
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General prudent walks

195 steps (sic)
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General prudent walks

195 steps
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Triangular prudent walks

500 steps
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Triangular prudent walks

500 steps
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Some questions

• General prudent walks on the square lattice: growth constant? Exact enu-

meration?

• More efficient procedures for random generation (maximal length 200 for

general prudent walks...)

–50

–40

–30

–20

–10

0
–60 –50 –40 –30 –20 –10

• The number of triangular prudent walks whose box has size k is

2k−1(k + 1)(k + 2)!

Combinatorial explanation?

• Limit processes?


