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Philippe's favourite topi: disrete random objets
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The ALEA and AofA ommunities

Combinatoris, probability theory, theoretial omputer siene, statistial physis

⋆ ALEA: randomness (in Frenh); die (in Latin)
⋆ AofA: Analysis of Algorithms
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Analysis of Algorithms and Analyti Combinatoris[Ph. Flajolet, R. Sedgewik℄



Analyti Combinatoris: ContentsPart A. Symboli methods

• Combinatorial strutures and ordinary generating funtions

• Labelled strutures and exponential generating funtions

• Combinatorial parameters and multivariate generating funtions

Part B. Complex asymptotis
• Complex analysis, rational and meromorphi asymptotis

• Appliations of rational and meromorphi asymptotis

• Singularity analysis of generating funtions
• Appliations of singularity analysis
• Saddle-point asymptotis

Part C. Random strutures

• Multivariate asymptotis and limit laws



An example: Enumeration of {0,±1}-exursions in the 1970s

A reurrene relation. Let a(n) be the number of exursions of length n. Then:

a(n) = a(n− 1) +
n−2
∑

k=0

a(k)a(n − k − 2)with a(0) = 1.

n− 1 k n− k − 2
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Reurrene relation 













a(n) = a(n− 1) +
n−2
∑

k=0

a(k)a(n − k − 2)

a(0) = 1Generating funtion A(z) =
∑

n≥0

a(n)zn

Funtional equation A(z) = 1+ zA(z) + z2A(z)2

Expression of the GF A(z) =
1− z −

√

(1 + z)(1− 3z)

2z2

Expression of the numbers a(n) =

n/2
∑

k=0

n!

k!(k +1)!(n− 2k)!Asymptoti study of the sum a(n) ∼ 3
√
3

2
√
π

3nn−3/2



An example: Enumeration of {0,±1}-exursions nowadays

Generating funtion A(z) =
∑

n≥0

a(n)zn

Funtional equation A(z) = 1+ zA(z) + z2A(z)2

Expression of the GF A(z) =
1− z −

√

(1 + z)(1− 3z)

2z2Singularity analysis a(n) ∼ 3
√
3

2
√
π

3nn−3/2
(

1− 39

16n
+

2665

512n2
+O(1/n3)

)



Let a omputer do the job!

• The Algolib library [Maple℄
◦ The pakage ombstrut: enumeration and random generation of om-binatorial strutures
◦ The equivalent funtion: asymptotis of the oe�ients from the gener-ating funtionhttp://algo.inria.fr/libraries/



Part A. Symboli methods



Write diretly equations from the reursive desription of the objetsConstrution Generating funtionUnion A = B ⊔ C A(t) = B(t) + C(t)

Produt A = B × C A(t) = B(t) · C(t)

|(β, γ)| = |β|+ |γ|Sequene A = Seq(B) A(t) = 1
1−B(t)Set A = Set(B) A(t) = exp

(

B(z)−B(z2)/2 +B(z3)/3− · · ·
)

Multiset A = MSet(B) A(t) = exp
(

B(z) +B(z2)/2+B(z3)/3+ · · ·
)

Cyle A = Cyc(B) A(t) = log 1
1−B(z)

+ 1
2 log 1

1−B(z2)
+ · · ·Construtible objets



An example: rooted trees

Ordered (plane) Non-ordered

T(z) = z + T(z)2 T(z) = z exp
(

T(z) + T(z2)/2+ T(z3)/3+ · · ·
)

+= =



An idea in the spirit of times

Flajolet: symboli ombinatorisBender-Goldman: prefabs (1971)Foata: omposé partitionnel (1978)Formal languages in theoretial omputer sieneJoyal: theory of speies (1980)



Part B. Analyti methods



Singularity analysis of generating funtions[Flajolet, Odlyzko 90℄

A general orrespondene betweenthe singular expansion of a series A(z) near its dominant singularitiesandthe asymptoti expansion of the nth oe�ient a(n) of this series

Example: If the dominant singularity has modulus ρ, then the oe�ients satisfy

lim sup a(n)1/n = 1/ρ.



Singularity analysis of generating funtions

• Asymptoti expansions for the oe�ients of some �simple� series of a stan-dard sale, for instane
(1− z)−α

(

1

z
log

1

1− z

)β

(Example: nα−1/Γ(α) when β = 0)
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(Example: nα−1/Γ(α) when β = 0)
• Transfer theorem: under ertain hypotheses, if A(z) has a unique dominantsingularity at 1, and, as z → 1,

A(z) = S(z) +O(R(z)),then, with obvious notation (a(n) = [zn]A(z), et.),
a(n) = s(n) +O(r(n)).Proof: Cauhy's formula and Hankel ontours



Singularity analysis of generating funtions

• Asymptoti expansions for the oe�ients of some �simple� series of a stan-dard sale, for instane
(1− z)−α

(

1

z
log

1

1− z

)β

(Example: nα−1/Γ(α) when β = 0)
• Transfer theorem: under ertain hypotheses, if A(z) has a unique dominantsingularity at 1, and, as z → 1,

A(z) = S(z) +O(R(z)),then, with obvious notation (a(n) = [zn]A(z), et.),
a(n) = s(n) +O(r(n)).Proof: Cauhy's formula and Hankel ontours

• Several singularities: add up the ontributions



Example: walks on the slit plane

$j$
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√
1+ 4z)1/2(1 +

√
1− 4z)1/2
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Example: walks on the slit plane

$j$
$i$

A(z) =
(1 +

√
1+ 4z)1/2(1 +

√
1− 4z)1/2

2(1− 4z)3/4

• As z → ±1/4,
A(z) = A±(z) +O

(

(1± 4 z)3/4
)where

A+(z) :=

√

1+
√
2

2 (1− 4 z)3/4
+

√

1+
√
2

4(1− 4 z)1/4
−

(

2
√
2+ 1

)

(1− 4 z)1/4

16
√

1+
√
2and

A−(z) :=

√

1+
√
2

27/4
+

√

1+
√
2 (1+ 4 z)1/2

211/4
.
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√
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√
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.

• Consequently,

[zn]A(z) = [zn]A1(z) + [zn]A2(z) +O(4nn−7/4)

=

√

1+
√
2

2Γ (3/4)

4n

n1/4

(

1+

√
2Γ (3/4)2

4π
√
n

−
√
2

32n
− Γ(3/4) (−1)n

211/4
√
πn5/4

+O

(

4n

n7/4

))



Bumps in the road

• When there is a funtional equation for A(z), but noexpliit expression (impliit funtions)

• Cheking the assumptions may be triky
• When the funtion is entire (→ saddle-point methods)

• When there is no singular behaviour of the form
A(z) = S(z) +O(R(z)),with S and R �simple�.An example: 3-sided prudent self-avoiding polygons[Beaton, Flajolet, Guttmann 11℄



Self-avoiding polygons



Self-avoiding polygons

• Awfully hard to ount

• Conjetured asymptotis: for polygons of area n,
pn ∼ κµnn0,where the exponent depends only on the dimension



An easier family: 3-sided prudent polygons

Prudent walks: a step never points towards a vertex it has already visited

Prudent polygon Three-sided prudent polygon[Turban-Debierre 86℄, [Préa 97℄, [Santra-Seitz-Klein 01℄, [Duhi 05℄, [De-thridge, Guttmann, Jensen 07℄, [mbm 08℄, [Be�ara, Friedli, Velenik 10℄, [Shw-erdtfeger 08℄, [Beaton, Flajolet, Guttmann 11℄...



An easier family: 3-sided prudent polygonsThree-sided prudent polygons deompose into bars, bargraphs, and separatingells [...℄ and their area generating funtion is

P(z) =
2z(3− 10z +9z2 − z3)

(1− 2z)2(1− z)
+

2z3(1− z)2

(1− 2z)2

∑

m≥1

(−1)m+1z2m

(1− 2z)m(1− z − zm+1)

m−1
∏

k=1

1− z − zk + zk+1 − zk+2

1− z − zk+1



Asymptotis

• The series:
P(z) =

2z(3− 10z +9z2 − z3)

(1− 2z)2(1− z)
+

2z3(1− z)2

(1− 2z)2

∑

m≥1

(−1)m+1z2m

(1− 2z)m(1− z − zm+1)

m−1
∏

k=1

1− z − zk + zk+1 − zk+2

1− z − zk+1

• A beautiful singularity analysis yields a very unusual asymptoti behaviour inthe study of lattie models:
Pn = κ(logn) 2nnγ +O(logn2nnγ−1)where the exponent γ is irrational

γ = log2 3and κ(x) is a periodi funtion of x.[Beaton, Flajolet, Guttmann 11℄



Part C. Random strutures and limit laws



The study of additional statistis

size : A → N s : A → Z

a 7→ |a| a 7→ s(a)

When objets of size n are taken uniformly at random, the statisti s beomesa random variable Sn:
P(Sn = k) =

a(n, k)

a(n)where a(n, k) is the number of objets of size n for whih the additional statisti

s equals k.Examples: the number of ontats in an exursion, or the area under it



Bivariate generating funtions

• Let a(n, k) be the number of objets of size n for whih the statisti s is k,and let
A(z, u) =

∑

n,k

a(n, k)znuk.



Bivariate generating funtions

• Let a(n, k) be the number of objets of size n for whih the statisti s is k,and let
A(z, u) =

∑

n,k

a(n, k)znuk.

• The jth moment of Sn is
E(Sn

j) =

[zn]
(

u ∂
∂u

)j
A(z, u)

∣

∣

∣

∣

u=1

[zn]A(z,1)

Idea: Study [zn]
(

u ∂
∂u

)j
A(z, u)

∣

∣

∣

∣

u=1

for a generi j using the analyti tehniquesof Part B. Combine the results with a theorem on the onvergene of momentsto obtain a limit law for Sn.



Bivariate generating funtions

• Let a(n, k) be the number of objets of size n for whih the statisti s is k,and let
A(z, u) =

∑

n,k

a(n, k)znuk.

• The probability generating funtion of the random variable Sn is

pn(u) :=
[zn]A(z, u)

[zn]A(z,1)

Idea: Study [zn]A(z, u) with u as a real parameter using the analyti teh-niques of Part B. Combine the results with ontinuity theorems on probabilitygenerating funtions to obtain a limit law for Sn.



Example: ontats in a {0,±1}-exursion

• GF of exursions by length (z) and ontats (u):

A(z, u) =
1

1+ z(1− 2u) +
√

(1 + z)(1− 3z)

• Singularity analysis: For u ∈ (0,2),
[zn]A(z, u) ∼ 33/2

2
√
π(2− u)2

3nn−3/2so that

pn(u) :=
[zn]A(z, u)

[zn]A(z,1)
→ 1

(2− u)2
=

∑

k≥0

k +1

2k+2
uk.

⇒ Convergene to a disrete limit law (negative binomial)



Example: area under a {0,±1}-exursion

• GF of exursions by length (z) and area (u):

A(z, u) = 1+ zA(z, u) + z2uA(z, u)A(zu, u)

• Repeated di�erentiations of the equation

⇒ ∂jA
∂uj

(z,1) is always quadrati and
(

u
∂

∂u

)j

A(z, u)

∣

∣

∣

∣

∣

u=1

=
∑

n
zna(n) E(Sn

j) ∼ cj

(1− 3z)(3j−1)/2with

c0 = −3
√
3, cj =

j(3j − 4)

4
√
3

cj−1 +
1

6
√
3

j−1
∑

i=1

(j

i

)

cicj−i

• Singularity analysis

E





(

Sn

n3/2

)j


 ∼ cj

c0

Γ(−1/2)

Γ((3j − 1)/2)Moments of the Airy distribution ⇒ Convergene in law
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The quasi-power theorem [Hwang 98℄

• Assume that, uniformly in a neighborhood of u = 1,

pn(u) :=
[zn]A(z, u)

[zn]A(z,1)
= A(u)B(u)βn (1 +O(1/κn))where A(u) and B(u) are analyti at u = 1, A(1) = B(1) = 1 and βn, κn → ∞.Assume moreover

vB := B′′(1) +B′(1)−B′(1)2 6= 0.

• Then

E(Sn) = βnmB + mA +O(1/κn), V(Sn) = βnvB + vA +O(1/κn),where mA = A′(1), and the normalized random variable

Sn − E(Sn)
√

V(Sn)onverges to a standard normal distribution.



One of Philippe's tables

A(z, u) for u ∼ 1 type of law methods and shemassing. & exp. �xed disrete subritial ompositionsubritial sequene, set...sing. moved, exp. �xed Gaussian (n, n) superritial ompositionmeromorphi perturbation(rational funtions)sing. analysis perturbation(algebrai, impliit funtions)sing. �xed, exp. moves Gaussian (logn, logn) (exp-log strutures)(di�. equations)sing. & exp. move Gaussian [Gao-Rihmond℄essential singularity often Gaussian saddle-point perturbationdisontinuous type non-Gaussian various asesstable ritial ompositionFig. IX.4. A rough typology of bivariate generating funtions A(z, u) andlimit laws studied in this hapter, based on the way singularities and exponentsevolve for u ∼ 1.
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The ore of a random planar map

[Banderier, Flajolet, Shae�er, Soria 01℄



The ore of a random planar map



The ore of a random planar map

• Generating funtions: Let M(z) be the generating funtion of planar maps:

M(z) =
(1− 12z)3/2 − 1+ 18 z

54z2
.De�ne C(z) by

M(z,1) = C(zM(z,1)2)Then the generating funtion of planar maps ounted by edges (z) and the sizeof the ore (u) is

M(z, u) = C(zuM(z,1)2).

• Critial omposition ⇒ non-gaussian, bimodal limit law



Bimodal limit law

• Left region, k �xed: disrete limit law (total probability 1/3):

P(Sn = k) → p(k) as n → ∞

• Central region, k = 2n/3+xn2/3: ontinuous limit law (total probability 2/3;loal version)
P(Sn = k) ∼ κn−2/3A(3x/2)where A is expliit, related to the Airy funtion.



Part D. Uniform random generation



Reursive approahes for onstrutible objets

• Exat size: an exursion of size 1000 in 7 seonds[Flajolet, Zimmermann, Van Cutsem, 94℄



Reursive approahes for onstrutible objets

• Exat size: an exursion of size 1000 in 7 seonds[Flajolet, Zimmermann, Van Cutsem, 94℄

• Approximate size (�Boltzmann generation�): an exursion of size > 10000 in3 seonds[Duhon, Flajolet, Louhard, Shae�er 04℄
0

20

40

60

2000 4000 6000 8000 10000



Appliations of Boltzmann sampling

• Uniform random sampling of planar graphs in linear time (approximate size)[Fusy 09℄ (100,000 verties in a few seonds)

• Plane partitions in time O(n logn3) (approximate size) and O(n4/3) (exatsize) [Bodini, Fusy, Pivoteau 10℄ (10,000 ubes in a few seonds)
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Part E. Software



Let a omputer do the job!

• The Algolib library [Maple℄
◦ The equivalent funtion: asymptotis of the oe�ients from the gener-ating funtion [Salvy℄
◦ The pakage ombstrut: enumeration and random generation of om-binatorial strutures
◦ gfun: guess and handle holonomi generating funtions [Salvy, Zimmer-mann, Murray℄http://algo.inria.fr/libraries/



Please ask questions...but read the book!


