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Asymptotic properties, limit laws




The ALEA and AofA communities

Combinatorics, probability theory, theoretical computer science, statistical physics
x ALEA: randomness (in French); dice (in Latin)

* AOfA: Analysis of Algorithms
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e Objects with some (recursive) structure (no general SAWSs!)

e Extremely useful to many people, large impact
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e Objects with some (recursive) structure (no general SAWSs!)

e Extremely useful too many people, large impact



Analysis of Algorithms and Analytic Combinatorics
[Ph. Flajolet, R. Sedgewick]

gt-— ~1980 decision to write an AofA book

<4\— 1986 Princeton course

\ ~1992 decision to split into two
\ books (need to do the math!)

INRIA tech report:

Analytic
Combinatorics

<« 2009
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Analytic Combinatorics: Contents

Part A. Symbolic methods
e Combinatorial structures and ordinary generating functions
e Labelled structures and exponential generating functions

e Combinatorial parameters and multivariate generating functions

Part B. Complex asymptotics
e Complex analysis, rational and meromorphic asymptotics
e Applications of rational and meromorphic asymptotics
e Singularity analysis of generating functions
e Applications of singularity analysis

e Saddle-point asymptotics

Part C. Random structures

e Multivariate asymptotics and limit laws



An example: Enumeration of {0, +1}-excursions in the 1970s

A recurrence relation. Let a(n) be the number of excursions of length n. Then:

n—2
a(n) =a(n—1)4+ > a(k)a(n —k—2)
k=0

with a(0) = 1.




An example: Enumeration of {0, +1}-excursions in the 1970s

Recurrence relation

Generating function

Functional equation

Expression of the GF

Expression of the numbers

Asymptotic study of the sum

2

n—2
a(n) =a(n—1)4+ > a(k)aln —k — 2)
a(0) =1 =0

\

A(z) = ) a(n)z"

n>0

A(2) = 14 2A(2) + 2°A(2)?

1—z—/(142)(1-32)

A(Z) — 252
n/2 n!
a(n) = kz::O k'(k 4+ 1)!(n — 2k)!

a(n) ~ 3\/_ 3Ny —3/2



An example: Enumeration of {0, +1}-excursions nowadays

Generating function A(z) = ) a(n)z"
n>0
Functional equation A(z) =14 2A(2) + 2°A(2)?

l—2z—/(14+2)(1-3z
Expression of the GF A(z) = \/( )( )

Singularity analysis a(n) ~

16n T 512n2

3V3 an, —3/2 (1_ 39 2665

+0(1/n%)




Let a computer do the job!

e The Algolib library [Maple]

o The package combstruct: enumeration and random generation of com-
binatorial structures

o The equivalent function: asymptotics of the coefficients from the gener-
ating function

http://algo.inria.fr/libraries/



Part A. Symbolic methods



Write directly equations from the recursive description of the objects

Construction Generating function
Union A=BUC A(t) = B(t) + C(t)
Product A=BxC A(t) = B(t) - C(t)
(B, V)] = |8l + [
Sequence A=Seq(B) | A(t) = 1_%3@)
Set A=Set(B) | A(t) =exp(B(2) — B(z2)/2+ B(z%)/3 - )
Multiset A= MSet(B) | A(t) = exp (B(2) + B(z2)/2+ B(z%)/3+ -+ )
Cycle A= Cyc(B) | A(t) = log #%2) + 5 log 1_31(22) + -

Constructible objects




An example: rooted trees

Ordered (plane) Non-ordered
Dl L Y
T(z) =z +T(2)? T(z) = zexp (T(2) + T(:2)/2+ T(:3)/3+ -+ )

VY.V y



An idea in the spirit of times

Flajolet: symbolic combinatorics

Bender-Goldman: prefabs (1971)

Foata: composé partitionnel (1978)

Formal languages in theoretical computer science

Joyal: theory of species (1980)



Part B. Analytic methods



Singularity analysis of generating functions
[Flajolet, Odlyzko 90]

A general correspondence between

the singular expansion of a series A(z) near its dominant singularities
and

the asymptotic expansion of the nth coefficient a(n) of this series

Example: If the dominant singularity has modulus p, then the coefficients satisfy

limsup a(n)l/n = 1/p.



Singularity analysis of generating functions

e Asymptotic expansions for the coefficients of some “simple’ series of a stan-
dard scale, for instance

(1—2)"“ (% log L >B

1—2

(Example: n® 1 /I'(a) when 8 = 0)



Singularity analysis of generating functions

e Asymptotic expansions for the coefficients of some “simple’ series of a stan-
dard scale, for instance

(1—2)"“ (g log L )B

1—2

(Example: n® 1 /I'(a) when 8 = 0)

e Transfer theorem: under certain hypotheses, if A(z) has a unique dominant
singularity at 1, and, as z — 1,

A(z) = 5(z) + O(R(2)),

then, with obvious notation (a(n) = [2"]A(z), etc.),

a(n) = s(n) + O(r(n)).

Proof: Cauchy’'s formula and Hankel contours



Singularity analysis of generating functions

e Asymptotic expansions for the coefficients of some “simple’ series of a stan-
dard scale, for instance

(1—2)"“ (g log L )B

(Example: n® 1 /I'(a) when 8 = 0)

1—2

e Transfer theorem: under certain hypotheses, if A(z) has a unique dominant
singularity at 1, and, as z — 1,

A(z) = 5(z) + O(R(2)),

then, with obvious notation (a(n) = [2"]A(z), etc.),

a(n) = s(n) + O(r(n)).

Proof: Cauchy’'s formula and Hankel contours

e Several singularities: add up the contributions



Example: walks on the slit plane

(14+VIF 422014 1 —42)1/2

A= 2(1 — 4z2)3/4 I




Example: walks on the slit plane

(14+VIF 422014 1 —42)1/2

A= 2(1 — 4z2)3/4 I

o As z — £1/4,

A(z) = As(z) + O ((1 £42)%7)

where
Ay (z) = \/r m _(2\/§+1)(1—4z)1/4
ETCRr S LM CEr DL PN v

and

A_(z) = \/r \/r(l ‘|‘4Z)1/2

27/4 211/4




Example: walks on the slit plane

Ay = AFVIFAD2A+ VI =412
o 2(1 — 42)3/4 [

o As z — £+1/4,

A(z) = AL(2) + O ((1 4 4z)3/4>
where

e TEVE | TTVE (2vEH1)0 e
_|_Z . —

2(1—42)3/4 4(1 —42)1/4 164/1 + 2
and
" W 14+V2 \/1+ (1—|—4z)1/2
—(2) 1= 27/4 511/4

e Consequently,
[2"A(z) = ["]A1(2) + [2"]Aa(2) + O(4"n~ /%)

Vi+v24an (0 VErE/4)2 V2 TEM DA
2 (3/4) nl/4 4ryn 32n  211/4 /rp5/4 7/4




Bumps in the road

e When there is a functional equation for A(z), but no
explicit expression (implicit functions)

e Checking the assumptions may be tricky
e When the function is entire (— saddle-point methods)

e When there is no singular behaviour of the form

A(z) = S(2) + O(R(2)),
with S and R ‘'simple”.

An example: 3-sided prudent self-avoiding polygons
[Beaton, Flajolet, Guttmann 11]



Self-avoiding polygons




Self-avoiding polygons

e Awfully hard to count

e Conjectured asymptotics: for polygons of area n,

pn ~ k™,

where the exponent depends only on the dimension



An easier family: 3-sided prudent polygons

Prudent walks: a step never points towards a vertex it has already visited

Prudent polygon T hree-sided prudent polygon

[Turban-Debierre 86], [Préa 97], [Santra-Seitz-Klein 01], [Duchi 05], [De-
thridge, Guttmann, Jensen 07], [mbm 08], [Beffara, Friedli, Velenik 10], [Schw-
erdtfeger 08], [Beaton, Flajolet, Guttmann 11]...



An easier family: 3-sided prudent polygons

Three-sided prudent polygons decompose into bars, bargraphs, and separating
cells [...] and their area generating function is

22(3 — 10z 4+ 922 — 23)

P —
(2) (122012 T
2z3(1 — z)2 Z (—1)m+1z2m mﬁl 1 — z — ok 4 k1 k42
(1-22)2 = (1-22)"(1 —z—2zmTl) 70 1 — 2z — zk+1




Asymptotics

e [ he series:

22(3 — 10z 4+ 922 — 23)

P —
(2) (1-22(1_2) |
223(1 — 2)2 Z (—1)m+1z2m mﬁl 1 — 2z — 2k 4 k1 ht2
(1-22)2 & (1 —-22)"(1—z—2zmTl) o 1 —z— zkt1

e A beautiful singularity analysis vields a very unusual asymptotic behaviour in
the study of lattice models:

P, = k(logn) 2"nY 4+ O(logn 2"n~1)

where the exponent ~ is irrational

v = 1092 3

and k(x) is a periodic function of z.

[Beaton, Flajolet, Guttmann 11]



Part C. Random structures and limit laws



The study of additional statistics

size 1 A — N s: A
a +— |a| a

When objects of size n are taken uniformly at random, the statistic s becomes
a random variable Sy:
a(n, k)

a(n)
where a(n, k) is the number of objects of size n for which the additional statistic
s equals k.

P(S, = k) =

Examples: the number of contacts in an excursion, or the area under it




Bivariate generating functions

o Let a(n, k) be the number of objects of size n for which the statistic s is k,
and let

A(z,u) = > a(n, k) 2"k
n,k



Bivariate generating functions

e Let a(n,k) be the number of objects of size n for which the statistic s is k,
and let

A(z,u) = > a(n, k)2"uk.
n,k

e The jth moment of S,, is

[2"] (ua%)‘] A(z,u)
[z"]A(z, 1)

u=1

E(Sn‘j) —

Idea: Study [2"] w2 ]A(z,u) for a generic 5 using the analytic techniques
ou u—1

of Part B. Combine the results with a theorem on the convergence of moments
to obtain a limit law for S,,.




Bivariate generating functions

e Let a(n,k) be the number of objects of size n for which the statistic s is k,
and let

A(z,u) = > a(n, k)2"uk.
n,k
e T he probability generating function of the random variable S,, is
_ ["]A(z,u)
- [2"A(z, 1)

pn(u) :

Idea: Study [2"]A(z,u) with w as a real parameter using the analytic tech-
niques of Part B. Combine the results with continuity theorems on probability
generating functions to obtain a limit law for S,.



Example: contacts in a {0, +1}-excursion

e GF of excursions by length (z) and contacts (u):
1

A(z,u) =
1+ 2(1—2u) + /(1 +2)(1 - 32)

e Singularity analysis: For u € (0, 2),

[ n]A( ) 33/2 3n —3/2
z Z,U /(2 = u)2 n
so that
_ [2"]A(z,u) 1 < kt+1
) = aaG) T e T i

= Convergence to a discrete limit law (negative binomial)



Example: area under a {0, t+1}-excursion

e GF of excursions by length (z) and area (u):

A(z,u) = 1 4 2A(2,u) + 22uA(z,u) A(zu, w)

e Repeated differentiations of the equation
= %(z, 1) is always quadratic and

(ui)] A(z,u)

ou B ;zna(n) E(Sn?) ~

(1 —32)Bi-1)/2

u=1

with

. . —1 .
j(35 —4) 1 ]Z J
CoO — —3\/§, C; — 4\/§ Cj—1 —|— — = (.)Cicj—z'

. (Sn )j ¢ T(=1/2)
n3/2 co F((3j—1)/2)

Moments of the Airy distribution = Convergence in law

e Singularity analysis




(

N\

Generic methods

Uniform approaches

~

/

Objectives

—» Black boxes —» Software

specific problems

generic approaches



The quasi-power theorem [Hwang 98]

e Assume that, uniformly in a neighborhood of u =1,
(2] A(2,u)
[2"]A(2,1)
where A(uw) and B(w) are analyticat u =1, A(1) = B(1) = 1 and Bn, kn — oo.
Assume moreover

= A(u) B(u)Pr (1 + O(1/kn))

pn(u) 1=

vg = B"(1) + B'(1) — B/(1)? # 0.

e [ hen
E(Sn) = Bnmp +my + O(1/kn), V(Sn) = Bnop + 04+ O(1/kn),
where m4 = A’(1), and the normalized random variable

Sn —E(Sn)

VV(Sn)

converges to a standard normal distribution.




A(z,u) for u~1

One of Philippe’s tables

type of law

methods and schemas

sing. & exp. fixed

discrete

subcritical composition
subcritical sequence, set...

sing. moved, exp. fixed

Gaussian (n,n)

supercritical composition
meromorphic perturbation
(rational functions)

sing. analysis perturbation
(algebraic, implicit functions)

sing. fixed, exp. moves

Gaussian (logn,logn)

(exp-log structures)
(diff. equations)

Sing. & exp. move

Gaussian

[Gao-Richmond]

essential singularity

often Gaussian

saddle-point perturbation

discontinuous type

non-Gaussian
stable

various cases
critical composition

Fig. IX.4. A rough typology of bivariate generating functions A(z,uv) and
limit laws studied in this chapter, based on the way singularities and exponents

evolve for u ~ 1.
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The core of a random planar map

.

[Banderier, Flajolet, Schaeffer, Soria 01]



The core of a random planar map
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The core of a random planar map

.

e Generating functions: Let M(z) be the generating function of planar maps:

(1—122)3/2 -1+ 182
5422 '

M(z) =
Define C(z) by
M(z,1) = C(zM(z,1)?)

Then the generating function of planar maps counted by edges (z) and the size
of the core (u) is

M(z,u) = C(zuM(z,1)?).

e Critical composition = non-gaussian, bimodal limit law



Bimodal limit law

e Left region, k fixed: discrete limit law (total probability 1/3):

P(Sp, = k) — p(k) as n — oo

e Central region, k = 2n/3 + zn?/3: continuous limit law (total probability 2/3;
local version)

P(S, = k) ~ mn_2/3A(3x/2)

where A is explicit, related to the Airy function.

- !
|. A
r=.= || j+
JII." - Iill a1 . ,'f'h.l‘
¥ T '|II SATTIE l -l; '
JIII e | ! f IIF'|.
f/r atoar | b o \
S S N I U= N
R T 3 = s a7k eDu " TS 150

Figove 1X,21. el The standare ~Adsy map Jdiscribation . Righe Cesereed Toguen-
ches of core-siioes &8 [ 2000 100 re SO CKRD sl reapps ol gize 20800, showang, the
Bimodal charseter ol Hee diinfalim,




Part D. Uniform random dgeneration



Recursive approaches for constructible objects

e Exact size: an excursion of size 1000 in 7 seconds
[Flajolet, Zimmermann, Van Cutsem, 94]



Recursive approaches for constructible objects

e EXxact size: an excursion of size 1000 in 7 seconds
[Flajolet, Zimmermann, Van Cutsem, 94]
e Approximate size (“Boltzmann generation”): an excursion of size > 10000 in

3 seconds
[Duchon, Flajolet, Louchard, Schaeffer 04]

60

40+

20+

0 2000 4000 6000 8000 10000



Applications of Boltzmann sampling

e Uniform random sampling of planar graphs in linear time (approximate size)
[Fusy 09] (100,000 vertices in a few seconds)

e Plane partitions in time O(nlogn3) (approximate size) and O(n%/3) (exact
size) [Bodini, Fusy, Pivoteau 10] (10,000 cubes in a few seconds)

0.25
|

0.24
0.15

0.1+

0.05

Vertex degrees in random planar graphs Plane partition of size ~ 15,000



Part E. Software



Let a computer do the job!

e The Algolib library [Maple]

o The equivalent function: asymptotics of the coefficients from the gener-
ating function [Salvy]

o The package combstruct: enumeration and random generation of com-
binatorial structures

o gfun: guess and handle holonomic generating functions [Salvy, Zimmer-
mann, Murray]

http://algo.inria.fr/libraries/



Please ask questions...

but read the book!




