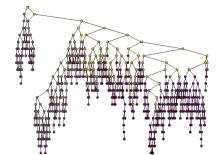
Philippe Flajolet, Founder of Analytic Combinatorics

Mireille Bousquet-Mélou, CNRS, LaBRI, U. Bordeaux 1, France

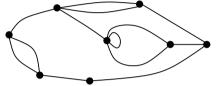
Philippe Flajolet

http://algo.inria.fr/pfac/PFAC/PFAC.html

Philippe's favourite topic: discrete random objects

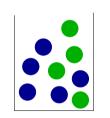


267195348

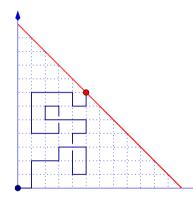


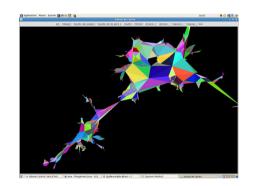
Exact and asymptotic enumeration

Random generation

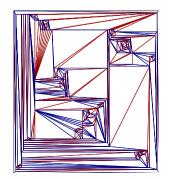


Analysis of algorithms





Asymptotic properties, limit laws

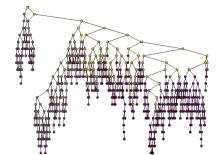


The ALEA and AofA communities

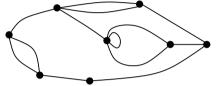
Combinatorics, probability theory, theoretical computer science, statistical physics

- * ALEA: randomness (in French); dice (in Latin)
- * AofA: Analysis of Algorithms

Philippe's favourite topic: discrete random objects

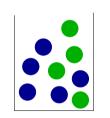


267195348

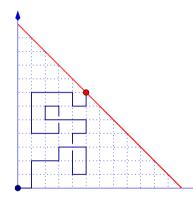


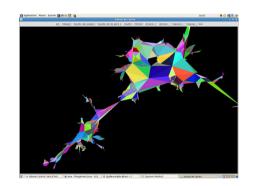
Exact and asymptotic enumeration

Random generation

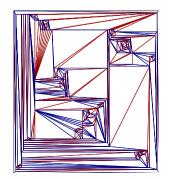


Analysis of algorithms





Asymptotic properties, limit laws

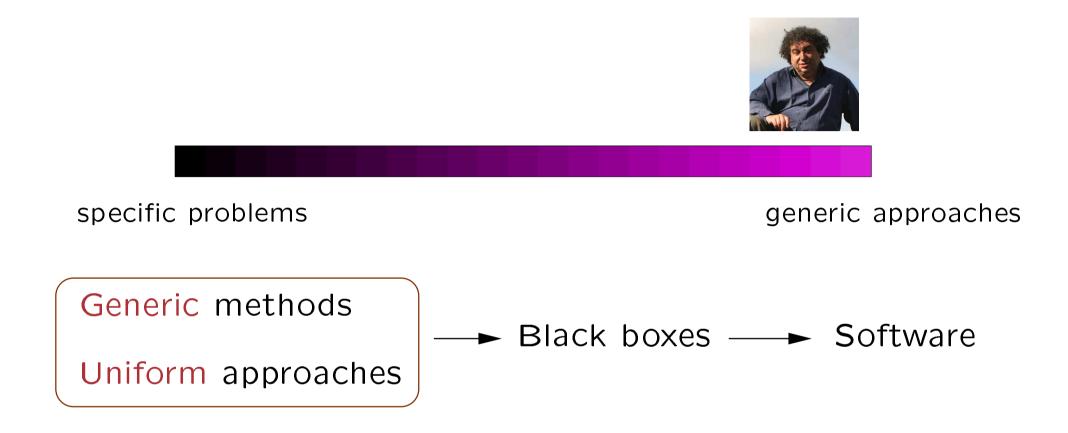


Objectives

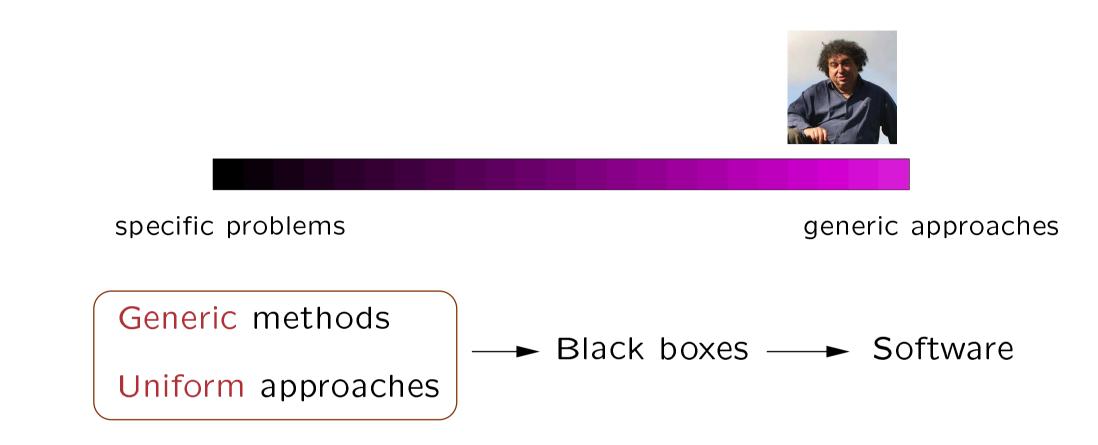
specific problems

generic approaches

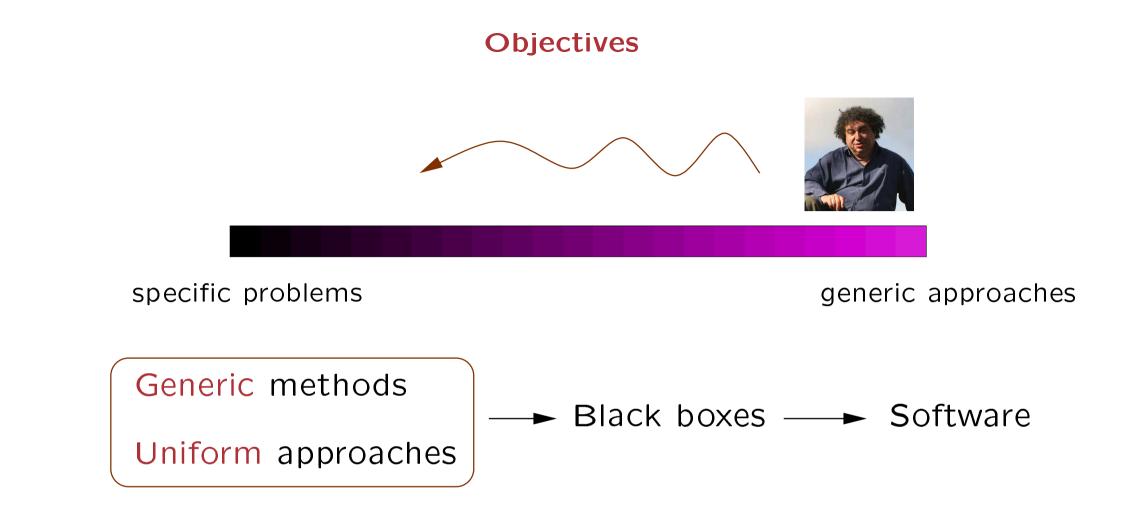
Objectives



Objectives

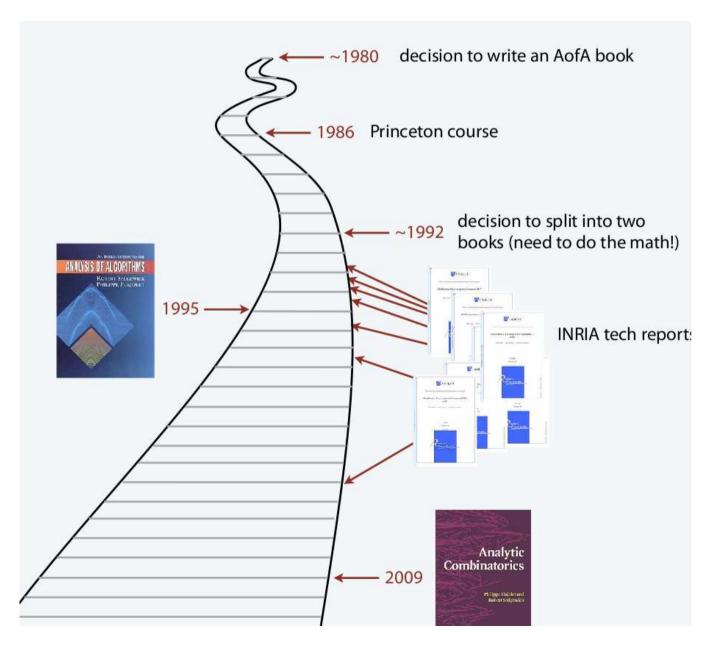


- Objects with some (recursive) structure (no general SAWs!)
- Extremely useful to many people, large impact



- Objects with some (recursive) structure (no general SAWs!)
- Extremely useful too many people, large impact

Analysis of Algorithms and Analytic Combinatorics [Ph. Flajolet, R. Sedgewick]



Analytic Combinatorics: Contents

Part A. Symbolic methods

- Combinatorial structures and ordinary generating functions
- Labelled structures and exponential generating functions
- Combinatorial parameters and multivariate generating functions

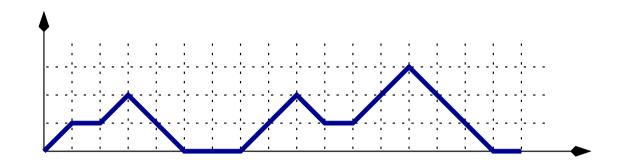
Part B. Complex asymptotics

- Complex analysis, rational and meromorphic asymptotics
- Applications of rational and meromorphic asymptotics
- Singularity analysis of generating functions
- Applications of singularity analysis
- Saddle-point asymptotics

Part C. Random structures

• Multivariate asymptotics and limit laws

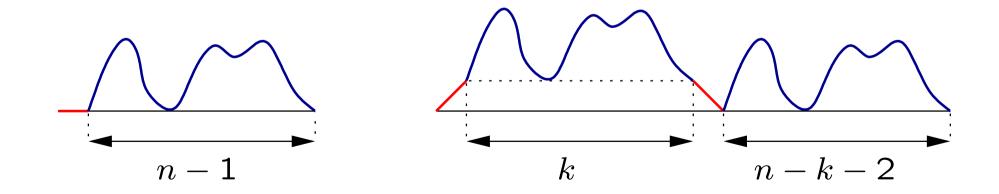
An example: Enumeration of $\{0, \pm 1\}$ -excursions in the 1970s



A recurrence relation. Let a(n) be the number of excursions of length n. Then:

$$a(n) = a(n-1) + \sum_{k=0}^{n-2} a(k)a(n-k-2)$$

with a(0) = 1.



An example: Enumeration of $\{0, \pm 1\}$ -excursions in the 1970s

Recurrence relation

Expression of the GF

$$\begin{cases} a(n) = a(n-1) + \sum_{k=0}^{n-2} a(k)a(n-k-2) \\ a(0) = 1 \end{cases}$$

$$A(z) = \sum_{n \ge 0} a(n) z^n$$

$$A(z) = 1 + zA(z) + z^2A(z)^2$$

$$A(z) = \frac{1 - z - \sqrt{(1 + z)(1 - 3z)}}{2z^2}$$

$$a(n) = \sum_{k=0}^{n/2} \frac{n!}{k!(k+1)!(n-2k)!}$$

Asymptotic study of the sum

$$a(n) \sim \frac{3\sqrt{3}}{2\sqrt{\pi}} \ 3^n n^{-3/2}$$

An example: Enumeration of $\{0, \pm 1\}$ -excursions nowadays

 $A(z) = \sum_{n \ge 0} a(n) z^n$ Generating function $A(z) = 1 + zA(z) + z^{2}A(z)^{2}$ Functional equation $A(z) = \frac{1 - z - \sqrt{(1 + z)(1 - 3z)}}{2z^2}$ Expression of the GF $a(n) \sim \frac{3\sqrt{3}}{2\sqrt{\pi}} 3^n n^{-3/2} \left(1 - \frac{39}{16n} + \frac{2665}{512n^2} + O(1/n^3) \right)$ Singularity analysis

Let a computer do the job!

• The Algolib library [Maple]

• The package combstruct: enumeration and random generation of combinatorial structures

• The equivalent function: asymptotics of the coefficients from the generating function

http://algo.inria.fr/libraries/

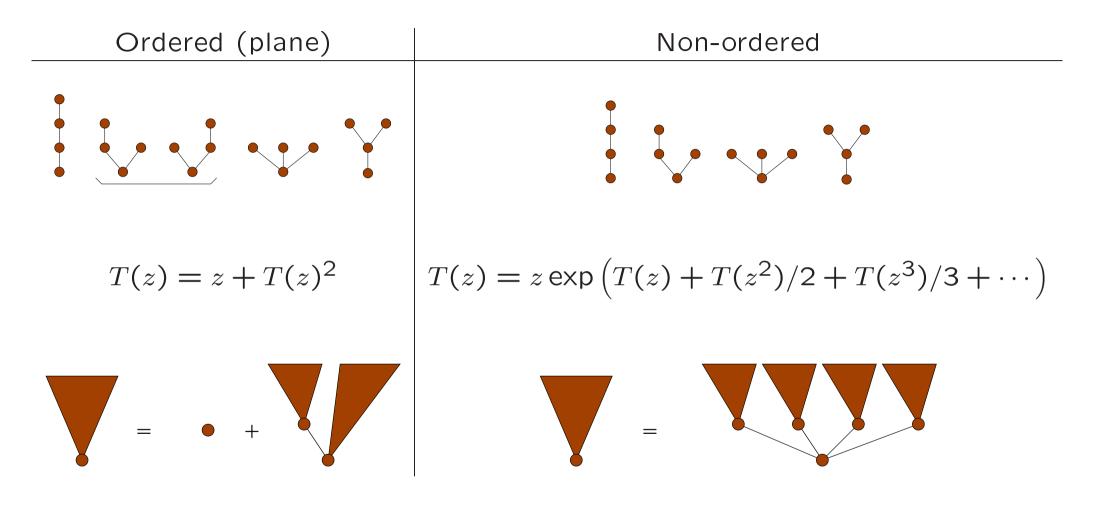
Part A. Symbolic methods

Write directly equations from the recursive description of the objects

Construction		Generating function
Union	$\mathcal{A} = \mathcal{B} \sqcup \mathcal{C}$	A(t) = B(t) + C(t)
Product	$\mathcal{A} = \mathcal{B} \times \mathcal{C}$	$A(t) = B(t) \cdot C(t)$
$ (\beta,\gamma) = \beta + \gamma $		
Sequence	$\mathcal{A} = \operatorname{Seq}(\mathcal{B})$	$A(t) = \frac{1}{1 - B(t)}$
Set	$\mathcal{A} = Set(\mathcal{B})$	$A(t) = \exp(B(z) - B(z^2)/2 + B(z^3)/3 - \cdots)$
Multiset	$\mathcal{A} = MSet(\mathcal{B})$	$A(t) = \exp\left(B(z) + B(z^2)/2 + B(z^3)/3 + \cdots\right)$
Cycle	$\mathcal{A} = Cyc(\mathcal{B})$	$A(t) = \log \frac{1}{1 - B(z)} + \frac{1}{2} \log \frac{1}{1 - B(z^2)} + \cdots$

Constructible objects

An example: rooted trees



An idea in the spirit of times

Flajolet: symbolic combinatorics

Bender-Goldman: prefabs (1971)

Foata: composé partitionnel (1978)

Formal languages in theoretical computer science

Joyal: theory of species (1980)

Part B. Analytic methods

Singularity analysis of generating functions [Flajolet, Odlyzko 90]

A general correspondence between

the singular expansion of a series A(z) near its dominant singularities

and

the asymptotic expansion of the *n*th coefficient a(n) of this series

Example: If the dominant singularity has modulus ρ , then the coefficients satisfy

 $\limsup a(n)^{1/n} = 1/\rho.$

Singularity analysis of generating functions

• Asymptotic expansions for the coefficients of some "simple" series of a standard scale, for instance

$$(1-z)^{-lpha}\left(rac{1}{z}\lograc{1}{1-z}
ight)^{eta}$$

(Example: $n^{\alpha-1}/\Gamma(\alpha)$ when $\beta = 0$)

Singularity analysis of generating functions

• Asymptotic expansions for the coefficients of some "simple" series of a standard scale, for instance

$$(1-z)^{-lpha}\left(rac{1}{z}\lograc{1}{1-z}
ight)^{eta}$$

(Example: $n^{\alpha-1}/\Gamma(\alpha)$ when $\beta = 0$)

• Transfer theorem: under certain hypotheses, if A(z) has a unique dominant singularity at 1, and, as $z \rightarrow 1$,

A(z) = S(z) + O(R(z)),

then, with obvious notation $(a(n) = [z^n]A(z), \text{ etc.}),$

a(n) = s(n) + O(r(n)).

Proof: Cauchy's formula and Hankel contours

Singularity analysis of generating functions

• Asymptotic expansions for the coefficients of some "simple" series of a standard scale, for instance

$$(1-z)^{-lpha} \left(rac{1}{z}\lograc{1}{1-z}
ight)^{eta}$$

(Example: $n^{\alpha-1}/\Gamma(\alpha)$ when $\beta = 0$)

• Transfer theorem: under certain hypotheses, if A(z) has a unique dominant singularity at 1, and, as $z \rightarrow 1$,

A(z) = S(z) + O(R(z)),

then, with obvious notation $(a(n) = [z^n]A(z), \text{ etc.}),$

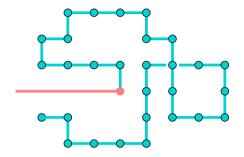
a(n) = s(n) + O(r(n)).

Proof: Cauchy's formula and Hankel contours

• Several singularities: add up the contributions

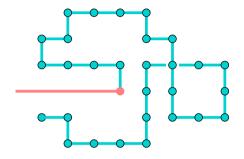
Example: walks on the slit plane

$$A(z) = \frac{(1 + \sqrt{1 + 4z})^{1/2}(1 + \sqrt{1 - 4z})^{1/2}}{2(1 - 4z)^{3/4}}$$



Example: walks on the slit plane

$$A(z) = \frac{(1+\sqrt{1+4z})^{1/2}(1+\sqrt{1-4z})^{1/2}}{2(1-4z)^{3/4}}$$



• As $z
ightarrow \pm 1/4$,

$$A(z) = A_{\pm}(z) + O\left((1 \pm 4 z)^{3/4}\right)$$

where

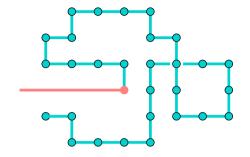
$$A_{+}(z) := \frac{\sqrt{1+\sqrt{2}}}{2\left(1-4z\right)^{3/4}} + \frac{\sqrt{1+\sqrt{2}}}{4\left(1-4z\right)^{1/4}} - \frac{\left(2\sqrt{2}+1\right)\left(1-4z\right)^{1/4}}{16\sqrt{1+\sqrt{2}}}$$

and

$$A_{-}(z) := \frac{\sqrt{1+\sqrt{2}}}{2^{7/4}} + \frac{\sqrt{1+\sqrt{2}}(1+4z)^{1/2}}{2^{11/4}}.$$

Example: walks on the slit plane

$$A(z) = \frac{(1 + \sqrt{1 + 4z})^{1/2}(1 + \sqrt{1 - 4z})^{1/2}}{2(1 - 4z)^{3/4}}$$



• As $z
ightarrow \pm 1/4$,

$$A(z) = A_{\pm}(z) + O\left((1 \pm 4 z)^{3/4}\right)$$

where

$$A_{+}(z) := \frac{\sqrt{1+\sqrt{2}}}{2\left(1-4z\right)^{3/4}} + \frac{\sqrt{1+\sqrt{2}}}{4\left(1-4z\right)^{1/4}} - \frac{\left(2\sqrt{2}+1\right)\left(1-4z\right)^{1/4}}{16\sqrt{1+\sqrt{2}}}$$

and

$$A_{-}(z) := \frac{\sqrt{1+\sqrt{2}}}{2^{7/4}} + \frac{\sqrt{1+\sqrt{2}}(1+4z)^{1/2}}{2^{11/4}}.$$

• Consequently,

$$[z^{n}]A(z) = [z^{n}]A_{1}(z) + [z^{n}]A_{2}(z) + O(4^{n}n^{-7/4})$$

$$= \frac{\sqrt{1+\sqrt{2}}}{2\Gamma(3/4)}\frac{4^{n}}{n^{1/4}}\left(1 + \frac{\sqrt{2}\Gamma(3/4)^{2}}{4\pi\sqrt{n}} - \frac{\sqrt{2}}{32n} - \frac{\Gamma(3/4)(-1)^{n}}{2^{11/4}\sqrt{\pi}n^{5/4}} + O\left(\frac{4^{n}}{n^{7/4}}\right)\right)$$

Bumps in the road

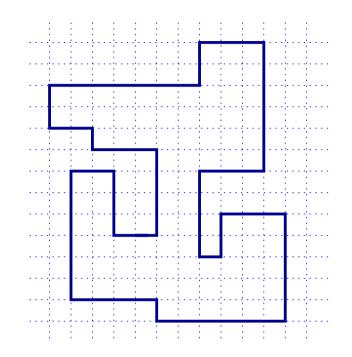
- When there is a functional equation for A(z), but no explicit expression (implicit functions)
- Checking the assumptions may be tricky
- When the function is entire (\rightarrow saddle-point methods)
- When there is no singular behaviour of the form

A(z) = S(z) + O(R(z)),

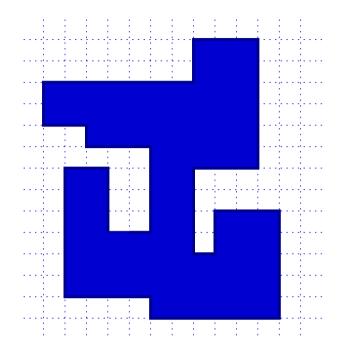
with S and R "simple".

An example: 3-sided prudent self-avoiding polygons [Beaton, Flajolet, Guttmann 11]

Self-avoiding polygons



Self-avoiding polygons

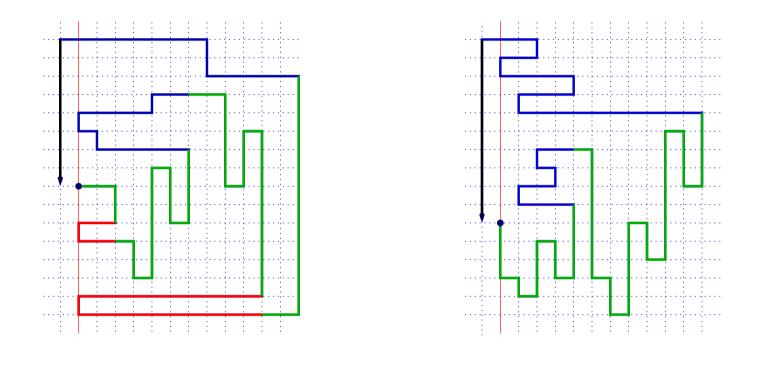


- Awfully hard to count
- Conjectured asymptotics: for polygons of area n,

$$p_n \sim \kappa \mu^n n^{\mathbf{0}},$$

where the exponent depends only on the dimension

Prudent walks: a step never points towards a vertex it has already visited



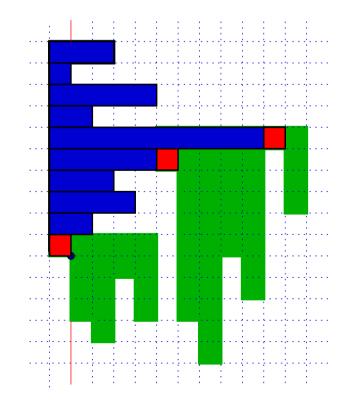
Three-sided prudent polygon

[Turban-Debierre 86], [Préa 97], [Santra-Seitz-Klein 01], [Duchi 05], [Dethridge, Guttmann, Jensen 07], [mbm 08], [Beffara, Friedli, Velenik 10], [Schwerdtfeger 08], [Beaton, Flajolet, Guttmann 11]...

An easier family: 3-sided prudent polygons

Three-sided prudent polygons decompose into bars, bargraphs, and separating cells [...] and their area generating function is

$$P(z) = \frac{2z(3-10z+9z^2-z^3)}{(1-2z)^2(1-z)} + \frac{2z^3(1-z)^2}{(1-2z)^2} \sum_{m\geq 1} \frac{(-1)^{m+1}z^{2m}}{(1-2z)^m(1-z-z^{m+1})} \prod_{k=1}^{m-1} \frac{1-z-z^k+z^{k+1}-z^{k+2}}{1-z-z^{k+1}}$$



Asymptotics

• The series:

$$P(z) = \frac{2z(3-10z+9z^2-z^3)}{(1-2z)^2(1-z)} + \frac{2z^3(1-z)^2}{(1-2z)^2} \sum_{m\geq 1} \frac{(-1)^{m+1}z^{2m}}{(1-2z)^m(1-z-z^{m+1})} \prod_{k=1}^{m-1} \frac{1-z-z^k+z^{k+1}-z^{k+2}}{1-z-z^{k+1}}$$

• A beautiful singularity analysis yields a very unusual asymptotic behaviour in the study of lattice models:

$$P_n = \kappa(\log n) \, 2^n n^{\gamma} + O(\log n \, 2^n n^{\gamma-1})$$

where the exponent γ is irrational

 $\gamma = \log_2 3$

and $\kappa(x)$ is a periodic function of x.

```
[Beaton, Flajolet, Guttmann 11]
```

Part C. Random structures and limit laws

The study of additional statistics

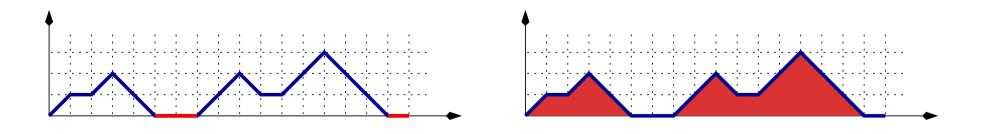
$$size : \mathcal{A} \rightarrow \mathbb{N}$$
 $s : \mathcal{A} \rightarrow \mathbb{Z}$
 $a \mapsto |a|$ $a \mapsto s(a)$

When objects of size n are taken uniformly at random, the statistic s becomes a random variable S_n :

$$\mathbb{P}(\mathsf{S}_n = k) = \frac{a(n,k)}{a(n)}$$

where a(n,k) is the number of objects of size n for which the additional statistic s equals k.

Examples: the number of contacts in an excursion, or the area under it



Bivariate generating functions

• Let a(n,k) be the number of objects of size n for which the statistic s is k, and let

$$A(z,u) = \sum_{n,k} a(n,k) z^n u^k.$$

Bivariate generating functions

• Let a(n,k) be the number of objects of size n for which the statistic s is k, and let

$$A(z,u) = \sum_{n,k} a(n,k) z^n u^k.$$

• The j^{th} moment of S_n is

$$\mathbb{E}(\mathsf{S}_{n}^{j}) = \frac{\left[z^{n}\right] \left(u\frac{\partial}{\partial u}\right)^{j} A(z,u)\Big|_{u=1}}{[z^{n}]A(z,1)}$$

Idea: Study $[z^n] \left(u \frac{\partial}{\partial u} \right)^j A(z, u) \Big|_{u=1}$ for a generic j using the analytic techniques of Part B. Combine the results with a theorem on the convergence of moments to obtain a limit law for S_n .

Bivariate generating functions

• Let a(n,k) be the number of objects of size n for which the statistic s is k, and let

$$A(z,u) = \sum_{n,k} a(n,k) z^n u^k.$$

• The probability generating function of the random variable S_n is

$$p_n(u) := \frac{[z^n]A(z,u)}{[z^n]A(z,1)}$$

Idea: Study $[z^n]A(z,u)$ with u as a real parameter using the analytic techniques of Part B. Combine the results with continuity theorems on probability generating functions to obtain a limit law for S_n .

Example: contacts in a $\{0, \pm 1\}$ -excursion

• GF of excursions by length (z) and contacts (u):

$$A(z,u) = \frac{1}{1 + z(1 - 2u) + \sqrt{(1 + z)(1 - 3z)}}$$

• Singularity analysis: For $u \in (0, 2)$,

$$[z^n]A(z,u) \sim \frac{3^{3/2}}{2\sqrt{\pi}(2-u)^2} 3^n n^{-3/2}$$

so that

$$p_n(u) := \frac{[z^n]A(z,u)}{[z^n]A(z,1)} \to \frac{1}{(2-u)^2} = \sum_{k \ge 0} \frac{k+1}{2^{k+2}} u^k.$$

 \Rightarrow Convergence to a discrete limit law (negative binomial)

Example: area under a $\{0, \pm 1\}$ -excursion

• GF of excursions by length (z) and area (u):

$$A(z,u) = 1 + zA(z,u) + z^2 uA(z,u)A(zu,u)$$

• Repeated differentiations of the equation

 $\Rightarrow \frac{\partial^{j} A}{\partial u^{j}}(z, 1)$ is always quadratic and

$$\left(u\frac{\partial}{\partial u}\right)^{j}A(z,u)\Big|_{u=1} = \sum_{n} z^{n}a(n) \mathbb{E}(\mathsf{S}_{n}^{j}) \sim \frac{c_{j}}{(1-3z)^{(3j-1)/2}}$$

with

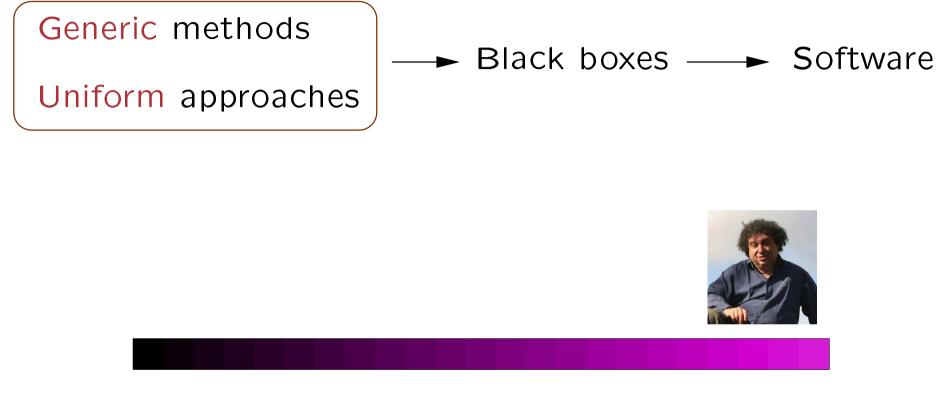
$$c_0 = -3\sqrt{3}, \quad c_j = \frac{j(3j-4)}{4\sqrt{3}}c_{j-1} + \frac{1}{6\sqrt{3}}\sum_{i=1}^{j-1} {j \choose i}c_i c_{j-i}$$

• Singularity analysis

$$\mathbb{E}\left(\left(\frac{\mathsf{S}_n}{n^{3/2}}\right)^j\right) \sim \frac{c_j}{c_0} \frac{\Gamma(-1/2)}{\Gamma((3j-1)/2)}$$

Moments of the Airy distribution \Rightarrow Convergence in law

Objectives



specific problems

generic approaches

The quasi-power theorem [Hwang 98]

• Assume that, uniformly in a neighborhood of u = 1,

$$p_n(u) := \frac{[z^n]A(z,u)}{[z^n]A(z,1)} = A(u)B(u)^{\beta_n} \left(1 + O(1/\kappa_n)\right)$$

where A(u) and B(u) are analytic at u = 1, A(1) = B(1) = 1 and $\beta_n, \kappa_n \to \infty$. Assume moreover

$$\mathfrak{v}_B := B''(1) + B'(1) - B'(1)^2 \neq 0.$$

• Then

$$\mathbb{E}(\mathsf{S}_n) = \beta_n \mathfrak{m}_B + \mathfrak{m}_A + O(1/\kappa_n), \qquad \mathbb{V}(\mathsf{S}_n) = \beta_n \mathfrak{v}_B + \mathfrak{v}_A + O(1/\kappa_n),$$

where $\mathfrak{m}_A = A'(1)$, and the normalized random variable

$$\frac{\mathsf{S}_n - \mathbb{E}(\mathsf{S}_n)}{\sqrt{\mathbb{V}(\mathsf{S}_n)}}$$

converges to a standard normal distribution.

One of Philippe's tables

$A(z,u)$ for $u\sim 1$	type of law	methods and schemas
sing. & exp. fixed	discrete	subcritical composition
		subcritical sequence, set
sing. moved, exp. fixed	Gaussian (n, n)	supercritical composition
		meromorphic perturbation
		(rational functions)
		sing. analysis perturbation
		(algebraic, implicit functions)
sing. fixed, exp. moves	Gaussian $(\log n, \log n)$	(exp-log structures)
		(diff. equations)
sing. & exp. move	Gaussian	[Gao-Richmond]
essential singularity	often Gaussian	saddle-point perturbation
discontinuous type	non-Gaussian	various cases
	stable	critical composition
	'	

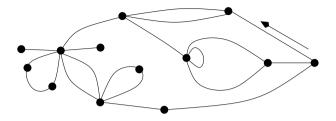
Fig. IX.4. A rough typology of bivariate generating functions A(z, u) and limit laws studied in this chapter, based on the way singularities and exponents evolve for $u \sim 1$.

One of Philippe's tables

$A(z,u)$ for $u\sim 1$	type of law	methods and schemas
sing. & exp. fixed	discrete	subcritical composition
		subcritical sequence, set
sing. moved, exp. fixed	Gaussian (n, n)	supercritical composition
		meromorphic perturbation
		(rational functions)
		sing. analysis perturbation
		(algebraic, implicit functions)
sing. fixed, exp. moves	Gaussian $(\log n, \log n)$	(exp-log structures)
		(diff. equations)
sing. & exp. move	Gaussian	[Gao-Richmond]
essential singularity	often Gaussian	saddle-point perturbation
discontinuous type	non-Gaussian	various cases
	stable	critical composition
	I	

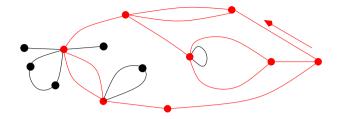
Fig. IX.4. A rough typology of bivariate generating functions A(z, u) and limit laws studied in this chapter, based on the way singularities and exponents evolve for $u \sim 1$.

The core of a random planar map

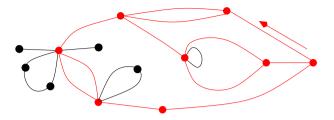


[Banderier, Flajolet, Schaeffer, Soria 01]

The core of a random planar map



The core of a random planar map



• Generating functions: Let M(z) be the generating function of planar maps:

$$M(z) = \frac{(1 - 12z)^{3/2} - 1 + 18z}{54z^2}.$$

Define C(z) by

$$M(z,1) = C(zM(z,1)^2)$$

Then the generating function of planar maps counted by edges (z) and the size of the core (u) is

$$M(z,u) = C(zuM(z,1)^2).$$

• Critical composition \Rightarrow non-gaussian, bimodal limit law

Bimodal limit law

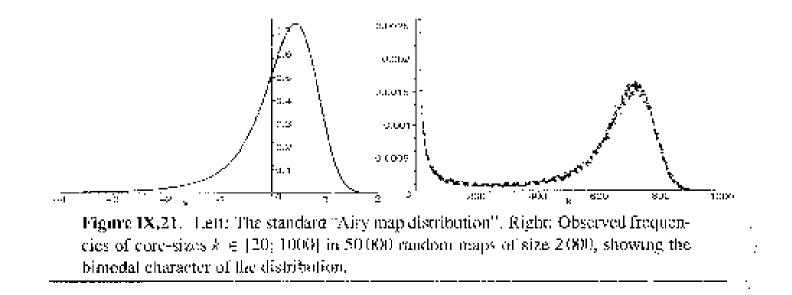
• Left region, k fixed: discrete limit law (total probability 1/3):

$$\mathbb{P}(\mathsf{S}_n = k) \to p(k) \text{ as } n \to \infty$$

• Central region, $k = 2n/3 + xn^{2/3}$: continuous limit law (total probability 2/3; local version)

$$\mathbb{P}(\mathsf{S}_n = k) \sim \kappa n^{-2/3} \mathcal{A}(3x/2)$$

where ${\cal A}$ is explicit, related to the Airy function.



Part D. Uniform random generation

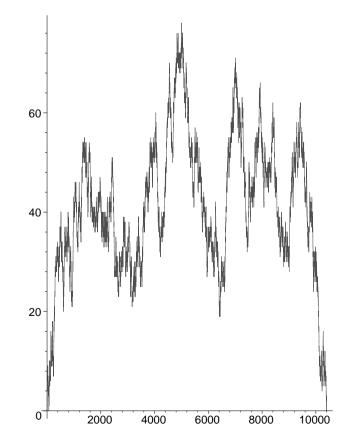
Recursive approaches for constructible objects

• Exact size: an excursion of size 1000 in 7 seconds [Flajolet, Zimmermann, Van Cutsem, 94]

Recursive approaches for constructible objects

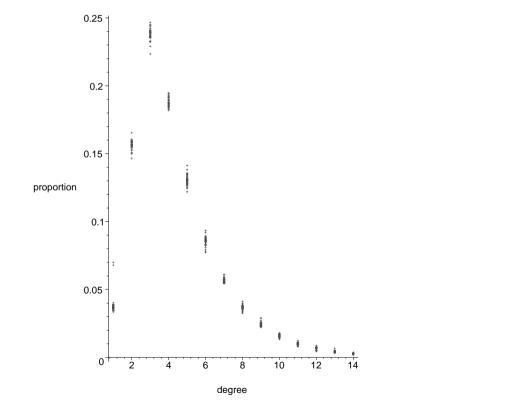
- Exact size: an excursion of size 1000 in 7 seconds [Flajolet, Zimmermann, Van Cutsem, 94]
- Approximate size ("Boltzmann generation"): an excursion of size > 10000 in 3 seconds

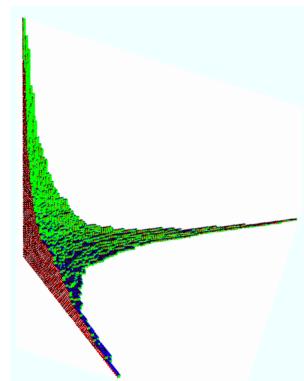
[Duchon, Flajolet, Louchard, Schaeffer 04]



Applications of Boltzmann sampling

- Uniform random sampling of planar graphs in linear time (approximate size) [Fusy 09] (100,000 vertices in a few seconds)
- Plane partitions in time $O(n \log n^3)$ (approximate size) and $O(n^{4/3})$ (exact size) [Bodini, Fusy, Pivoteau 10] (10,000 cubes in a few seconds)





Vertex degrees in random planar graphs

Plane partition of size \sim 15,000

Part E. Software

Let a computer do the job!

• The Algolib library [Maple]

• The equivalent function: asymptotics of the coefficients from the generating function [Salvy]

• The package combstruct: enumeration and random generation of combinatorial structures

• gfun: guess and handle holonomic generating functions [Salvy, Zimmermann, Murray]

http://algo.inria.fr/libraries/

Please ask questions...

but read the book!

