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Minor-closed classes of graphs

e Simple graphs on the vertex set {1,2,...,n}
e A set of graphs is a class if it is closed under relabelling of the vertices.

e A minor of an unlabelled graph G is obtained by contracting edges, and
deleting edges and isolated vertices.

e A class A is minor-closed if all minors of graphs of A are in A.
e Examples: A can be the set of forests, the set of planar graphs...

e Theorem [Robertson & Seymour]: every minor-closed class of graphs can be
described by excluding a finite number of minors.

e Examples: For forests, exclude the 3-cycle. For planar graphs, exclude Kg
and K3,3.



Random graphs

For fixed (and large) n, let A, be the set of graphs of the class A having size n
(i.e., n vertices). Let G, be a random graph of A, taken uniformly at random:

if G has size n,
1

PO =G =0

where a(n) = |Apl.

A uniform random forest
on 75 vertices
(2 components)



Some properties of (proper) minor-closed classes

e NO excluded minor:

The expected number of edges is quadratic:

n(n —1)
YR
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Some properties of (proper) minor-closed classes

e NO excluded minor:

The expected number of edges is quadratic:
nin—1
B(e(Gn) = "1

e At least one excluded minor:

a(n) < nlp"

for some constant p [Norine, Seymour, Thomas & Wollan 06].

The expected number of edges is at most linear: for any graph of A,

e(G) < an

for a constant o that depends on the excluded minors.
[Kostochka 82, Thomason 84]
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Refined properties: The number and size of components

e \What is the probability that §,, is connected?
e More generally, what is the distribution of NV, the number of components?

e \What is the size S,, of the root component, that is, the component containing
the vertex 17

e \What is the size L,, of the largest component?

Remark: if no minor is excluded, the probability that G,, is connected tends to
1 as n — oo, and these questions have simple answers.



Generating functions

e Let a(n) be the number of graphs of size n in A, and let

A(z) = ) a(n)i—?;

n>0
be the associated exponential generating function.

e Use similar notation (¢(n) and C(z)) for connected graphs of A.

e If all forbidden minors are connected, graphs of A are arbitrary unions of
graphs of C, and

A(z) = exp(C(2)).



When all excluded minors are 2-connected

Theorem [McDiarmid 09]: If all excluded minors are 2-connected, then
e C'(z) and A(z) converge at their (common) radius of convergence p

e the probability that G, is connected tends to 1/A(p), which belongs to
[1/Ve, 1)
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Forests: 1/A(p) = 1/y/e = 0.60... Planar graphs: 1/A(p) = 0.97...

[Gimenez & Noy 09]
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When all excluded minors are 2-connected

Theorem [McDiarmid 09]: If all excluded minors are 2-connected, then
e C(z) and A(z) converge at their (common) radius of convergence p

e the probability that G, is connected tends to 1/A(p), which belongs to
[1/ve, 1) (%)

e in fact, N, — 1 converges to a Poisson distribution of parameter C(p):

C(p)"
ilA(p)

e the root component contains almost all vertices; more precisely,

1 a(k)p
A(p) k!

e the same holds for the largest component.

P(Np=14+1) —

(*) [Addario Berry, McDiarmid & Reed 11], [Kang & Panagiotou 11]



What if some excluded minors are not 2-connected?

The above properties cannot always hold.

Example: exclude the one-edge graph. Then
e Gy is never connected (for n > 2),
e the number of components is maximal: N, = n,

e the largest component has size L, = 1.

More components, of a smaller size



Our results: a collection of examples

For a collection of minor-closed classes avoiding some non-2-connected minors,
e exact determination of C(z) and A(z),
e detailed asymptotics properties of N;, (number of components),
e detailed asymptotics properties of S, (size of the root component),

e for some classes, detailed asymptotics properties of L, (size of the largest
component)

Key point: behaviour of C(z) near its radius p

Note: all forbidden minors are connected, so that A(z) = exp(C(z))



Excluded 2-conn. all conn. graphs
minors or <I> and [X] [X] or of size k+ 1
D R /\ and A
1 1 1 -
C(p) < o0 log —p T —p entire
P(conn.) —p >0 — 0 — 0 — 0 — 0
Ny, O(1) logn nl/3 nl/2 n/k
Poisson gaussian gaussian | gaussian gaussian (*)
Sn n — Fy, n n2/3 nl/2 k
Fn — discr. | z(1 —2)73/4 2\/%@—“3 re " Dirac
Ly, n — Fp n ? nl/?2 log n k
F,, — discr. Dickman Gumbel Dirac

(*) [Canfield 77]




Example: forests of paths (no /\ nor A)

e Exact enumeration:

_ z2(2—-2) -
C(z) = 212 A(z) = exp(C(z))
e Asymptotic enumeration:
1/4
n! n!(e/2) 21

Cn — — and an,
2

- 2 ﬁn3/4

: c(n)
In particular, a(n) — 0.



Example: forests of paths (no /\ nor A)

e Exact enumeration:

_ z2(2—-2) -
C(z) = 212 A(z) = exp(C(z))
e Asymptotic enumeration:
1/4
n! n! (e/2) ey

Cn — — and an
2

N 2 ﬁn3/4

: c(n)
In particular, a(n) — 0.

e T he mean and variance of N, satisfy:

E(Nn) ~/n/2,  V(Nn) ~/n/8,

and the normalized random variable ]\(TZSV)?/ALQ converges in law to a standard

normal distribution:

n — ' n/2 —1 /y e_xz/zdx.

(nje)i7A =Y 7 ar o



e [ he mean and variance of S,, satisfy:
E(S,) ~ 2V 2n, V(Sp) ~ 4n,
and the normalized variable S,/v/2n converges in law to a Gamma(2):
P (Sn/\/% < y) — /Oy xe Tdzx.
A local limit law also holds:

V2n P(Sy = |zv2n]) ~ ze %,



e [ he mean and variance of S,, satisfy:
E(S,) ~ 2V 2n, V(Sp) ~ 4n,
and the normalized variable S,/v/2n converges in law to a Gamma(2):
P (Sn/\/% < y) — /Oy xe Tdzx.
A local limit law also holds:

V2n P(Sy = |zv2n]) ~ ze %,

e [ he normalized variable Ln=y/n/210gn converges in distribution to a Gumbel

\v/n/2

Ln—/n/2logn < ey/2>
P <yl —oexp|-— .
\/n/2 ’ V2

law:
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Techniques: Analytic combinatorics

Analytic
Combinatorics

Mhilippe Flajolet and
Hobert Sedgewick

Philippe Flajolet, Robert Sedgewick



A. Exact enumeration



Write directly equations from the recursive description of the objects

Construction Numbers Generating function

Union A=BUC a(n) = b(n) + c(n) A(z) = B(z) + C(2)

Product A=BxC a(n) =3, (";)b(q;)c(n — i) | A(z) = B(2) - C(2)
(B, V)] = 18] + [

Sequence A = Seq(B) A(z) = #%2)

Set A = Set(B) A(z) = exp (B(2))

Cycle A = Cyc(B) A(z) = log ﬁ%?«')

(directed)

Constructible labelled objects

A(z) =) a(n)Z—T




A basic example: forests (no A)

e A (vertex-)rooted tree is a root ver-
tex (z) and a set of (sub-)trees (T'(z) for
each):

T(z) = zexp(T(z)).

e A tree with n nodes has n — 1 edges,
and edge-rooted trees consist of a pair of
vertex-rooted trees:

O(2) = T(z) — %T(Z)Q.

e A forest is a set of unrooted trees:

A(z) = exp(C(z)).




The number and size of components

e [ he generating function of forests having &k components is

C(2)"
K

e T he number of forests of A with n vertices and root component of size k:

('”’ B 1>c(k)a(n — k)

k—1

c(k)a(n — k) (}_1)

= P(Sp, =k) = ()




B. Asymptotic enumeration and limit laws



How to extract from a series the asymptotic behaviour of its
coefficients?

A general correspondence between

the singular expansion of a series A(z) near its dominant singularities
and

the asymptotic expansion of the nth coefficient a(n) of this series

Example: If the dominant singularity has modulus p, then the coefficients satisfy

limsup a(n)l/n = 1/p.
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A basic example: forests

e [ he generating functions of rooted trees, unrooted trees and forests are given
by

T(:) = 2exp(T(2)), C() =T(2) ~ ;T(),  A(2) = exp(C(2))

e All have radius p = 1/e, with singular expansions

z) = 1-— —ze)t/2 4 — ze _ 1 — ze)3/? — ze
T(z) = 1-Vv2(1-ze) (1 )~ gl =277 +0((1 - ze)%),
2\/_

C(z) = 1/2—(1—ze)+—(1—ze)3/2+0((1—ze))

A(z) = /2 (1 — (1 — ze) + —\F(1 - ze)3/2> +0((1 = ze)?)

e By singularity analysis,

c(n) ~n! c and a(n) ~ el/zc(n).

\/27rn5/2
The probability that G,, is connected tends to e~ 1/2,




Forests: the number N,, of components

e \We have
1 [z"]C(2)F

P(Nn = k) = k' a(n)




Forets: the number N,, of components

e \\WVe have

.1 [z”]C(z)k
P(Ny = k) = 5
With

C(z) =1/2—-(1 —ze) + i(l — 2¢)%/? 4 0((1 — ze)?),

this gives

O = 2 tall -0+ 5 220 2072 4 0((1 - 2002,




Forets: the number N,, of components

e \We have
1k 2)k
pva =) = LI
With
C(z) =1/2— (1 —ze) + iu —2e)3/2 4+ O((1 — ze)?),
this gives
Cx)fF == + ol —ze) + 1 2\3F(1 —2e)3/2 4+ O((1 — ze)?),
so that
1 1 1
PINn =) = T Dive

and N, — 1 follows a Poisson distribution of parameter 1/2.



Forests: the size of the root component

We have found

n

e
vV 2mn>/2

and  a(n) ~ e/2¢c(n).

c(n) ~ n!
Thus for any fixed k,

R Ba(®) (") 1 alk)

a(n) T el/2 klek”



With the same tools: when A is dominated by forests

Definition: the class A is dominated by forests if

C(z) = T(2) = T(2)?/2 4 D(2),

where D(z) has radius of convergence strictly larger than 1/e (the radius of T').

Proposition: In this case,

n

e
\/27‘('7?,5/2
e N, — 1 converges in law to a Poisson distribution of parameter C(1/e) =

1/2+ D(1/e),
e the root component contains almost all vertices, and

1 a(k)e *
A(l/e) k! ’

and a(n) ~ A(1/e)c(n),

c(n) ~n!

P(Sp,=n—k) =

e the same holds for the largest component.



When A is dominated by forests: examples

Proposition: let £k > 1. Let A be a minor-closed class of graphs containing all
trees, but not the k-spoon. Then A is dominated by forests:

C(z) =T(2) — T(2)?/2 + D(2),
where p(D) > 1/e.



A more complex example: Excluding the bowtie [X]

e Analysis of the structure of such graphs, and partition into disjoint sub-classes

e Generating function of connected graphs:

1-T

C(z) = + —log

1-T 2

@ o b

e Asymptotic results and limit laws via the saddle point
method

T2 (1-T+712)el 1 ( 1 >+T(12—54T—|—18T2—5T3—T4).

24(1 —T)




C. Random dgeneration: Boltzmann samplers

A class A of (labelled) objects that has a “simple” recursive decription and
a moderate growth (at most exponential) can often be sampled efficiently
according to the associated Boltzmann distribution: an object G of size n has
probability

:L.n

P& =A@

where A(x) = zﬂ“(”)%? and z € (0, p].
In particular, all objects of size n have the same probability.

[Duchon, Flajolet, Louchard, Schaeffer 04]



A random planar graph of size 727

[Fusy 09] (100,000 vertices in a few seconds)
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A random forest of size 745

h
/|

E(Np) = E(Sp) ~n
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A random graph of size 975 avoiding the diamond and the bowtie

?} ;

E(Np) >~ logn E(Sp) ~n



A random graph of size 956 avoiding the bowtie

E(N,,) ~ nl/3 E(Sy) ~ n?/3



A random forest of paths of size 597 (no /\ nor A)
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E(Np) ~ nl/2 E(Sp) ~ nl/2
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A random graph of maximal degree 2 of size 636 (nho A)




Final commments

e We do not cover McDiarmid’s results (2-connected excluded minors)
e Other classes? (outer-planar graphs with an additional excluded minor...)
e Other parameters? number of edges, distribution of vertex degrees...

e Describe conditions on the excluded minors that determine the nature of the
singularities of C(z). For instance,

— 2-connected minors = C(p) finite

— exclude one spoon but not tree = C(p) finite with a singularity in (1 —ze)3/2



Excluded 2-conn. all conn. graphs
minors or and [X] [X] or of size k+ 1
D R /\ and A
1 1 -
C(p) < 00 —p T —p entire
P(conn.) —p >0 — 0 — 0 — 0 — 0
Ny, O(1) logn n nl/2 n/k
Poisson gaussian gaussian | gaussian gaussian (*)
Sn n — Fy, n n2/3 nl/2 k
F,, — discr. | (1 — z)—3/4 2\/%@—“3 re " Dirac
Ln n — Fy, n nl/2logn k
F,, — discr. Dickman Gumbel Dirac

Singularity analysis

Saddle point method




