Asymptotic properties of some minor-closed classes of graphs

Mireille Bousquet-Mélou
CNRS, LaBRI, Bordeaux, France

joint work with Kerstin Weller, Oxford

Minor-closed classes of graphs

- Simple graphs on the vertex set $\{1,2, \ldots, n\}$

Minor-closed classes of graphs

- Simple graphs on the vertex set $\{1,2, \ldots, n\}$
- A set of graphs is a class if it is closed under relabelling of the vertices.

Minor-closed classes of graphs

- Simple graphs on the vertex set $\{1,2, \ldots, n\}$
- A set of graphs is a class if it is closed under relabelling of the vertices.
- A minor of an unlabelled graph G is obtained by contracting edges, and deleting edges and isolated vertices.

Minor-closed classes of graphs

- Simple graphs on the vertex set $\{1,2, \ldots, n\}$
- A set of graphs is a class if it is closed under relabelling of the vertices.
- A minor of an unlabelled graph G is obtained by contracting edges, and deleting edges and isolated vertices.
- A class \mathcal{A} is minor-closed if all minors of graphs of \mathcal{A} are in \mathcal{A}.

Minor-closed classes of graphs

- Simple graphs on the vertex set $\{1,2, \ldots, n\}$
- A set of graphs is a class if it is closed under relabelling of the vertices.
- A minor of an unlabelled graph G is obtained by contracting edges, and deleting edges and isolated vertices.
- A class \mathcal{A} is minor-closed if all minors of graphs of \mathcal{A} are in \mathcal{A}.
- Examples: \mathcal{A} can be the set of forests, the set of planar graphs...

Minor-closed classes of graphs

- Simple graphs on the vertex set $\{1,2, \ldots, n\}$
- A set of graphs is a class if it is closed under relabelling of the vertices.
- A minor of an unlabelled graph G is obtained by contracting edges, and deleting edges and isolated vertices.
- A class \mathcal{A} is minor-closed if all minors of graphs of \mathcal{A} are in \mathcal{A}.
- Examples: \mathcal{A} can be the set of forests, the set of planar graphs...
- Theorem [Robertson \& Seymour]: every minor-closed class of graphs can be described by excluding a finite number of minors.

Minor-closed classes of graphs

- Simple graphs on the vertex set $\{1,2, \ldots, n\}$
- A set of graphs is a class if it is closed under relabelling of the vertices.
- A minor of an unlabelled graph G is obtained by contracting edges, and deleting edges and isolated vertices.
- A class \mathcal{A} is minor-closed if all minors of graphs of \mathcal{A} are in \mathcal{A}.
- Examples: \mathcal{A} can be the set of forests, the set of planar graphs...
- Theorem [Robertson \& Seymour]: every minor-closed class of graphs can be described by excluding a finite number of minors.
- Examples: For forests, exclude the 3-cycle. For planar graphs, exclude K_{5} and $K_{3,3}$.

Random graphs

For fixed (and large) n, let \mathcal{A}_{n} be the set of graphs of the class \mathcal{A} having size n (i.e., n vertices). Let \mathcal{G}_{n} be a random graph of \mathcal{A}_{n}, taken uniformly at random: if G has size n,

$$
\mathbb{P}\left(\mathcal{G}_{n}=G\right)=\frac{1}{a(n)}
$$

where $a(n)=\left|\mathcal{A}_{n}\right|$.

A uniform random forest on 75 vertices
(2 components)

Some properties of (proper) minor-closed classes

- No excluded minor:

$$
a(n)=2\binom{n}{2} .
$$

The expected number of edges is quadratic:

$$
\mathbb{E}\left(e\left(\mathcal{G}_{n}\right)\right)=\frac{n(n-1)}{4}
$$

Some properties of (proper) minor-closed classes

- No excluded minor:

$$
a(n)=2\binom{n}{2} .
$$

The expected number of edges is quadratic:

$$
\mathbb{E}\left(e\left(\mathcal{G}_{n}\right)\right)=\frac{n(n-1)}{4}
$$

- At least one excluded minor:

$$
a(n) \leq n!\mu^{n}
$$

for some constant μ [Norine, Seymour, Thomas \& Wollan 06].

The expected number of edges is at most linear: for any graph of \mathcal{A}_{n},

$$
e(G) \leq \alpha n
$$

for a constant α that depends on the excluded minors.
[Kostochka 82, Thomason 84]

Refined properties: The number and size of components

- What is the probability that \mathcal{G}_{n} is connected?
- More generally, what is the distribution of N_{n}, the number of components?

Refined properties: The number and size of components

- What is the probability that \mathcal{G}_{n} is connected?
- More generally, what is the distribution of N_{n}, the number of components?
- What is the size S_{n} of the root component, that is, the component containing the vertex 1 ?
- What is the size L_{n} of the largest component?

Refined properties: The number and size of components

- What is the probability that \mathcal{G}_{n} is connected?
- More generally, what is the distribution of N_{n}, the number of components?
- What is the size S_{n} of the root component, that is, the component containing the vertex 1 ?
- What is the size L_{n} of the largest component?

Remark: if no minor is excluded, the probability that \mathcal{G}_{n} is connected tends to 1 as $n \rightarrow \infty$, and these questions have simple answers.

Generating functions

- Let $a(n)$ be the number of graphs of size n in \mathcal{A}, and let

$$
A(z)=\sum_{n \geq 0} a(n) \frac{z^{n}}{n!}
$$

be the associated exponential generating function.

- Use similar notation $(c(n)$ and $C(z))$ for connected graphs of \mathcal{A}.
- If all forbidden minors are connected, graphs of \mathcal{A} are arbitrary unions of graphs of \mathcal{C}, and

$$
A(z)=\exp (C(z))
$$

When all excluded minors are 2-connected

Theorem [McDiarmid 09]: If all excluded minors are 2-connected, then

- $C(z)$ and $A(z)$ converge at their (common) radius of convergence ρ
- the probability that \mathcal{G}_{n} is connected tends to $1 / A(\rho)$, which belongs to $[1 / \sqrt{e}, 1)$

Forests: $1 / A(\rho)=1 / \sqrt{e}=0.60 \ldots$

Planar graphs: $1 / A(\rho)=0.97 \ldots$ [Gimenez \& Noy 09]

When all excluded minors are 2-connected

Theorem [McDiarmid 09]: If all excluded minors are 2-connected, then

- $C(z)$ and $A(z)$ converge at their (common) radius of convergence ρ
- the probability that \mathcal{G}_{n} is connected tends to $1 / A(\rho)$, which belongs to $[1 / \sqrt{e}, 1)$
- in fact, $N_{n}-1$ converges to a Poisson distribution of parameter $C(\rho)$:

$$
\mathbb{P}\left(N_{n}=i+1\right) \rightarrow \frac{C(\rho)^{i}}{i!A(\rho)}
$$

When all excluded minors are 2-connected

Theorem [McDiarmid 09]: If all excluded minors are 2-connected, then

- $C(z)$ and $A(z)$ converge at their (common) radius of convergence ρ
- the probability that \mathcal{G}_{n} is connected tends to $1 / A(\rho)$, which belongs to $[1 / \sqrt{e}, 1) \quad(*)$
- in fact, $N_{n}-1$ converges to a Poisson distribution of parameter $C(\rho)$:

$$
\mathbb{P}\left(N_{n}=i+1\right) \rightarrow \frac{C(\rho)^{i}}{i!A(\rho)}
$$

- the root component contains almost all vertices; more precisely,

$$
\mathbb{P}\left(S_{n}=n-k\right) \rightarrow \frac{1}{A(\rho)} \frac{a(k) \rho^{k}}{k!}
$$

- the same holds for the largest component.

What if some excluded minors are not 2-connected?

The above properties cannot always hold.

Example: exclude the one-edge graph. Then

- \mathcal{G}_{n} is never connected (for $n \geq 2$),
- the number of components is maximal: $N_{n}=n$,
- the largest component has size $L_{n}=1$.

More components, of a smaller size

Our results: a collection of examples

For a collection of minor-closed classes avoiding some non-2-connected minors,

- exact determination of $C(z)$ and $A(z)$,
- detailed asymptotics properties of N_{n} (number of components),
- detailed asymptotics properties of S_{n} (size of the root component),
- for some classes, detailed asymptotics properties of L_{n} (size of the largest component)

Key point: behaviour of $C(z)$ near its radius ρ

Note: all forbidden minors are connected, so that $A(z)=\exp (C(z))$

Excluded minors	2-conn. Or	\Downarrow and \otimes	∞	 or and 入	all conn. graphs of size $k+1$
$C(\rho)$	$<\infty$	$\log \frac{1}{1-z / \rho}$	$\frac{1}{\sqrt{1-z / \rho}}$	$\frac{1}{1-z / \rho}$	entire
$\mathbb{P}($ conn. $)$	$\rightarrow p>0$	$\rightarrow 0$	$\rightarrow 0$	$\rightarrow 0$	$\rightarrow 0$
N_{n}	$O(1)$ Poisson	$\log n$ gaussian	$n^{1 / 3}$ gaussian	$n^{1 / 2}$ gaussian	n / k gaussian (*)
S_{n}	$\begin{gathered} n-F_{n} \\ F_{n} \rightarrow \text { discr } . \end{gathered}$	$\frac{1}{4}(1-x)^{-3 / 4}$	$\begin{gathered} n^{2 / 3} \\ 2 \sqrt{\frac{x}{\pi}} e^{-x} \end{gathered}$	$\begin{aligned} & n^{1 / 2} \\ & x e^{-x} \end{aligned}$	k Dirac
L_{n}	$\begin{gathered} n-F_{n} \\ F_{n} \rightarrow \text { discr. } \end{gathered}$	n Dickman	?	$\begin{gathered} n^{1 / 2} \log n \\ \text { Gumbel } \end{gathered}$	$\begin{gathered} k \\ \text { Dirac } \end{gathered}$

(*) [Canfield 77]

Example: forests of paths (no Δ nor λ)

- Exact enumeration:

$$
C(z)=\frac{z(2-z)}{2(1-z)}, \quad A(z)=\exp (C(z))
$$

- Asymptotic enumeration:

$$
c_{n}=\frac{n!}{2} \quad \text { and } \quad a_{n} \sim \frac{n!}{2} \frac{(e / 2)^{1 / 4}}{\sqrt{\pi} n^{3 / 4}} e^{\sqrt{2 n}}
$$

In particular, $\frac{c(n)}{a(n)} \rightarrow 0$.

Example: forests of paths (no Δ nor λ)

- Exact enumeration:

$$
C(z)=\frac{z(2-z)}{2(1-z)}, \quad A(z)=\exp (C(z))
$$

- Asymptotic enumeration:

$$
c_{n}=\frac{n!}{2} \quad \text { and } \quad a_{n} \sim \frac{n!}{2} \frac{(e / 2)^{1 / 4}}{\sqrt{\pi} n^{3 / 4}} e^{\sqrt{2 n}} .
$$

In particular, $\frac{c(n)}{a(n)} \rightarrow 0$.

- The mean and variance of N_{n} satisfy:

$$
\mathbb{E}\left(N_{n}\right) \sim \sqrt{n / 2}, \quad \mathbb{V}\left(N_{n}\right) \sim \sqrt{n / 8}
$$

and the normalized random variable $\frac{N_{n}-\sqrt{n / 2}}{(n / 8)^{1 / 4}}$ converges in law to a standard normal distribution:

$$
\mathbb{P}\left(\frac{N_{n}-\sqrt{n / 2}}{(n / 8)^{1 / 4}} \leq y\right) \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{y} e^{-x^{2} / 2} d x
$$

- The mean and variance of S_{n} satisfy:

$$
\mathbb{E}\left(S_{n}\right) \sim 2 \sqrt{2 n}, \quad \mathbb{V}\left(S_{n}\right) \sim 4 n
$$

and the normalized variable $S_{n} / \sqrt{2 n}$ converges in law to a Gamma(2):

$$
\mathbb{P}\left(S_{n} / \sqrt{2 n} \leq y\right) \rightarrow \int_{0}^{y} x e^{-x} d x
$$

A local limit law also holds:

$$
\sqrt{2 n} \mathbb{P}\left(S_{n}=\lfloor x \sqrt{2 n}\rfloor\right) \sim x e^{-x}
$$

- The mean and variance of S_{n} satisfy:

$$
\mathbb{E}\left(S_{n}\right) \sim 2 \sqrt{2 n}, \quad \mathbb{V}\left(S_{n}\right) \sim 4 n
$$

and the normalized variable $S_{n} / \sqrt{2 n}$ converges in law to a Gamma(2):

$$
\mathbb{P}\left(S_{n} / \sqrt{2 n} \leq y\right) \rightarrow \int_{0}^{y} x e^{-x} d x
$$

A local limit law also holds:

$$
\sqrt{2 n} \mathbb{P}\left(S_{n}=\lfloor x \sqrt{2 n}\rfloor\right) \sim x e^{-x}
$$

- The normalized variable $\frac{L_{n}-\sqrt{n / 2} \log n}{\sqrt{n / 2}}$ converges in distribution to a Gumbel law:

$$
\mathbb{P}\left(\frac{L_{n}-\sqrt{n / 2} \log n}{\sqrt{n / 2}} \leq y\right) \rightarrow \exp \left(-\frac{e^{-y / 2}}{\sqrt{2}}\right)
$$

Excluded minors	2-conn. Or	\Downarrow and \otimes	∞	 or and 入	all conn. graphs of size $k+1$
$C(\rho)$	$<\infty$	$\log \frac{1}{1-z / \rho}$	$\frac{1}{\sqrt{1-z / \rho}}$	$\frac{1}{1-z / \rho}$	entire
$\mathbb{P}($ conn. $)$	$\rightarrow p>0$	$\rightarrow 0$	$\rightarrow 0$	$\rightarrow 0$	$\rightarrow 0$
N_{n}	$O(1)$ Poisson	$\log n$ gaussian	$n^{1 / 3}$ gaussian	$n^{1 / 2}$ gaussian	n / k gaussian (*)
S_{n}	$\begin{gathered} n-F_{n} \\ F_{n} \rightarrow \text { discr } . \end{gathered}$	$\frac{1}{4}(1-x)^{-3 / 4}$	$\begin{gathered} n^{2 / 3} \\ 2 \sqrt{\frac{x}{\pi}} e^{-x} \end{gathered}$	$\begin{aligned} & n^{1 / 2} \\ & x e^{-x} \end{aligned}$	k Dirac
L_{n}	$\begin{gathered} n-F_{n} \\ F_{n} \rightarrow \text { discr. } \end{gathered}$	n Dickman	?	$\begin{gathered} n^{1 / 2} \log n \\ \text { Gumbel } \end{gathered}$	$\begin{gathered} k \\ \text { Dirac } \end{gathered}$

(*) [Canfield 77]

Techniques: Analytic combinatorics

Philippe Flajolet, Robert Sedgewick

A. Exact enumeration

Write directly equations from the recursive description of the objects

Construction	Numbers	Generating function
Union $\mathcal{A}=\mathcal{B} \sqcup \mathcal{C}$	$a(n)=b(n)+c(n)$	$A(z)=B(z)+C(z)$
Product $\mathcal{A}=\mathcal{B} \times \mathcal{C}$	$a(n)=\sum_{i}\binom{n}{i} b(i) c(n-i)$	$A(z)=B(z) \cdot C(z)$
$\|(\beta, \gamma)\|=\|\beta\|+\|\gamma\|$		$A(z)=\frac{1}{1-B(z)}$
Sequence $\mathcal{A}=\operatorname{Seq}(\mathcal{B})$ Set Cycle (directed) $\mathcal{A}=\operatorname{Syc}(\mathcal{B})$	$A(z)=\exp (B(z))$	

Constructible labelled objects

$$
A(z)=\sum_{n} a(n) \frac{z^{n}}{n!}
$$

A basic example: forests (no Δ)

- A (vertex-)rooted tree is a root vertex (z) and a set of (sub-)trees ($T(z)$ for each):

$$
T(z)=z \exp (T(z))
$$

- A tree with n nodes has $n-1$ edges, and edge-rooted trees consist of a pair of vertex-rooted trees:

$$
C(z)=T(z)-\frac{1}{2} T(z)^{2}
$$

- A forest is a set of unrooted trees:

$$
A(z)=\exp (C(z))
$$

The number and size of components

- The generating function of forests having k components is

$$
\frac{C(z)^{k}}{k!}
$$

- The number of forests of \mathcal{A} with n vertices and root component of size k :

$$
\begin{gathered}
\binom{n-1}{k-1} c(k) a(n-k) \\
\Rightarrow \mathbb{P}\left(S_{n}=k\right)=\frac{c(k) a(n-k)\binom{n-1}{k-1}}{a(n)} .
\end{gathered}
$$

B. Asymptotic enumeration and limit laws

How to extract from a series the asymptotic behaviour of its coefficients?

A general correspondence between
the singular expansion of a series $A(z)$ near its dominant singularities and the asymptotic expansion of the nth coefficient $a(n)$ of this series

Example: If the dominant singularity has modulus ρ, then the coefficients satisfy

$$
\limsup a(n)^{1 / n}=1 / \rho
$$

A basic example: forests

- The generating functions of rooted trees, unrooted trees and forests are given by

$$
T(z)=z \exp (T(z)), \quad C(z)=T(z)-\frac{1}{2} T(z)^{2}, \quad A(z)=\exp (C(z))
$$

A basic example: forests

- The generating functions of rooted trees, unrooted trees and forests are given by

$$
T(z)=z \exp (T(z)), \quad C(z)=T(z)-\frac{1}{2} T(z)^{2}, \quad A(z)=\exp (C(z))
$$

- All have radius $\rho=1 / e$, with singular expansions

$$
T(z)=1-\sqrt{2}(1-z e)^{1 / 2}+\frac{2}{3}(1-z e)-\frac{11}{18 \sqrt{2}}(1-z e)^{3 / 2}+O\left((1-z e)^{2}\right)
$$

A basic example: forests

- The generating functions of rooted trees, unrooted trees and forests are given by

$$
T(z)=z \exp (T(z)), \quad C(z)=T(z)-\frac{1}{2} T(z)^{2}, \quad A(z)=\exp (C(z))
$$

- All have radius $\rho=1 / e$, with singular expansions

$$
\begin{aligned}
& T(z)=1-\sqrt{2}(1-z e)^{1 / 2}+\frac{2}{3}(1-z e)-\frac{11}{18 \sqrt{2}}(1-z e)^{3 / 2}+O\left((1-z e)^{2}\right) \\
& C(z)=1 / 2-(1-z e)+\frac{2 \sqrt{2}}{3}(1-z e)^{3 / 2}+O\left((1-z e)^{2}\right) \\
& A(z)=e^{1 / 2}\left(1-(1-z e)+\frac{2 \sqrt{2}}{3}(1-z e)^{3 / 2}\right)+O\left((1-z e)^{2}\right)
\end{aligned}
$$

A basic example: forests

- The generating functions of rooted trees, unrooted trees and forests are given by

$$
T(z)=z \exp (T(z)), \quad C(z)=T(z)-\frac{1}{2} T(z)^{2}, \quad A(z)=\exp (C(z))
$$

- All have radius $\rho=1 / e$, with singular expansions

$$
\begin{aligned}
& T(z)=1-\sqrt{2}(1-z e)^{1 / 2}+\frac{2}{3}(1-z e)-\frac{11}{18 \sqrt{2}}(1-z e)^{3 / 2}+O\left((1-z e)^{2}\right) \\
& C(z)=1 / 2-(1-z e)+\frac{2 \sqrt{2}}{3}(1-z e)^{3 / 2}+O\left((1-z e)^{2}\right) \\
& A(z)=e^{1 / 2}\left(1-(1-z e)+\frac{2 \sqrt{2}}{3}(1-z e)^{3 / 2}\right)+O\left((1-z e)^{2}\right)
\end{aligned}
$$

- By singularity analysis,

$$
c(n) \sim n!\frac{e^{n}}{\sqrt{2 \pi} n^{5 / 2}} \quad \text { and } \quad a(n) \sim e^{1 / 2} c(n)
$$

The probability that \mathcal{G}_{n} is connected tends to $e^{-1 / 2}$.

Forests: the number N_{n} of components

- We have

$$
\mathbb{P}\left(N_{n}=k\right)=\frac{1}{k!} \frac{\left[z^{n}\right] C(z)^{k}}{a(n)}
$$

Forets: the number N_{n} of components

- We have

$$
\mathbb{P}\left(N_{n}=k\right)=\frac{1}{k!} \frac{\left[z^{n}\right] C(z)^{k}}{a(n)}
$$

With

$$
C(z)=1 / 2-(1-z e)+\frac{2 \sqrt{2}}{3}(1-z e)^{3 / 2}+O\left((1-z e)^{2}\right)
$$

this gives

$$
C(z)^{k}=\frac{1}{2^{k}}+\alpha(1-z e)+\frac{k}{2^{k-1}} \frac{2 \sqrt{2}}{3}(1-z e)^{3 / 2}+O\left((1-z e)^{2}\right)
$$

Forets: the number N_{n} of components

- We have

$$
\mathbb{P}\left(N_{n}=k\right)=\frac{1}{k!} \frac{\left[z^{n}\right] C(z)^{k}}{a(n)}
$$

With

$$
C(z)=1 / 2-(1-z e)+\frac{2 \sqrt{2}}{3}(1-z e)^{3 / 2}+O\left((1-z e)^{2}\right)
$$

this gives

$$
C(z)^{k}=\frac{1}{2^{k}}+\alpha(1-z e)+\frac{k}{2^{k-1}} \frac{2 \sqrt{2}}{3}(1-z e)^{3 / 2}+O\left((1-z e)^{2}\right)
$$

so that

$$
\mathbb{P}\left(N_{n}=k\right) \rightarrow \frac{1}{2^{k-1}} \frac{1}{(k-1)!} \frac{1}{\sqrt{e}}
$$

and $N_{n}-1$ follows a Poisson distribution of parameter $1 / 2$.

Forests: the size of the root component

We have found

$$
c(n) \sim n!\frac{e^{n}}{\sqrt{2 \pi} n^{5 / 2}} \quad \text { and } \quad a(n) \sim e^{1 / 2} c(n)
$$

Thus for any fixed k,

$$
\mathbb{P}\left(S_{n}=n-k\right)=\frac{c(n-k) a(k)\binom{n-1}{k}}{a(n)} \rightarrow \frac{1}{e^{1 / 2}} \frac{a(k)}{k!e^{k}}
$$

With the same tools: when \mathcal{A} is dominated by forests

Definition: the class \mathcal{A} is dominated by forests if

$$
C(z)=T(z)-T(z)^{2} / 2+D(z)
$$

where $D(z)$ has radius of convergence strictly larger than $1 / e$ (the radius of T).

Proposition: In this case,

$$
c(n) \sim n!\frac{e^{n}}{\sqrt{2 \pi} n^{5 / 2}} \quad \text { and } \quad a(n) \sim A(1 / e) c(n)
$$

- $N_{n}-1$ converges in law to a Poisson distribution of parameter $C(1 / e)=$ $1 / 2+D(1 / e)$,
- the root component contains almost all vertices, and

$$
\mathbb{P}\left(S_{n}=n-k\right)=\frac{1}{A(1 / e)} \frac{a(k) e^{-k}}{k!}
$$

- the same holds for the largest component.

When \mathcal{A} is dominated by forests: examples

Proposition: let $k \geq 1$. Let \mathcal{A} be a minor-closed class of graphs containing all trees, but not the k-spoon. Then \mathcal{A} is dominated by forests:

$$
C(z)=T(z)-T(z)^{2} / 2+D(z)
$$

where $\rho(D)>1 / e$.

A more complex example: Excluding the bowtie \bigotimes

- Analysis of the structure of such graphs, and partition into disjoint sub-classes
- Generating function of connected graphs:
$C(z)=\frac{T^{2}\left(1-T+T^{2}\right) \mathrm{e}^{T}}{1-T}+\frac{1}{2} \log \left(\frac{1}{1-T}\right)+\frac{T\left(12-54 T+18 T^{2}-5 T^{3}-T^{4}\right)}{24(1-T)}$.

- Asymptotic results and limit laws via the saddle point method

C. Random generation: Boltzmann samplers

A class \mathcal{A} of (labelled) objects that has a "simple" recursive decription and a moderate growth (at most exponential) can often be sampled efficiently according to the associated Boltzmann distribution: an object G of size n has probability

$$
\mathbb{P}(G)=\frac{x^{n}}{n!A(x)}
$$

where $A(x)=\sum_{n} a(n) \frac{x^{n}}{n!}$ and $x \in(0, \rho]$.

In particular, all objects of size n have the same probability.
[Duchon, Flajolet, Louchard, Schaeffer 04]

A random planar graph of size 727

[Fusy 09] (100,000 vertices in a few seconds)

$$
\mathbb{E}\left(N_{n}\right)=\Theta(1) \quad \mathbb{E}\left(S_{n}\right) \sim n
$$

A random forest of size 745

A random graph of size 975 avoiding the diamond and the bowtie

A random graph of size 956 avoiding the bowtie

A random forest of paths of size 597 (no \triangle nor λ)

A random graph of maximal degree 2 of size 636 (no 入)

Final comments

- We do not cover McDiarmid's results (2-connected excluded minors)
- Other classes? (outer-planar graphs with an additional excluded minor...)
- Other parameters? number of edges, distribution of vertex degrees...
- Describe conditions on the excluded minors that determine the nature of the singularities of $C(z)$. For instance,
- 2-connected minors $\Rightarrow C(\rho)$ finite
- exclude one spoon but not tree $\Rightarrow C(\rho)$ finite with a singularity in $(1-z e)^{3 / 2}$

Excluded minors	2-conn. Or	\forall and X	∞	 or and 入	all conn. graphs of size $k+1$
$C(\rho)$	$<\infty$	$\log \frac{1}{1-z / \rho}$	$\frac{1}{\sqrt{1-z / \rho}}$	$\frac{1}{1-z / \rho}$	entire
$\mathbb{P}($ conn. $)$	$\rightarrow p>0$	$\rightarrow 0$	$\rightarrow 0$	$\rightarrow 0$	$\rightarrow 0$
N_{n}	$O(1)$ Poisson	$\log n$ gaussian	$n^{1 / 3}$ gaussian	$n^{1 / 2}$ gaussian	n / k gaussian (*)
S_{n}	$\begin{gathered} n-F_{n} \\ F_{n} \rightarrow \text { discr } . \end{gathered}$	$\frac{1}{4}(1-x)^{-3 / 4}$	$\begin{gathered} n^{2 / 3} \\ 2 \sqrt{\frac{x}{\pi}} e^{-x} \end{gathered}$	$\begin{aligned} & n^{1 / 2} \\ & x e^{-x} \end{aligned}$	k Dirac
L_{n}	$\begin{gathered} n-F_{n} \\ F_{n} \rightarrow \text { discr. } \end{gathered}$	n Dickman	?	$n^{1 / 2} \log n$ Gumbel	$\begin{gathered} k \\ \text { Dirac } \end{gathered}$

Singularity analysis
| Saddle point method

