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|. Planar maps and the Potts model
[. Main result
I1l. Where does it come from?

IV. Some special cases
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There is a finite number of maps with n edges






A near-triangulation with outer-degree 5



The Potts model on planar maps

e The partition function of the g-state Potts model on a planar map M:

Zuler)= Y o

c:V(M)—{1,2,....q}
where m(c) of the number of monochromatic edges in the colouring c. In
fact, Zy(q,v) is a polynomial in g (and v), divisible by q.
Example: When M has one edge and two vertices,

Zym(q,v) = qv+q(q — 1)



The Potts model on planar maps

e Generating function:

Mi(q,v,w,t) = :Z Zm(a, V)WV(M)te(M) — j’ Z wV(M) ge(M) ,m(c)

M M, c
= w+ (vw+vw? + (g — D)w?)t + O(t?)

“The Potts generating function of planar maps”

= Enumeration of g-coloured planar maps, counted by vertices, edges,
and monochromatic edges.

® <> .—0. .—0.

—

w vw vw (g — 1)w?



e Consider the refined Potts generating function:

M(x,y) = M(g,v,w, t:x,) ZzM @, )W =010 60,

where dv(M) (resp. df(M)) is the degree of the root-vertex (resp.
root-face).



A possible answer [Tutte 68]

e Consider the refined Potts generating function:

M(x,y) = M(q,v,w, t; x,y) ZZM g, v)wV M) £eM) V(M) dF(1)

9

where dv(M) (resp. df(M)) is the degree of the root-vertex (resp.
root-face).

e By deletion/contraction of the root-edge:

M(x,y) = w+xyt((v —1)(y — 1) + qy) M(x,y)M(L, y)
+xyt/w(xv — 1)M(x, y)M(x, 1)
xywt(v — 1)XM(X:y) — M(1,y) yM(x,y) — M(x,1)

t
x—1 Hed y—1

A discrete partial differential equation with two catalytic variables



The refined Potts generating function satisfies:

M(x,y) = w+xyt((v—1)(y — 1)+ qy) M(x,y)M(1,y)
+th/W(XV - 1)M(Xay)M(X7 1)
XM(X7y)_M(17y) yM(va)_M(X71)
1 + xyt y—1 .

+xywt(v — 1)

e compute coefficients efficiently (polynomial time)
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e compute coefficients efficiently (polynomial time)
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The refined Potts generating function satisfies:

M(x,y) = w+xyt((v—1)(y — 1)+ qy) M(x,y)M(1,y)
+th/W(XV - 1)M(X7.y)M(X7 1)
XM(X7y)_M(17y) yM(va)_M(X71)
1 + xyt y—1 .

+xywt(v — 1)

e compute coefficients efficiently (polynomial time)
e What is M(1,1) = M(q,v,w, t;1,1)?

@ asymptotics? phase transitions?






o Let

G(tiy) = G(y) =) t=MydM)
M

where e(M) is the number of edges and df(M) the degree of the outer
face. Then by deletion of the root-edge [Tutte 68]:

yG(y) — G(1)
y—1

A discrete differential equation with one catalytic variable, y.

G(y) =1+ty’G(y)* + ty



Experience makes us greedier: uncoloured maps
("pure gravity")

o Let
G(tiy) = G(y) =) t=(My 4™

where e(M) is the number of edges and df(M) the degree of the outer
face. Then by deletion of the root-edge [Tutte 68]:
yG(y) - G(1)

y—1

A discrete differential equation with one catalytic variable, y.

G(y)=1+ty’G(y)* + ty

e The solution is an algebraic function!

Zf 1—12t)3/2—1+18t
54t2

Equivalently,
27t2G(1)* + (1 - 18t)G(1) +16t—1=0



The refined Potts generating function satisfies:

M(x,y) = w+xyt((v —1)(y — 1)+ qy) M(x,y)M(1,y)
+xyt/w(xv — 1)M(x, y)M(x, 1)
xM(x,y) — M(1,y) n thyM(X,y) — M(x,1)

+xywt(v — 1) — y -1

e compute coefficients efficiently (poly. time)
e Whatis M(1,1) = M(q,v,w, t;1,1)?

@ asymptotics? phase transitions?

e Is M(1,1) algebraic?



Let v=(1+v)/(1 —v). The Ising generating function of
near-triangulations with outer degree 1 is

(S—v)’(S—2+v)(-2v+v2—Sv— S +35?)

T1(2,v,t) =
(2w, 8) 128t4 (1 + v)* 52

where S is the unique series in t with constant term v satisfying:

64(1+v)>S?
(S—2+v)(2v—v2+25+4+52—-4853)

S=v+1t

In particular, it is algebraic.

= Asymptotics, exponents, transition at v = 1+ 1/\/7
[Boulatov & Kazakov 87], [mbm & Schaeffer 02], [Bouttier, Di Francesco
& Guitter 04]




The GF of planar maps equipped with a spanning tree is

MO0 = ez (n) et )

n>0

This series is transcendental (= non-algebraic), but D-finite (solution of a
linear DE with polynomial coefficients).

= Forget about algebraicity in general.

OK, but... is Potts D-finite?




A hierarchy of formal power series

o Rational series

A(t) = %
e Algebraic series
P(t,A(t)) =0

e Differentially finite series (D-finite)
d
> Pi()A(r) =0
i=0

e D-algebraic series
P(t, A(t), A(t),..., A (1)) =0




The generating function of triangulations equipped with a connected
subgraph, counted by edges and by the size of the subgraph, is not
D-finite.

But... it is D-algebraic (2nd order non-linear DE).

= Forget about D-finiteness in general

OK, but... is Potts D-algebraic?







The Potts generating function of planar maps:

Mi(q,v,w,t) = ZZMq,

- algebraic if g =2 + QCOS%T, g # 0,4 (includes g = 2, 3)

D-algebraic (over Q(q, v, w, t)) when g is an indeterminate

The same holds for triangulations.

[mbm-Bernardi 09(a)] Counting coloured planar maps: algebraicity results.
[mbm-Bernardi 15(a)] Counting coloured planar maps: differential equations

cf. [Eynard & Bonnet 99]: algebraicity w.r.t. the catalytic variable y (for
near-triangulations)




Let D(t,u) = (qu + B?)u® — q(v + 1)u + Bt(q — 4)(wq + B) + q,
with § =v — 1.



Let D(t,u) = (qv + 5*)u® — q(v + 1)u + Bt(q — 4)(wq + 5) + q,

with § =v — 1.

e There exists a unique 11-tuple (Po(t),..., Pa(t), Qo(t),..., Q(t),
Ro(t), ..., Ra(t)) of series in t with coefficients in Q(g, v, w) such that



Let D(t,u) = (qv + 5*)u® — q(v + 1)u + Bt(q — 4)(wq + 5) + q,

with g =v — 1.

e There exists a unique 11-tuple (Po(t),..., Pa(t), Qo(t),..., Q(t),

Ro(t), ..., Ra(t)) of series in t with coefficients in Q(g, v, w) such that
Pa(t) = Q(t) =1,  Ru(t) =v+1—w(q+25),

and



An explicit differential system for Potts on planar maps

Let D(t,u) = (qv + 5%)u® — q(v 4+ 1)u + Bt(q — 4)(wq + S3) + q,
with g =v — 1.

e There exists a unique 11-tuple (Po(t), ..., Pa(t), Qo(t),..., Q(t),
Ro(t), ..., Ra(t)) of series in t with coefficients in Q(q, v, w) such that

Po(t) = Qa(t) =1,  Re(t) =v+1—w(q+20),

10/QY 10/(R
Q 9t \PD?) ~ R du \PD?)"

with P = P(t,u) = Po(t) + P1(t)u+ - - - + P4(t)u* and so on,

and



An explicit differential system for Potts on planar maps

Let D(t,u) = (qv + B%)u? — q(v + L)u+ Bt(q — 4)(wq + B) + g,
with  =v — 1.

e There exists a unique 11-tuple (Po(t), ..., Pa(t), Qo(t),..., Q(t),
Ro(t), ..., Ra(t)) of series in t with coefficients in Q(q, v, w) such that

Po(t) = Qa(t) =1,  Re(t) =v+1—w(q+20),

10 /QY\ 10 (R
Qat<PDZ>_Rau<PD2’
Po(t) +

= 0):

and

with P = P(t,u) =
initial conditions (at t

Pi(t)u+ -+ P4(t)u* and so on, and the

PO,u) = v*(u—1)> and Q(0,u) = u(u—1).



An explicit differential system for Potts on planar maps

Let D(t,u) = (qv + 5%)u® — q(v 4+ 1)u + Bt(q — 4)(wq + S3) + q,
with g =v — 1.

e There exists a unique 11-tuple (Po(t), ..., Pa(t), Qo(t),..., Q(t),
Ro(t), ..., Ra(t)) of series in t with coefficients in Q(q, v, w) such that

Po(t) = Qa(t) =1,  Re(t) =v+1—w(q+20),

1o(@\_ 10 (R
Q ot \PD2) R Ou \PD2)’
with P = P(t,u) = Po(t) +
initial conditions (at t = 0):

and

Pi(t)u+ -+ P4(t)u* and so on, and the

PO,u) = v*(u—1)> and Q(0,u) = u(u—1).

e The Potts GF of planar maps My is an explicit polynomial in the P;'s
and Q;'s.



.. or a partial differential equation?

Lo/@\_10/(R
Q 9t \PD2) ~ R ou \PD?)"

with P = P(t,u) = Po(t) + Pi(t)u + - - + P4(t)u* and so on.



Is this a differential system?

.. or a partial differential equation?

19 <Qz> _19 <R2>
Q 0t \PD2) R Ou\PD2)’
with P = P(t,u) = Po(t) + P1(t)u+ - - - + P4(t)u* and so on.
Both: The equation reads
2Q:PD — QP;:D — 2QPD; = 2R,PD — RP,D — 2RPD,,.

Extracting the coefficient of u°, ..., u” gives a system of 8 DEs (in t)
between the 8 unknowns series. For u’ for instance, one finds:

Pi(t) —2Qi(t) +4(1+v) —4w(28+q) =0



Is this a differential system?

.. or a partial differential equation?

19 <Qz> _19 <R2>
Q 0t \PD2) R Ou\PD2)’
with P = P(t,u) = Po(t) + P1(t)u+ - - - + P4(t)u* and so on.
Both: The equation reads
2Q:PD — QP;:D — 2QPD; = 2R,PD — RP,D — 2RPD,,.

Extracting the coefficient of u°, ..., u” gives a system of 8 DEs (in t)
between the 8 unknowns series. For u’ for instance, one finds:

Pi(t) —2Qi(t) +4(1+v) —4w(28+q) =0

Elimination = existence of a DE of order 5 for Mj.



An explicit differential system for Potts on

Let D(t,u) = (qv + 5%)u® — q(v 4+ 1)u + Bt(q — 4)(wq + S3) + q,
with g =v — 1.

e There exists a unique 11-tuple (Po(t), ..., Pa(t), Qo(t),..., Q(t),
Ro(t), ..., Ra(t)) of series in t with coefficients in Q(q, v, w) such that

Po(t) = Qa(t) =1, Re(t) =v+1—w(q+20),

1Lo(@\_ 10 (R
Q 0t \PD2) R Ou \PD2)’
with P = P(t,u) = Po(t) +
initial conditions (at t = 0):

and

Pi(t)u+ -+ P4(t)u* and so on, and the

PO,u) = v*(u—1)> and Q(0,u) = u(u—1).

e The Potts GF of planar maps My is an explicit polynomial in the P;'s
and Q;'s = DE of order 5



An explicit differential system for Potts on

Let D(t,u) = qu?u® + B(48 + q)u+ qfv(q — 4)t + (2,

with g =v — L

e There exists a unique 9-tuple (Po(t),. .., P3(t), Qo(t),..., Q(t),
Ro(t), Ri(t)) of series in t with coefficients in Q(g, v) such that

and

1Lo/@y_ 10 /(R

Q 9t \PD2) R 0ou\PD?)’
with P = P(t,u) = Po(t) + P1(t)u+ --- + P3(t)u® and so on, and the
initial conditions (at t = 0):

P(0,u) = v*(u+1/4) and Q(0,u) = u(2vu +1).

e The Potts GF T; of near-triangulations (outer degree 1) Ty is an
explicit polynomial in the P;'s and Q;'s = DE of order 4



Lo/ _10/[R
Q 0t \PD?) ~ R du \ PD?

A (vague) idea of the proof



In the footsteps of W. Tutte

e For the GF T(x,y) of properly g-coloured triangulations:

T(x,y)=x(q—1)+xyzT(x,y)T(L,y)

4oz T(xy)=T(x,0) yz T(x,y)— 1T(1‘y)
y X —

[Tutte 73] Chromatic sums for rooted planar triangulations: the cases A = 1 and
A=2

[Tutte 73] Chromatic sums for rooted planar triangulations, Il: the case
A=7+1

[Tutte 73] Chromatic sums for rooted planar triangulations, Ill: the case A = 3
[Tutte 73] Chromatic sums for rooted planar triangulations, 1V: the case A = oo
[Tutte 74] Chromatic sums for rooted planar triangulations, V: special equations
[Tutte 78] On a pair of functional equations of combinatorial interest

[Tutte 82] Chromatic solutions

[Tutte 82] Chromatic solutions I

[Tutte 84] Map-colourings and differential equations

440> D>

[Tutte 95]: Chromatic sums revisited



1. Tutte's equation with two catalytic variables:

M(x,y) = w+xyt((v = 1)(y = 1) + qy) M(x,y)M(1,y)
+xyt/w(xv — 1)M(x,y)M(x,1)
xM(x,y) = M(1,y) YM(x,y) — M(x, 1)

+xywt(v — 1) o + xy 1




1. Tutte's equation with two catalytic variables:
Pol(M(x,y), M(x,1), M(L,y),x,y) =0



1. Tutte's equation with two catalytic variables:
Pol(M(x,y), M(x,1), M(1,y),x,y) = 0
2. For g =2+ 2cos(jm/m), there also exists an equation with only one
catalytic variable defining M(1, y): [B-mbm 09(a)]
Pol; m(M(1,y),M(1,1), M,(1,1), M, ,(1,1),...,y) =0



Structure of the proof

1. Tutte's equation with two catalytic variables:
Pol(M(x,y), M(x,1), M(1,y),x,y) =0
2. For g =2+ 2cos(jm/m), there also exists an equation with only one
catalytic variable defining M(1,y): [B-mbm 09(a)]
P0|j7m(M(1,)/), M(L 1)7 My(lv 1)7 My,y(la 1)7 .- -)}/) =0

3. Derive from it a polynomial equation for the Potts
generating function M; = M(1,1). [mbm-Jehanne 06]
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4. It depends polynomially on g, and is thus valid for any gq.
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Structure of the proof

1. Tutte's equation with two catalytic variables:

Pol(M(x,y), M(x,1), M(1,y),x,y) =0

2. For g =2+ 2cos(jm/m), there also exists an equation with only one
catalytic variable defining M(1,y): [B-mbm 09(a)]

P0|j7m(M(1v)/)> M(la 1)7 My(la 1)7 My,y(lv 1)-/ . ->Y) =0

3. Derive from it a differential system for the Potts
generating function My = M(1,1).

4. It depends polynomially on g, and is thus valid for any gq.



e The functional equation

G(y) =1+ty’G(y)* + ty

yG(y) — 6(1)
y—1



e The functional equation, written with a square:
(26°(y = 1)6() +t* =y +1)°
=(y —1-y%t)* = 4ty*(y —1)* +4£%y°(y — 1)G1 := A(y)
(a polynomial in y)



e The functional equation, written with a square:

(210~ D6 +iy* —y +1)°
=(y = 1= y%t)° —4ty’(y = 1) +46%°(y — 1)G1 = A(y)
(a polynomial in y)
e There exists a (unique) series Y = Y/(t) that cancels the LHS:
Y =1+tY?+2tY3(Y —1)G(Y).

= characterizes inductively the coefficient of t"



Planar maps: algebraic solution
e The functional equation, written with a square:
(2ty2(y — 1)G(y) + ty* —y +1)°
=(y = 1=yt = 4ty*(y — 1)* + 4£2y°(y — 1)G1 = A(y)
(a polynomial in y)
e There exists a (unique) series Y = Y/(t) that cancels the LHS:
Y =1+tY242tY2(Y —1)G(Y).
= characterizes inductively the coefficient of t"

e This series Y must be a root of A(y), and in fact a double root.



Planar maps: algebraic solution
e The functional equation, written with a square:
(2t2(y —1)G(y) + 2 — y + 1)
=(y —1-y%t)* = 4ty*(y —1)* +4£%y°(y — 1)G1 := A(y)
(a polynomial in y)
e There exists a (unique) series Y = Y/(t) that cancels the LHS:
Y =1+tY242tY2(Y —1)G(Y).
= characterizes inductively the coefficient of t"
e This series Y must be a root of A(y), and in fact a double root.

e Algebraic consequence: The discriminant of A(y) w.r.t. y is zero:

27t2G2 + (1 -18t) G+ 16t —1=0



e The polynomial
Aly) = (y — 1=yt —aty’(y — 1)> + 423 (y — 1) Gy

has degree 4 in y, and admits a double root Y'(t):

Alt;y) = P(ty)(y — Y(1)?, P of degree 2 in y



e The polynomial
Aly) =y = 1= y*t) = 4t*(y = 1 + 4%°(y = 1) Gy
has degree 4 in y, and admits a double root Y'(t):
Alt;y) = P(ty)(y — Y(1)?, P of degree 2 in y
Ay(tiy) = Qty)y — Y(1), Q of degree 2 in y



e The polynomial
Aly) =y = 1= y*t) = 4t*(y = 1 + 4%°(y = 1) Gy
has degree 4 in y, and admits a double root Y'(t):
Alt;y) = P(ty)(y — Y(1)?, P of degree 2 in y

Ay(tiy) = Qty)y - Y(1), Q of degree 2 in y
Ai(t;y) = R(t;y)(y — Y(b)), R of degree 3 in y



Planar maps: differential solution

e The polynomial

Aly) = (y — 1=yt —aty’(y — 1)> + 423 (y — 1) Gy

has degree 4 in y, and admits a double root Y(t):

A(t;y) = P(t;y)(y — Y(b)?, P of degree 2 in y
Ay(t;y) = Q(t;y)(y— Y(t)), Q of degree 2 in y
A(t;y) = R(ty)(y—Y(p), R of degree 3 in y

e Elimination of Y and A:

10 (@ _18<R2>
or(P)Ray P)

Q



Planar maps: differential solution

e The polynomial
Aly)=(y — 1=yt —4t’(y — 1> + 4% (y - )G

has degree 4 in y, and admits a double root Y(t):

A(t;y) = P(t;y)(y — Y(b)?, P of degree 2 in y
Ay(t;y) = Q(t;y)(y— Y(t)), Q of degree 2 in y
A(t;y) = R(ty)(y—Y(p), R of degree 3 in y

e Elimination of Y and A:

10 Q2 10 R2
Q ot ~ Ry '
e Writing P(t; y) = Po(t) + yP1(t) + y?Pa(t) and so on for Q and R,

this gives a system of differential equations in t relating the series P;, Q;
and R;.



Planar maps: differential solution

e The polynomial

Aly) = (y — 1=yt —aty’(y — 1)> + 423 (y — 1) Gy

has degree 4 in y, and admits a double root Y(t):

A(t;y) = P(t;y)(y — Y(b)?, P of degree 2 in y
Ay(t;y) = Q(t;y)(y— Y(t)), Q of degree 2 in y
A(t;y) = R(ty)(y—Y(p), R of degree 3 in y

e Elimination of Y and A:

10 Q2 10 R2

Q ot “R dy '
e Writing P(t; y) = Po(t) + yP1(t) + y?Pa(t) and so on for Q and R,
this gives a system of differential equations in t relating the series P;, Q;

and R;.
e Finally, the GF G is a polynomial in the series P;, Q;, R;.



IV. Special values of g and v



Specializations: explicit DE for the Potts generating function

Specialization

general maps

triangulations

qg=2,3

algebraic

algebraic

Proper colourings

D=(4-qu+1

(v=0) order 2
Four colours D=(v+1)u—-2)2| D= (2vu+ B)>?
(g=14) order 3 order 2
Connected subgraphs D = B?(1 + 4u)
(spanning forests) order 2
(9=0)

Self-dual model R, =0

(g=p3%w=1/p) order 3




Specializations: explicit DE for the Potts generating function

Specialization

general maps

triangulations

qg=2,3

algebraic

algebraic

Proper colourings

D=(4-qu+1

(v=0) order 2
Four colours D=(v+1)u—-2)2| D= (2vu+ B)>?
(g=14) order 3 order 2
Connected subgraphs D = B?(1 + 4u)
(spanning forests) order 2
(9=0)

Self-dual model R, =0

(g=p3%w=1/p) order 3




Let A be the quartic series in t defined by

(1+24)3

1-2A3 "
Then the generating function of properly 3-coloured planar maps is
(14+2A)(1 — 2A% — 4A3 — 4A%)
(1—2A38)2

The proof is at the moment horrible ..

A=

Mi(3,0,1,t) =




The number c(n) of properly g-coloured triangulations having n vertices
satisfies:

(n+1)(n+2)c(n+2)=(qg—4)(3n—1)(3n—2)c(n+1)

+ 22 i(i+1)(3n—=3i+1)c(i+ 1)c(n+2—1i),
i=1
with the initial condition ¢(2) = ¢ — 1. -

The proof is at the moment horrible ..




More questions are left...

A. The differential system
Simpler, and/or more combinatorial derivation? Done for

@ the Ising model (g = 2)
[mbm & Schaeffer 02], [Bouttier, Di Francesco & Guitter 04]

@ spanning forests/connected subgraphs (g — 0)
[Bouttier et al. 07], [mbm-Courtiel 13(a)])

B. Asymptotics, phase transitions
@ Asymptotic number of properly g-coloured triangulations when
g € (28/11,4] U [5,00) [Odlyzko-Richmond 83])
@ Critical point of the Potts model on planar maps when g € (0,4) (for
the outer degree) [Borot et al. 12])

o Critical exponents for near-triangulations (for the outer degree)
[Eynard & Bonnet 99]



