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The question

Let S C {—1,0,1}2\ {(0,0)} be a set of “small” steps in the plane.

7

Consider walks with steps in S, that start from (0,0) and are confined to the
positive quadrant {(:,5) : i > 0,57 > 0}. Let q(i,j5;n) be the number of such
walks that have length n and end at position (4,5). Let
Qz,y;t) = > q(i,j;n)z"y/t".
1,7,n>0
Can we determine Q(x,y;t)? Q(0,0;t)? Q(1,1;t)7
What is the nature of these series?




A hierarchy of formal power series

e The formal power series A(t) is rational if it can be written

_P®)
A0 =50

where P(t) and Q(t¢) are polynomials in t.

e The formal power series A(t) is algebraic (over Q(t)) if it satisfies a (non-
trivial) polynomial equation:

P(t,A(t)) = 0.

e The formal power series A(t) is D-finite if it satisfies a (non-trivial) linear
differential equation:

Pe() AR (1) 4 - - 4 Py(t) A(t) = 0.

+ extension to several variables + closure properties



The question

Let S C {—1,0,1}2\ {(0,0)} be a set of “small” steps in the plane.

7

Consider walks with steps in &, that start from (0,0) and are confined to the
positive quadrant {(:,5) : i > 0,57 > 0}. Let q(i,j5;n) be the number of such
walks that have length n and end at position (4,5). Let
Qz,y;t) = > q(i,j;n)z"y/t".
1,7,n>0
Can we determine Q(x,y;t)? Q(0,0;t)? Q(1,1;t)7
What is the nature of these series?

— After all... there are only 28 such problems!



Some of these problems are trivial

If S contains no step with both coordinates non-negative,

N

Qz,y;t) = 1.

then



Some of these problems are very easy and rational

If S contains only steps with both coordinates non-negative,

/

then
Q(z,y;t) =

1 =Y j)es Tyt



Some of these problems are routine, and algebraic

If the quarter plane condition for & can be described as a half-plane condition,

the walks have a simple context-free decomposition, and an algebraic generating
function.

This happens when...



Some of these problems are routine, and algebraic

If the quarter plane condition for & can be described as a half-plane condition,

the walks have a simple context-free decomposition, and an algebraic generating
function.

This happens when:

e S contains no xz-negative step (generalized Dyck paths)

<

Q(z,0) = 1+ txQ(x,0) + t*(z + 1)?Q(x,0)",

Example: for the above set,

Q(z,0)
1 —ty(z+1)Q(x,0)

Q(z,y)



Some of these problems are routine, and algebraic

If the quarter plane condition for & can be described as a half-plane condition,

the walks have a simple context-free decomposition, and an algebraic generating
function.

This happens when:

e S contains only sub-diagonal steps: then any walk lying in the upper half-
plane automatically lies in the right half-plane (~ Dyck paths)

A

Q(x,0) = 1+ txQ(x,0) 4+ t°z(1 4z + 7)Q(x,0)7,

Example: for the above set,

Q0 o
Qz,y) = 1~ t2y0(z.0) with z = 1/x.




Finally, some problems are equivalent by symmetry

(Symmetry across the first diagonal)



Good news

= T here are only 79 distinct problems to solve



I. A step-by-step decomposition



A functional equation

Example: & = {N,W,SE}
Qz,y;t) = Qz,y) =1+ t(y +z + 2y)Q(x,y) — txQ(0,y) — tzyQ(z, 0),

K




A functional equation

Example: & = {N,W,SE}
Qz,y;t) = Qz,y) =1+ t(y +z + 2y)Q(x,y) — txQ(0,y) — tzyQ(z, 0),

or

(1—tly+ 7 +29))Q,y) = 1 —t2Q(0,y) — tzjQ(x, 0),



A functional equation

Example: & = {N,W,SE}
Qz,y;t) = Qz,y) =1+ t(y +z + 2y)Q(x,y) — txQ(0,y) — tzyQ(z, 0),

or

(1—tly+ 7 +29))Q,y) = 1 —t2Q(0,y) — tzjQ(x, 0),

or

((1 =ty + 7 + 21) ) 2yQ(z, y) = zy — yQ(0,y) — tzQ(x, 0).



A functional equation

Example: & = {N,W,SE}
Qz,y;t) = Qz,y) =1+ t(y +z + 2y)Q(x,y) — txQ(0,y) — tzyQ(z, 0),

or
(1 -ty + 7 +2)Qz,y) = 1 — t2Q(0,y) — tzyQ(x,0),
or
((1 =ty + 7 + 21) ) 2yQ(z, y) = zy — yQ(0,y) — tzQ(x, 0).

The polynomial 1 —¢t(y + * 4+ zy) is the kernel of this equation

The equation is linear, with two catalytic variables x and y



A functional equation

General case:

K(z,y)xyQ(x,y) = xy —trA_1(x)Q(x,0) — tyB_1(y)Q(0,y) + teQ(0,0)

where

K(z,y) =1—1 Z :Uiyj

(i,5)€S
IS the kernel of the equation,
Aq@@)y= Y 2 Ba(y)= Y ¢

(1,—1)eS (—1,5)eS

and eis 1 if (—1,—1) € S and 0 otherwise.



II. The group of the walk

[Fayolle et al. 99]
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What is this group?

The kernel reads
where

S(z,y) = Y 'y = Y 2'Bi(y) = Y v A;(x)

Observation: S(x,y) (and thus K(z,y)) is left unchanged by the rational trans-
formations

B_1(y) . 1(x)
b (x,y) — ( Bl(y) > and \U.(a:,y)l—>< Al(a:)>

Lemma
e & and W are involutions
e They generate a (dihedral) group denoted G = G(S)



Two examples

o If S = {N,W,SE}, then & : (z,y) — (zy,y) and W : (z,y) — (z,zy) generate a
group of order 6:
\\

P~ @Eyy) (Zy,7) —P
(z,9) (y,7)
\If\ (z, zy) o (¥, zy) ?



Two examples

o If S = {N,W,SE}, then & : (z,y) — (zy,y) and W : (z,y) — (z,zy) generate a
group of order 6:

W
CI9/(5:'4,?/) (Zy,2) — P
(z,y) (Y, )
v (z,27) o @) —v

o If S = {S,W,SW, NE}:

P (z,y) — (@y(1+7),y) and W:(z,y)— (z,zy(1 + 7))

seem to generate an infinite group

¢/(fg(1+g),y)L... R

(z,y)
w\(x7@(1‘|‘5))—“' S
D



Classification

Proposition. Among the 79 quarter plane models, exactly 23 have a finite
group:

— 16 have a vertical symmetry and a group of order 4,
— 5 have a group of order 6,

— 2 have a group of order 8.



Classification

Proposition. Among the 79 quarter plane models, exactly 23 have a finite
group.

Theorem. For all models with a finite group, Q(x,y;t) is D-finite.



Classification

Proposition. Among the 79 quarter plane models, exactly 23 have a finite
group.

Theorem. For all models with a finite group, Q(x,y;t) is D-finite.

([mbm-Mishna] for 22 models, [Bostan-Kauers 09] for the 23rd)



Classification

Proposition. Among the 79 quarter plane models, exactly 23 have a finite
group.

Theorem. For all models with a finite group, Q(x,y;t) is D-finite.

([mbm-Mishna] for 22 models,
[Bostan-Kauers 09] for the 23rd)

Conjecture. For all models with an infinite group, Q(z,y;t) is non-D-finite

(proved in two cases [Mishna-Rechnitzer 07]).



III. Models with a finite group:
T he orbit sum



Example: § = {N,W,SE}

e [ he equation reads

K(x,y) zyQ(x,y) = vy —txQ(x,0) —tyQ(0,y)  with K(z,y) = 1—t(y+ =+ xy).

e The orbit of (x,y) under G = G(S) is

(2, 1) (Ty, y) s (By, T) s (5, ) s (7, ) s (2, ) s (2, ).

e All transformations of G leave K(z,y) invariant. Hence

K(z,y) zyQ(x,y)
K(z,y) 7y?Q(Ty, y)

ry — txQ(x,0) — tyQ(0,y)
Ty° — tzyQ(Ty,0) — tyQ(0,y)



Example: § = {N,W,SE}

e [ he equation reads

K(x,y) zyQ(x,y) = vy —txQ(x,0) —tyQ(0,y)  with K(z,y) = 1—t(y+ =+ xy).

e The orbit of (x,y) under G = G(S) is

(2, 1) (Ty, y) s (By, T) s (5, ) s (7, ) s (2, ) s (2, ).

e All transformations of G leave K(z,y) invariant. Hence

K(z,y) zyQ(z,y) = zy — tzQ(z,0) — tyQ(0,y)
K(z,y) 2y°Q(Ty,y) = zy° — tzyQ(Ty,0) — tyQ(0,y)
K(z,y) 72yQ(zy,z) = 7%y — tzyQ(zy,0) — tzQ(0,7)
K(z,y) 22§Q(z,zy) = 2%y — txQ(z,0) — tzyQ(0,zy).



Example: § = {N,W,SE}

e All transformations of G leave K (x,vy) invariant. Hence

K(z,y) 2yQ(z,y) = zy — tzQ(z,0) — tyQ(0,y)
K(z,y) 7y°Q(zy,y) = zy° — tzyQ(Ty,0) — tyQ(0,y)
K(z,y) 72yQ(zy,z) = 7%y — tzyQ(zy,0) — tzQ(0,7)
K(z,y) 229Q(z,xy) = 2%y — tzQ(x,0) — tzgQ(0,xy).

= Form the alternating sum of the equation over all elements of the orbit:
K(x,y) (zva(:v, y) — zy°Q(Zy,y) + T°yQ(Ty, T)
- TQF,7) + 27°QF,#7) — +27Qw, 27) ) =
2_

vy — Ty? + T2y — 7Y + 2y° — 7.



Sneak preview: Why is this interesting?

ryQ(z,y) — Ty Q(Ty, v) + 72yQ(Ty, T)
— 75Q(7, %) + 25°Q(Y, x7) — 2°yQ(x, xy) =

vy — Ty + 7%y — Ty + 2y° -

2y

1 —t(y+z+ zy)
e Both sides are power series in t, with coefficients in Q[z,Z, vy, y].

e EXxtract the part with positive powers of x and y:

) = [o>0,>0] YT+ Ty — Ty +ay® — %y

1 —t(y+z+ zy)

ryQ(z,y

is a D-finite series.

[Lipshitz 88]



The orbit sum in general

For the 23 models with a finite group,
1

Z sign(g)g(zyQ(x,y;t)) = Z sign(g)g(xy),

GeG(S) K(z,y:t) jecis)
where

g(A(z,y)) := A(g9(z,y))

e [ he right-hand side is a rational series.



IV. Solutions via orbit-sums
(and half-orbit sums)



1. When the orbit sum is non-zero

Theorem. Among the 23 models with a finite group, the orbit sum is non-zero
in exactly 19 cases:

1

> sign(g)g(zyQ(z,y; t)) = > sign(g(S))g(zy).

9eG(S) K, y:1) jcais)

In those 19 cases, extracting the positive part in x and y gives

! > sign(g)g(zy),

i t) = [270y”0
xy@($ Yy ) [$ Y ] K(az,y;t) geG(S)

a D-finite series.

Remark. In many cases, one can perform an explicit coefficient extraction and
obtain closed form expressions.



2. When the orbit sum iIs zero

In 4 cases, the orbit sum vanishes:
1

sign(g)g(zyQ(z,y,t)) = sign(g(S))g(xzy) = O.
962%3) B ! K(z,y;t) 962%3)

This happens:
e for Gessel's walks, S = {E, W, NE, SW}
e for the Kreweras trilogy, S = {W,S,NE}, {E,N,SW}, {W,S,E,N,NE,SW}.

< [H &

In the latter case, the orbit sum reads

which is trivial because Q(z,y) = Q(y, x).




2. When the orbit sum iIs zero

In 4 cases, the orbit sum vanishes:

1
sign(g)g(zyQ(x,y;t)) = sign(g(S))g(xy) = 0.
96%%3) R ’ K(z,y:t) 96%%3)

This happens:
e for Gessel's walks, S = {E, W, NE, SW}
e for the Kreweras trilogy, S = {W,S,NE}, {E,N,SW}, {W,S,E,N,NE,SW}.

In all 4 cases, Q(x,y;t) is algebraic.

([mbm-Mishna] for the Kreweras trilogy,
[Bostan-Kauers 09] for Gessel’'s model)



The Kreweras trilogy: solution
e Again a coefficient extraction

e Form the half-orbit sum:

2y Q(z, ) — 5QF, y) + §Q(EY, 2) = =TTy = 2trd 1)@=, 0) + 10, 0)

K(z,y)
with
K(z,y)=1-t >z, Ai(z) = > o
(2,5)€S (2,5)€S
and eis 1 if (—1,—1) € S and 0 otherwise.



The Kreweras trilogy: solution
e Again a coefficient extraction

e Form the half-orbit sum:

zy — = +y— 2tzA_1(x)Q(z,0) 4+ teQ(0,0)

ryQ(x,y) — zQ(zy,y) + yQ(Zy,x) = K(z,v)

e 1/K(x,y) is a rational function in t, x and y. Extract the coefficient of y0:

v 1 (1 —tAo(x)) _
tAl(x)+\/m< tA7(z) -z —2tzA_1(x)Q(,0) +teQ(o,0)>

—zQq(T) = —

where

A(z) = (1 —tAg(z))? — 47 A_1(2) A1 (2),

Qu(x) = Qqlz;t) = > t"a'q(i,i;n).

n,1>0



e Write A(x) as

5 54d
Alx) =200 [[|1-2X;) [] (1-2/X;) =D0AL(2)A_(T),
=1 =641

where Xq,...,Xs (resp. Xs541,...,Xs544) are the roots of A(x) that are finite
(resp. infinite) at t = 0.

e [ he equation now reads
VA-@) (- #1(@)Qu(@® ) =

\/A Z — (az(l — ttAO(fﬁ)) —2A1(x) — 2tz A_1(x)A1(x)Q(x,0) 4+ te A1 (x)Q(O0, O)> |
ANNE:

e Each term in this equation is a Laurent series in t with coefficients in Q[z, x].
Moreover,

1. few positive powers of x occur in the left-hand side,
2. few negative powers in x occur in the right-hand side.

= Extract the positive and negative parts in x to obtain algebraic expressions
for the series Q (x) and Q(x,0).



Kreweras’ model: § = {W,S,NE}

Let W = W (t) be the power series in ¢ defined by W = t(2 + W3). Then

a0 =2 (- (3 2) i)

Consequently,

, , 4M(2¢ 4+ 1 21\ 3m + 21
0,0 3m +2i) = GHD 2 Em )
(m+i:1+1)2Cm4+2i+1)\4 m
The generating function of walks ending on the diagonal is
W —=x _
Qqlx;t) = + z/t.

11— W (1 + W3/4) + 22W?2/4

{

Remark. Q(0,y;t) = Q(vy,0;t) and Q(x,y;t) can be recovered in terms of
Q(x,0;t) and Q(0,y;t) via the functional equation.




Reversing Kreweras’ steps: S = {E,N,SW}

Let W = W (t) be the power series in ¢ defined by W = t(2 + W3). Then

(00 1) — W (4-w3)
L 16t
t — 22 + tz3 (2w2—xW2—W) \/1—xW(W3—|—4)/4 + z°W?2/4
Dxt? 2taW

The generating function of walks ending on the diagonal is

— 2 1
Qa(x; t) = Wiz + W) +—
2tx2\/1 — xW?2 tx

Consequently,

4m (5 4 1)2 2i + 1\ 3m + 2i
(m—l—i—l—l)(Zm—I—Qi—I—l)( i )( )

%

q(i,7;3m + 21) =

m




Kreweras’ steps and their reverse: S = {W,S,E, N, NE,SW}

Let Z = Z(t) be defined by Z(0) = 0 and

P 1-2Z24622-22723+ 2%

(1-2)2 ’
and denote
_ 1+ 22 > 2
A_l_(a:)—l—QZ(l_Z)Q:c—I—Z x”.
Then

(Z(l — )+ 227 — (1 - 2) :1:2) JA L (x)

Q,0:1) = 2txZ(1 — Z)(1 + )2
Z(l—Z)2+Z(Z3—|—4ZQ—SZ—I—2)a:— (1—2Z—|—7ZQ—4Z3):1:2—|—333Z(1—Z)2
a 2txZ(1 — Z)2(1 + x)2
The generating function of walks ending on the diagonal is
1— 27— 2:1:Z—|—acQZ(Z—1) 1
Qulz;t) =
te(1+2)(Z — 1)/Ay (x) ta:(l + )




Kreweras’ steps and their reverse: S = {W,S,E, N, NE,SW}
Special cases

Let Z = Z(t) be defined by Z(0) =0 and

1-2Z4622_-2234 724
7 =t ,
(1—2)2

e For walks ending at the origin:

Z(1—-227—Z2)

Q(0,0) =

t(l —2)2
e All walks, counted by the length: Q = Q(1,1) has degree 4:
1
14 tQ) (1 + 2t 2+20Q2) =
Q(L+1Q) (1+2tQ+2£7Q%) =

%




V. Questions



Solve Gessel’s model!

e [ he functional equation:

(1 —tlz+z+ 2y +2y))ryQ(z,y) =1 — tQ(z,0) — (1 +y)Q(0,y) + tQ(0,0)
e The group G(S) has order 8. The orbit of (x,vy) reads:

>  ,__ v, > ,_ v,
(z,y) —(ZY, y) — (Z7, 2%y) (T, 2%y) (T, 7)
o) .\ Vv o\ b o\ WV
s (zy, §) e (zy, T279) — (x, 727) — (, y)
e [ he orbit sum vanishes:

2yQ(x,y) — 2Q(ZY, y) + x2Q(FYy, 2%y) — zyQ(T, z°y)
+ 75Q(Z, §) — zQ(zy, §) + 2Q(xy, T°7) — TyQ(x, T°y) = 0

e \Work with the half-orbit sum?




EXxplain closed form expressions

e Simple closed form expressions for Kreweras, reverse Kreweras

o L 4m(2i + 1) 2i\ 3m + 2i
0w 03m 420 = ot D I )
o N 4m(; 4 1)? 2i + 1y /3m + 2i
q“(z’z’3m+27’)_(m+i+1)(2m+2¢+1)( i )( m )

<] [k

[Bernardi 07]: connection between ¢«(0,0;3m) and planar triangulations.




EXxplain closed form expressions

e Motzkin numbers for S; = {E,S,NW} and S, = {E,W,S,N,NW, SE}

q1(—, —;n) = Mny, qo(—, —;n) = 2" My,
[Francon-Viennot 79]: bijection between ¢1(—,—;n) and Motzkin paths (via

involutions)



EXxplain closed form expressions

e Many simple expressions for S = {E,W,NW,SE}. For instance,

2m)!'(2m + 2)!

q(—,0;,2m) = q(0, —;2m) = lm 4 D2 0m 4 21

%

[Gouyou-Beauchamps 86]: combinatorial derivation of ¢g(—,0;2m)




Explain algebraicity

e For the Kreweras' trilogy

<] [

[Bernardi 07] ~ algebraicity for planar maps

74

e For Gessel's walks...




Prove non-D-finiteness

Conjecture. For all models with a finite group, Q(z,y;t) is non-D-finite.

Proved in two cases [Mishna-Rechnitzer 07]: solution as an explicit infinite
sum, and proof that the series has infinitely many singularities.

NN

Also [mbm-Petkovsek 03] for knight walks (S = {(—1,2),(2,—1)})

k.




Construct differential equations

For the 19 models with a finite group and a non-zero orbit sum:

1 .
RERD g%SIgﬂ(g)g(xy),

ryQ(x,y; t) = [27 0%~

a D-finite series.

— Work out (automatically?) a differential equation for @Q(0,0;¢) and/or
Q(1,1;)

cf. [Bostan-Kauers 08]



Variations and extensions

e More parameters (e.g., contacts with the axes)

e Markov chains in the quarter plane [Fayolle et al. 99]: design new models
with and algebraic stationary distribution?

HISE
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[mbm 05]

e Higher dimension (cf. [Bostan-Kauers 08])



