Counting walks in the quarter plane

Mireille Bousquet-Mélou
CNRS, LaBRI, Université Bordeaux 1

Marni Mishna

Simon Fraser University, Vancouver, Canada

> http://www.labri.fr/~bousquet arXiv:0810.4387

The question

Let $\mathcal{S} \subset\{-1,0,1\}^{2} \backslash\{(0,0)\}$ be a set of "small" steps in the plane.

Consider walks with steps in \mathcal{S}, that start from $(0,0)$ and are confined to the positive quadrant $\{(i, j): i \geq 0, j \geq 0\}$. Let $q(i, j ; n)$ be the number of such walks that have length n and end at position (i, j). Let

$$
Q(x, y ; t)=\sum_{i, j, n \geq 0} q(i, j ; n) x^{i} y^{j} t^{n}
$$

Can we determine $Q(x, y ; t) ? Q(0,0 ; t) ? Q(1,1 ; t)$?
What is the nature of these series?

A hierarchy of formal power series

- The formal power series $A(t)$ is rational if it can be written

$$
A(t)=\frac{P(t)}{Q(t)}
$$

where $P(t)$ and $Q(t)$ are polynomials in t.

- The formal power series $A(t)$ is algebraic (over $\mathbb{Q}(t)$) if it satisfies a (nontrivial) polynomial equation:

$$
P(t, A(t))=0
$$

- The formal power series $A(t)$ is D-finite if it satisfies a (non-trivial) linear differential equation:

$$
P_{k}(t) A^{(k)}(t)+\cdots+P_{0}(t) A(t)=0
$$

+ extension to several variables + closure properties

The question

Let $\mathcal{S} \subset\{-1,0,1\}^{2} \backslash\{(0,0)\}$ be a set of "small" steps in the plane.

Consider walks with steps in \mathcal{S}, that start from $(0,0)$ and are confined to the positive quadrant $\{(i, j): i \geq 0, j \geq 0\}$. Let $q(i, j ; n)$ be the number of such walks that have length n and end at position (i, j). Let

$$
Q(x, y ; t)=\sum_{i, j, n \geq 0} q(i, j ; n) x^{i} y^{j} t^{n}
$$

Can we determine $Q(x, y ; t) ? Q(0,0 ; t) ? Q(1,1 ; t)$?
What is the nature of these series?
\Rightarrow After all... there are only 2^{8} such problems!

Some of these problems are trivial

If \mathcal{S} contains no step with both coordinates non-negative,

then

$$
Q(x, y ; t)=1
$$

Some of these problems are very easy and rational

If \mathcal{S} contains only steps with both coordinates non-negative,

then

$$
Q(x, y ; t)=\frac{1}{1-\sum_{(i, j) \in \mathcal{S}} x^{i} y^{j} t}
$$

Some of these problems are routine, and algebraic

If the quarter plane condition for \mathcal{S} can be described as a half-plane condition, the walks have a simple context-free decomposition, and an algebraic generating function.

This happens when...

Some of these problems are routine, and algebraic

If the quarter plane condition for \mathcal{S} can be described as a half-plane condition, the walks have a simple context-free decomposition, and an algebraic generating function.
This happens when:

- \mathcal{S} contains no x-negative step (generalized Dyck paths)

Example: for the above set,

$$
\begin{aligned}
& Q(x, 0)=1+t x Q(x, 0)+t^{2}(x+1)^{2} Q(x, 0)^{2} \\
& Q(x, y)=\frac{Q(x, 0)}{1-t y(x+1) Q(x, 0)}
\end{aligned}
$$

Some of these problems are routine, and algebraic

If the quarter plane condition for \mathcal{S} can be described as a half-plane condition, the walks have a simple context-free decomposition, and an algebraic generating function.
This happens when:

- \mathcal{S} contains only sub-diagonal steps: then any walk lying in the upper halfplane automatically lies in the right half-plane (\simeq Dyck paths)

Example: for the above set,

$$
\begin{aligned}
& Q(x, 0)=1+t x Q(x, 0)+t^{2} x(1+x+\bar{x}) Q(x, 0)^{2} \\
& Q(x, y)=\frac{Q(x, 0)}{1-\operatorname{txy} Q(x, 0)} \quad \text { with } \bar{x}=1 / x
\end{aligned}
$$

Finally, some problems are equivalent by symmetry

(Symmetry across the first diagonal)

Good news

\Rightarrow There are only 79 distinct problems to solve

I. A step-by-step decomposition

A functional equation

Example: $\mathcal{S}=\{\mathrm{N}, \mathrm{W}, \mathrm{SE}\}$

$$
Q(x, y ; t) \equiv Q(x, y)=1+t(y+\bar{x}+x \bar{y}) Q(x, y)-t \bar{x} Q(0, y)-t x \bar{y} Q(x, 0)
$$

A functional equation

Example: $\mathcal{S}=\{\mathrm{N}, \mathrm{W}, \mathrm{SE}\}$

$$
Q(x, y ; t) \equiv Q(x, y)=1+t(y+\bar{x}+x \bar{y}) Q(x, y)-t \bar{x} Q(0, y)-t x \bar{y} Q(x, 0)
$$

or

$$
(1-t(y+\bar{x}+x \bar{y})) Q(x, y)=1-t \bar{x} Q(0, y)-t x \bar{y} Q(x, 0)
$$

A functional equation

Example: $\mathcal{S}=\{\mathrm{N}, \mathrm{W}, \mathrm{SE}\}$

$$
Q(x, y ; t) \equiv Q(x, y)=1+t(y+\bar{x}+x \bar{y}) Q(x, y)-t \bar{x} Q(0, y)-t x \bar{y} Q(x, 0)
$$

or

$$
(1-t(y+\bar{x}+x \bar{y})) Q(x, y)=1-t \bar{x} Q(0, y)-t x \bar{y} Q(x, 0)
$$

or

$$
((1-t(y+\bar{x}+x \bar{y})) x y Q(x, y)=x y-t y Q(0, y)-t x Q(x, 0)
$$

A functional equation

Example: $\mathcal{S}=\{\mathrm{N}, \mathrm{W}, \mathrm{SE}\}$

$$
Q(x, y ; t) \equiv Q(x, y)=1+t(y+\bar{x}+x \bar{y}) Q(x, y)-t \bar{x} Q(0, y)-t x \bar{y} Q(x, 0),
$$

or

$$
(1-t(y+\bar{x}+x \bar{y})) Q(x, y)=1-t \bar{x} Q(0, y)-t x \bar{y} Q(x, 0),
$$

or

$$
((1-t(y+\bar{x}+x \bar{y})) x y Q(x, y)=x y-t y Q(0, y)-t x Q(x, 0) .
$$

The polynomial $1-t(y+\bar{x}+x \bar{y})$ is the kernel of this equation
The equation is linear, with two catalytic variables x and y

A functional equation

General case:

$$
K(x, y) x y Q(x, y)=x y-t x A_{-1}(x) Q(x, 0)-t y B_{-1}(y) Q(0, y)+t \epsilon Q(0,0)
$$

where

$$
K(x, y)=1-t \sum_{(i, j) \in \mathcal{S}} x^{i} y^{j}
$$

is the kernel of the equation,

$$
A_{-1}(x)=\sum_{(i,-1) \in \mathcal{S}} x^{i}, \quad B_{-1}(y)=\sum_{(-1, j) \in \mathcal{S}} y^{j}
$$

and ϵ is 1 if $(-1,-1) \in \mathcal{S}$ and 0 otherwise.

II. The group of the walk

[Fayolle et al. 99]

What is this group?

The kernel reads

$$
K(x, y)=1-t S(x, y)
$$

where

$$
S(x, y)=\sum_{(i, j) \in \mathcal{S}} x^{i} y^{j}=\sum_{i=-1}^{1} x^{i} B_{i}(y)=\sum_{j=-1}^{1} y^{j} A_{j}(x)
$$

Observation: $S(x, y)$ (and thus $K(x, y)$) is left unchanged by the rational transformations

$$
\Phi:(x, y) \mapsto\left(\bar{x} \frac{B_{-1}(y)}{B_{1}(y)}, y\right) \quad \text { and } \quad \psi:(x, y) \mapsto\left(x, \bar{y} \frac{A_{-1}(x)}{A_{1}(x)}\right)
$$

Lemma

- Φ and Ψ are involutions
- They generate a (dihedral) group denoted $G \equiv G(\mathcal{S})$

Two examples

- If $\mathcal{S}=\{\mathrm{N}, \mathrm{W}, \mathrm{SE}\}$, then $\Phi:(x, y) \mapsto(\bar{x} y, y)$ and $\Psi:(x, y) \mapsto(x, x \bar{y})$ generate a group of order 6:

Two examples

- If $\mathcal{S}=\{\mathrm{N}, \mathrm{W}, \mathrm{SE}\}$, then $\Phi:(x, y) \mapsto(\bar{x} y, y)$ and $\Psi:(x, y) \mapsto(x, x \bar{y})$ generate a group of order 6:

- If $\mathcal{S}=\{\mathrm{S}, \mathrm{W}, \mathrm{SW}, \mathrm{NE}\}$:

$$
\Phi:(x, y) \mapsto(\bar{x} \bar{y}(1+\bar{y}), y) \quad \text { and } \quad \psi:(x, y) \mapsto(x, \bar{x} \bar{y}(1+\bar{x}))
$$

seem to generate an infinite group

$$
\begin{gathered}
\left.(x, y) \frac{\Phi}{\frac{\Psi}{\Psi}(\bar{x} \bar{y}(1+\bar{y}), y) \frac{\Psi}{}(x, \bar{x} \bar{y}(1+\bar{x})) \frac{\Phi}{\Phi} \cdots} \begin{array}{l}
\\
\frac{\Psi}{\Psi} \cdots \\
\cdots
\end{array}\right] \frac{\Psi}{\Phi} \cdots
\end{gathered}
$$

Classification

Proposition. Among the 79 quarter plane models, exactly 23 have a finite group:

- 16 have a vertical symmetry and a group of order 4,
- 5 have a group of order 6,
- 2 have a group of order 8.

Classification

Proposition. Among the 79 quarter plane models, exactly 23 have a finite group.

Theorem. For all models with a finite group, $Q(x, y ; t)$ is D-finite.

Classification

Proposition. Among the 79 quarter plane models, exactly 23 have a finite group.

Theorem. For all models with a finite group, $Q(x, y ; t)$ is D-finite.
([mbm-Mishna] for 22 models, [Bostan-Kauers 09] for the 23rd)

Classification

Proposition. Among the 79 quarter plane models, exactly 23 have a finite group.

Theorem. For all models with a finite group, $Q(x, y ; t)$ is D-finite.

> ([mbm-Mishna] for 22 models, [Bostan-Kauers 09] for the 23rd)

Conjecture. For all models with an infinite group, $Q(x, y ; t)$ is non-D-finite
(proved in two cases [Mishna-Rechnitzer 07]).

III. Models with a finite group:

The orbit sum

Example: $\mathcal{S}=\{\mathrm{N}, \mathrm{W}, \mathrm{SE}\}$

- The equation reads

$$
K(x, y) x y Q(x, y)=x y-t x Q(x, 0)-t y Q(0, y) \quad \text { with } K(x, y)=1-t(y+\bar{x}+x \bar{y})
$$

- The orbit of (x, y) under $G=G(\mathcal{S})$ is

$$
(x, y) \stackrel{\Phi}{\longleftrightarrow}(\bar{x} y, y) \stackrel{\psi}{\longleftrightarrow}(\bar{x} y, \bar{x}) \stackrel{\Phi}{\longleftrightarrow}(\bar{y}, \bar{x}) \stackrel{\psi}{\longleftrightarrow}(\bar{y}, x \bar{y}) \stackrel{\Phi}{\longleftrightarrow}(x, x \bar{y}) \stackrel{\Psi}{\longleftrightarrow}(x, y) .
$$

- All transformations of G leave $K(x, y)$ invariant. Hence

$$
\begin{aligned}
K(x, y) x y Q(x, y) & =x y-t x Q(x, 0)-t y Q(0, y) \\
K(x, y) \bar{x} y^{2} Q(\bar{x} y, y) & =\bar{x} y^{2}-t \bar{x} y Q(\bar{x} y, 0)-t y Q(0, y)
\end{aligned}
$$

Example: $\mathcal{S}=\{\mathrm{N}, \mathrm{W}, \mathrm{SE}\}$

- The equation reads

$$
K(x, y) x y Q(x, y)=x y-t x Q(x, 0)-t y Q(0, y) \quad \text { with } K(x, y)=1-t(y+\bar{x}+x \bar{y})
$$

- The orbit of (x, y) under $G=G(\mathcal{S})$ is

$$
(x, y) \stackrel{\Phi}{\longleftrightarrow}(\bar{x} y, y) \stackrel{\Psi}{\longleftrightarrow}(\bar{x} y, \bar{x}) \stackrel{\Phi}{\longleftrightarrow}(\bar{y}, \bar{x}) \stackrel{\Psi}{\longleftrightarrow}(\bar{y}, x \bar{y}) \stackrel{\Phi}{\longleftrightarrow}(x, x \bar{y}) \stackrel{\Psi}{\longleftrightarrow}(x, y) .
$$

- All transformations of G leave $K(x, y)$ invariant. Hence

$$
\begin{aligned}
K(x, y) x y Q(x, y) & =x y-t x Q(x, 0)-t y Q(0, y) \\
K(x, y) \bar{x} y^{2} Q(\bar{x} y, y) & =\bar{x} y^{2}-t \bar{x} y Q(\bar{x} y, 0)-t y Q(0, y) \\
K(x, y) \bar{x}^{2} y Q(\bar{x} y, \bar{x}) & =\bar{x}^{2} y-t \bar{x} y Q(\bar{x} y, 0)-t \bar{x} Q(0, \bar{x}) \\
\cdots & =\cdots \\
K(x, y) x^{2} \bar{y} Q(x, x \bar{y}) & =x^{2} \bar{y}-t x Q(x, 0)-t x \bar{y} Q(0, x \bar{y}) .
\end{aligned}
$$

Example: $\mathcal{S}=\{\mathrm{N}, \mathrm{W}, \mathrm{SE}\}$

- All transformations of G leave $K(x, y)$ invariant. Hence

$$
\begin{aligned}
K(x, y) x y Q(x, y) & =x y-t x Q(x, 0)-t y Q(0, y) \\
K(x, y) \bar{x} y^{2} Q(\bar{x} y, y) & =\bar{x} y^{2}-t \bar{x} y Q(\bar{x} y, 0)-t y Q(0, y) \\
K(x, y) \bar{x}^{2} y Q(\bar{x} y, \bar{x}) & =\bar{x}^{2} y-t \bar{x} y Q(\bar{x} y, 0)-t \bar{x} Q(0, \bar{x}) \\
\cdots & =\cdots \\
K(x, y) x^{2} \bar{y} Q(x, x \bar{y}) & =x^{2} \bar{y}-t x Q(x, 0)-t x \bar{y} Q(0, x \bar{y}) .
\end{aligned}
$$

\Rightarrow Form the alternating sum of the equation over all elements of the orbit:

$$
\begin{aligned}
& K(x, y)\left(x y Q(x, y)-\bar{x} y^{2} Q(\bar{x} y, y)+\bar{x}^{2} y Q(\bar{x} y, \bar{x})\right. \\
& \left.-\bar{x} \bar{y} Q(\bar{y}, \bar{x})+x \bar{y}^{2} Q(\bar{y}, x \bar{y})-x^{2} \bar{y} Q(x, x \bar{y})\right)= \\
& x y-\bar{x} y^{2}+\bar{x}^{2} y-\bar{x} \bar{y}+x \bar{y}^{2}-x^{2} \bar{y}
\end{aligned}
$$

Sneak preview: Why is this interesting?

$$
\begin{aligned}
& x y Q(x, y)-\bar{x} y^{2} Q(\bar{x} y, y)+\bar{x}^{2} y Q(\bar{x} y, \bar{x}) \\
& -\bar{x} \bar{y} Q(\bar{y}, \bar{x})+x \bar{y}^{2} Q(\bar{y}, x \bar{y})-x^{2} \bar{y} Q(x, x \bar{y})= \\
& \frac{x y-\bar{x} y^{2}+\bar{x}^{2} y-\bar{x} \bar{y}+x \bar{y}^{2}-x^{2} \bar{y}}{1-t(y+\bar{x}+x \bar{y})}
\end{aligned}
$$

- Both sides are power series in t, with coefficients in $\mathbb{Q}[x, \bar{x}, y, \bar{y}]$.
- Extract the part with positive powers of x and y :

$$
x y Q(x, y)=\left[x^{>0} y^{>0}\right] \frac{x y-\bar{x} y^{2}+\bar{x}^{2} y-\bar{x} \bar{y}+x \bar{y}^{2}-x^{2} \bar{y}}{1-t(y+\bar{x}+x \bar{y})}
$$

is a D-finite series.
[Lipshitz 88]

The orbit sum in general

For the 23 models with a finite group,

$$
\sum_{g \in G(\mathcal{S})} \operatorname{sign}(g) g(x y Q(x, y ; t))=\frac{1}{K(x, y ; t)} \sum_{g \in G(\mathcal{S})} \operatorname{sign}(g) g(x y)
$$

where

$$
g(A(x, y)):=A(g(x, y))
$$

- The right-hand side is a rational series.

IV. Solutions via orbit-sums
 (and half-orbit sums)

1. When the orbit sum is non-zero

Theorem. Among the 23 models with a finite group, the orbit sum is non-zero in exactly 19 cases:

$$
\sum_{g \in G(\mathcal{S})} \operatorname{sign}(g) g(x y Q(x, y ; t))=\frac{1}{K(x, y ; t)} \sum_{g \in G(\mathcal{S})} \operatorname{sign}(g(\mathcal{S})) g(x y)
$$

In those 19 cases, extracting the positive part in x and y gives

$$
x y Q(x, y ; t)=\left[x^{>0} y^{>0}\right] \frac{1}{K(x, y ; t)} \sum_{g \in G(\mathcal{S})} \operatorname{sign}(g) g(x y)
$$

a D-finite series.

Remark. In many cases, one can perform an explicit coefficient extraction and obtain closed form expressions.
2. When the orbit sum is zero

In 4 cases, the orbit sum vanishes:

$$
\sum_{g \in G(\mathcal{S})} \operatorname{sign}(g) g(x y Q(x, y ; t))=\frac{1}{K(x, y ; t)} \sum_{g \in G(\mathcal{S})} \operatorname{sign}(g(\mathcal{S})) g(x y)=0
$$

This happens:

- for Gessel's walks, $\mathcal{S}=\{\mathrm{E}, \mathrm{W}, \mathrm{NE}, \mathrm{SW}\}$
- for the Kreweras trilogy, $\mathcal{S}=\{W, S, N E\},\{E, N, S W\},\{W, S, E, N, N E, S W\}$.

In the latter case, the orbit sum reads

$$
x y Q(x, y)-\bar{x} Q(\bar{x} \bar{y}, y)+\bar{y} Q(\bar{x} \bar{y}, x)=x y Q(y, x)-\bar{x} Q(y, \bar{x} \bar{y})+\bar{y} Q(x, \bar{x} \bar{y})
$$

which is trivial because $Q(x, y)=Q(y, x)$.
2. When the orbit sum is zero

In 4 cases, the orbit sum vanishes:

$$
\sum_{g \in G(\mathcal{S})} \operatorname{sign}(g) g(x y Q(x, y ; t))=\frac{1}{K(x, y ; t)} \sum_{g \in G(\mathcal{S})} \operatorname{sign}(g(\mathcal{S})) g(x y)=0
$$

This happens:

- for Gessel's walks, $\mathcal{S}=\{\mathrm{E}, \mathrm{W}, \mathrm{NE}, \mathrm{SW}\}$
- for the Kreweras trilogy, $\mathcal{S}=\{W, S, N E\},\{E, N, S W\},\{W, S, E, N, N E, S W\}$.

In all 4 cases, $Q(x, y ; t)$ is algebraic.
([mbm-Mishna] for the Kreweras trilogy, [Bostan-Kauers 09] for Gessel's model)

The Kreweras trilogy: solution

- Again a coefficient extraction
- Form the half-orbit sum:

$$
x y Q(x, y)-\bar{x} Q(\bar{x} \bar{y}, y)+\bar{y} Q(\bar{x} \bar{y}, x)=\frac{x y-\bar{x}+\bar{y}-2 t x A_{-1}(x) Q(x, 0)+t \epsilon Q(0,0)}{K(x, y)}
$$ with

$$
K(x, y)=1-t \sum_{(i, j) \in \mathcal{S}} x^{i} y^{j}, \quad A_{j}(x)=\sum_{(i, j) \in \mathcal{S}} x^{i}
$$

and ϵ is 1 if $(-1,-1) \in \mathcal{S}$ and 0 otherwise.

The Kreweras trilogy: solution

- Again a coefficient extraction
- Form the half-orbit sum:

$$
x y Q(x, y)-\bar{x} Q(\bar{x} \bar{y}, y)+\bar{y} Q(\bar{x} \bar{y}, x)=\frac{x y-\bar{x}+\bar{y}-2 t x A_{-1}(x) Q(x, 0)+t \epsilon Q(0,0)}{K(x, y)}
$$

- $1 / K(x, y)$ is a rational function in t, x and y. Extract the coefficient of y^{0} :
$-\bar{x} Q_{d}(\bar{x})=-\frac{x}{t A_{1}(x)}+\frac{1}{\sqrt{\Delta(x)}}\left(\frac{x\left(1-t A_{0}(x)\right)}{t A_{1}(x)}-\bar{x}-2 t x A_{-1}(x) Q(x, 0)+t \epsilon Q(0,0)\right)$ where

$$
\begin{gathered}
\Delta(x)=\left(1-t A_{0}(x)\right)^{2}-4 t^{2} A_{-1}(x) A_{1}(x) \\
Q_{d}(x) \equiv Q_{d}(x ; t)=\sum_{n, i \geq 0} t^{n} x^{i} q(i, i ; n)
\end{gathered}
$$

- Write $\Delta(x)$ as

$$
\Delta(x)=\Delta_{0} \prod_{i=1}^{\delta}\left(1-\bar{x} X_{i}\right) \prod_{i=\delta+1}^{\delta+d}\left(1-x / X_{i}\right)=\Delta_{0} \Delta_{+}(x) \Delta_{-}(\bar{x})
$$

where $X_{1}, \ldots, X_{\delta}$ (resp. $X_{\delta+1}, \ldots, X_{\delta+d}$) are the roots of $\Delta(x)$ that are finite (resp. infinite) at $t=0$.

- The equation now reads

$$
\begin{aligned}
& \sqrt{\Delta_{-}(\bar{x})}\left(\frac{x}{t}-\bar{x} A_{1}(x) Q_{d}(\bar{x})\right)= \\
& \frac{1}{\sqrt{\Delta_{0} \Delta_{+}(x)}}\left(\frac{x\left(1-t A_{0}(x)\right)}{t}-\bar{x} A_{1}(x)-2 t x A_{-1}(x) A_{1}(x) Q(x, 0)+t \in A_{1}(x) Q(0,0)\right)
\end{aligned}
$$

- Each term in this equation is a Laurent series in t with coefficients in $\mathbb{Q}[x, \bar{x}]$. Moreover,

1. few positive powers of x occur in the left-hand side,
2. few negative powers in x occur in the right-hand side.
\Rightarrow Extract the positive and negative parts in x to obtain algebraic expressions for the series $Q_{d}(x)$ and $Q(x, 0)$.

Kreweras' model: $\mathcal{S}=\{\mathrm{W}, \mathrm{S}, \mathrm{NE}\}$

Let $W \equiv W(t)$ be the power series in t defined by $W=t\left(2+W^{3}\right)$. Then

$$
Q(x, 0 ; t)=\frac{1}{t x}\left(\frac{1}{2 t}-\frac{1}{x}-\left(\frac{1}{W}-\frac{1}{x}\right) \sqrt{1-x W^{2}}\right) .
$$

Consequently,

$$
q(i, 0 ; 3 m+2 i)=\frac{4^{m}(2 i+1)}{(m+i+1)(2 m+2 i+1)}\binom{2 i}{i}\binom{3 m+2 i}{m}
$$

The generating function of walks ending on the diagonal is

$$
Q_{d}(x ; t)=\frac{W-\bar{x}}{t \sqrt{1-x W\left(1+W^{3} / 4\right)+x^{2} W^{2} / 4}}+\bar{x} / t .
$$

Remark. $Q(0, y ; t)=Q(y, 0 ; t)$ and $Q(x, y ; t)$ can be recovered in terms of $Q(x, 0 ; t)$ and $Q(0, y ; t)$ via the functional equation.

Reversing Kreweras' steps: $\mathcal{S}=\{\mathrm{E}, \mathrm{N}, \mathrm{SW}\}$

Let $W \equiv W(t)$ be the power series in t defined by $W=t\left(2+W^{3}\right)$. Then

$$
\begin{aligned}
Q(x, 0 ; t)= & \frac{W\left(4-W^{3}\right)}{16 t} \\
& -\frac{t-x^{2}+t x^{3}}{2 x t^{2}}-\frac{\left(2 x^{2}-x W^{2}-W\right) \sqrt{1-x W\left(W^{3}+4\right) / 4+x^{2} W^{2} / 4}}{2 t x W}
\end{aligned}
$$

The generating function of walks ending on the diagonal is

$$
Q_{d}(x ; t)=\frac{x W(x+W)-2}{2 t x^{2} \sqrt{1-x W^{2}}}+\frac{1}{t x^{2}}
$$

Consequently,

$$
q(i, i ; 3 m+2 i)=\frac{4^{m}(i+1)^{2}}{(m+i+1)(2 m+2 i+1)}\binom{2 i+1}{i}\binom{3 m+2 i}{m}
$$

Kreweras' steps and their reverse: $\mathcal{S}=\{\mathrm{W}, \mathrm{S}, \mathrm{E}, \mathrm{N}, \mathrm{NE}, \mathrm{SW}\}$
Let $Z \equiv Z(t)$ be defined by $Z(0)=0$ and

$$
Z=t \frac{1-2 Z+6 Z^{2}-2 Z^{3}+Z^{4}}{(1-Z)^{2}}
$$

and denote

$$
\Delta_{+}(x)=1-2 Z \frac{1+Z^{2}}{(1-Z)^{2}} x+Z^{2} x^{2}
$$

Then

$$
\begin{aligned}
& Q(x, 0 ; t)=\frac{\left(Z(1-Z)+2 x Z-(1-Z) x^{2}\right) \sqrt{\Delta_{+}(x)}}{2 t x Z(1-Z)(1+x)^{2}} \\
& -\frac{Z(1-Z)^{2}+Z\left(Z^{3}+4 Z^{2}-5 Z+2\right) x-\left(1-2 Z+7 Z^{2}-4 Z^{3}\right) x^{2}+x^{3} Z(1-Z)^{2}}{2 t x Z(1-Z)^{2}(1+x)^{2}}
\end{aligned}
$$

The generating function of walks ending on the diagonal is

$$
Q_{d}(x ; t)=\frac{1-Z-2 x Z+x^{2} Z(Z-1)}{t x(1+x)(Z-1) \sqrt{\Delta_{+}(x)}}+\frac{1}{t x(1+x)}
$$

Kreweras' steps and their reverse: $\mathcal{S}=\{\mathrm{W}, \mathrm{S}, \mathrm{E}, \mathrm{N}, \mathrm{NE}, \mathrm{SW}\}$ Special cases

Let $Z \equiv Z(t)$ be defined by $Z(0)=0$ and

$$
Z=t \frac{1-2 Z+6 Z^{2}-2 Z^{3}+Z^{4}}{(1-Z)^{2}}
$$

- For walks ending at the origin:

$$
Q(0,0)=\frac{Z\left(1-2 Z-Z^{2}\right)}{t(1-Z)^{2}}
$$

- All walks, counted by the length: $Q \equiv Q(1,1)$ has degree 4:

$$
Q(1+t Q)\left(1+2 t Q+2 t^{2} Q^{2}\right)=\frac{1}{1-6 t}
$$

V. Questions

Solve Gessel's model!

- The functional equation:

$$
(1-t(x+\bar{x}+x y+\bar{x} \bar{y})) x y Q(x, y)=1-t Q(x, 0)-t(1+y) Q(0, y)+t Q(0,0)
$$

- The group $G(\mathcal{S})$ has order 8. The orbit of (x, y) reads:

$$
\begin{aligned}
(x, y) \stackrel{\Phi}{\longleftrightarrow}(\bar{x} \bar{y}, y) \stackrel{\Psi}{\longleftrightarrow}\left(\bar{x} \bar{y}, x^{2} y\right) \stackrel{\Phi}{\longleftrightarrow}(\bar{x}, & \left.x^{2} y\right) \stackrel{\Psi}{\longleftrightarrow}(\bar{x}, \bar{y}) \\
& \stackrel{\Phi}{\longleftrightarrow}(x y, \bar{y}) \stackrel{\Psi}{\longleftrightarrow}\left(x y, \bar{x}^{2} \bar{y}\right) \stackrel{\Phi}{\longleftrightarrow}\left(x, \bar{x}^{2} \bar{y}\right) \stackrel{\Psi}{\longleftrightarrow}(x, y)
\end{aligned}
$$

- The orbit sum vanishes:

$$
\begin{aligned}
x y Q(x, y)-\bar{x} Q(\bar{x} \bar{y}, y) & +x Q\left(\bar{x} \bar{y}, x^{2} y\right)-x y Q\left(\bar{x}, x^{2} y\right) \\
& +\bar{x} \bar{y} Q(\bar{x}, \bar{y})-x Q(x y, \bar{y})+\bar{x} Q\left(x y, \bar{x}^{2} \bar{y}\right)-\bar{x} \bar{y} Q\left(x, \bar{x}^{2} \bar{y}\right)=0
\end{aligned}
$$

- Work with the half-orbit sum?

Explain closed form expressions

- Simple closed form expressions for Kreweras, reverse Kreweras

$$
\begin{gathered}
q_{\kappa}(i, 0 ; 3 m+2 i)=\frac{4^{m}(2 i+1)}{(m+i+1)(2 m+2 i+1)}\binom{2 i}{i}\binom{3 m+2 i}{m} \\
q_{\bar{\kappa}}(i, i ; 3 m+2 i)=\frac{4^{m}(i+1)^{2}}{(m+i+1)(2 m+2 i+1)}\binom{2 i+1}{i}\binom{3 m+2 i}{m} .
\end{gathered}
$$

[Bernardi 07]: connection between $q_{\kappa}(0,0 ; 3 m)$ and planar triangulations.

Explain closed form expressions

- Motzkin numbers for $\mathcal{S}_{1}=\{\mathrm{E}, \mathrm{S}, \mathrm{NW}\}$ and $\mathcal{S}_{2}=\{\mathrm{E}, \mathrm{W}, \mathrm{S}, \mathrm{N}, \mathrm{NW}, \mathrm{SE}\}$

$$
q_{1}(-,-; n)=M_{n}, \quad q_{2}(-,-; n)=2^{n} M_{n}
$$

[Françon-Viennot 79]: bijection between $q_{1}(-,-; n)$ and Motzkin paths (via involutions)

Explain closed form expressions

- Many simple expressions for $\mathcal{S}=\{\mathrm{E}, \mathrm{W}, \mathrm{NW}, \mathrm{SE}\}$. For instance,

$$
q(-, 0 ; 2 m)=q(0,-; 2 m)=\frac{(2 m)!(2 m+2)!}{m!(m+1)!^{2}(m+2)!}
$$

[Gouyou-Beauchamps 86]: combinatorial derivation of $q(-, 0 ; 2 m)$

Explain algebraicity

- For the Kreweras' trilogy

[Bernardi 07] \simeq algebraicity for planar maps
- For Gessel's walks...

Prove non-D-finiteness

Conjecture. For all models with a finite group, $Q(x, y ; t)$ is non-D-finite.

Proved in two cases [Mishna-Rechnitzer 07]: solution as an explicit infinite sum, and proof that the series has infinitely many singularities.

Also [mbm-Petkovšek 03] for knight walks $(\mathcal{S}=\{(-1,2),(2,-1)\})$

Construct differential equations

For the 19 models with a finite group and a non-zero orbit sum:

$$
x y Q(x, y ; t)=\left[x^{>0} y^{>0}\right] \frac{1}{K(x, y ; t)} \sum_{g \in G} \operatorname{sign}(g) g(x y),
$$

a D-finite series.
\Rightarrow Work out (automatically?) a differential equation for $Q(0,0 ; t)$ and/or $Q(1,1 ; t)$
cf. [Bostan-Kauers 08]

Variations and extensions

- More parameters (e.g., contacts with the axes)
- Markov chains in the quarter plane [Fayolle et al. 99]: design new models with and algebraic stationary distribution?

$$
\begin{aligned}
& \frac{p^{\prime}}{r^{\prime}}=\frac{p}{r} \\
& \frac{q^{\prime \prime}}{r^{\prime \prime}}=\frac{q}{r}
\end{aligned}
$$

[mbm 05]

- Higher dimension (cf. [Bostan-Kauers 08])

