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The question

Let S ⊂ {−1,0,1}2 \ {(0,0)} be a set of �small� steps in the plane.

Consider walks with steps in S, that start from (0,0) and are on�ned to thepositive quadrant {(i, j) : i ≥ 0, j ≥ 0}. Let q(i, j;n) be the number of suhwalks that have length n and end at position (i, j). Let

Q(x, y; t) =
∑

i,j,n≥0

q(i, j;n)xiyjtn.Can we determine Q(x, y; t)? Q(0,0; t)? Q(1,1; t)?What is the nature of these series?



A hierarhy of formal power series

• The formal power series A(t) is rational if it an be written

A(t) =
P(t)

Q(t)where P(t) and Q(t) are polynomials in t.

• The formal power series A(t) is algebrai (over Q(t)) if it satis�es a (non-trivial) polynomial equation:
P(t, A(t)) = 0.

• The formal power series A(t) is D-�nite if it satis�es a (non-trivial) lineardi�erential equation:

Pk(t)A
(k)(t) + · · ·+ P0(t)A(t) = 0.

+ extension to several variables + losure properties



The question

Let S ⊂ {−1,0,1}2 \ {(0,0)} be a set of �small� steps in the plane.

Consider walks with steps in S, that start from (0,0) and are on�ned to thepositive quadrant {(i, j) : i ≥ 0, j ≥ 0}. Let q(i, j;n) be the number of suhwalks that have length n and end at position (i, j). Let

Q(x, y; t) =
∑

i,j,n≥0

q(i, j;n)xiyjtn.Can we determine Q(x, y; t)? Q(0,0; t)? Q(1,1; t)?What is the nature of these series?
⇒ After all... there are only 28 suh problems!



Some of these problems are trivial

If S ontains no step with both oordinates non-negative,

then

Q(x, y; t) = 1.



Some of these problems are very easy and rational

If S ontains only steps with both oordinates non-negative,

then

Q(x, y; t) =
1

1−
∑

(i,j)∈S xiyjt



Some of these problems are routine, and algebrai

If the quarter plane ondition for S an be desribed as a half-plane ondition,the walks have a simple ontext-free deomposition, and an algebrai generatingfuntion.This happens when...



Some of these problems are routine, and algebrai

If the quarter plane ondition for S an be desribed as a half-plane ondition,the walks have a simple ontext-free deomposition, and an algebrai generatingfuntion.This happens when:
• S ontains no x-negative step (generalized Dyk paths)

Example: for the above set,
Q(x,0) = 1 + txQ(x,0) + t2(x + 1)2Q(x,0)2,

Q(x, y) =
Q(x,0)

1− ty(x + 1)Q(x,0)



Some of these problems are routine, and algebrai

If the quarter plane ondition for S an be desribed as a half-plane ondition,the walks have a simple ontext-free deomposition, and an algebrai generatingfuntion.This happens when:
• S ontains only sub-diagonal steps: then any walk lying in the upper half-plane automatially lies in the right half-plane (≃ Dyk paths)

Example: for the above set,

Q(x,0) = 1 + txQ(x,0) + t2x(1 + x + x̄)Q(x,0)2,

Q(x, y) =
Q(x,0)

1− txyQ(x,0)
with x̄ = 1/x.



Finally, some problems are equivalent by symmetry

(Symmetry aross the �rst diagonal)



Good news

⇒ There are only 79 distint problems to solve



I. A step-by-step deomposition



A funtional equation

Example: S = {N, W, SE}

Q(x, y; t) ≡ Q(x, y) = 1 + t(y + x̄ + xȳ)Q(x, y)− tx̄Q(0, y)− txȳQ(x,0),



A funtional equation

Example: S = {N, W, SE}

Q(x, y; t) ≡ Q(x, y) = 1 + t(y + x̄ + xȳ)Q(x, y)− tx̄Q(0, y)− txȳQ(x,0),or

(

1− t(y + x̄ + xȳ)
)

Q(x, y) = 1− tx̄Q(0, y)− txȳQ(x,0),



A funtional equation

Example: S = {N, W, SE}

Q(x, y; t) ≡ Q(x, y) = 1 + t(y + x̄ + xȳ)Q(x, y)− tx̄Q(0, y)− txȳQ(x,0),or

(

1− t(y + x̄ + xȳ)
)

Q(x, y) = 1− tx̄Q(0, y)− txȳQ(x,0),or

(

(1− t(y + x̄ + xȳ)
)

xyQ(x, y) = xy − tyQ(0, y)− txQ(x,0).



A funtional equation

Example: S = {N, W, SE}

Q(x, y; t) ≡ Q(x, y) = 1 + t(y + x̄ + xȳ)Q(x, y)− tx̄Q(0, y)− txȳQ(x,0),or

(

1− t(y + x̄ + xȳ)
)

Q(x, y) = 1− tx̄Q(0, y)− txȳQ(x,0),or

(

(1− t(y + x̄ + xȳ)
)

xyQ(x, y) = xy − tyQ(0, y)− txQ(x,0).

The polynomial 1− t(y + x̄ + xȳ) is the kernel of this equationThe equation is linear, with two atalyti variables x and y



A funtional equation

General ase:
K(x, y)xyQ(x, y) = xy − txA−1(x)Q(x,0)− tyB−1(y)Q(0, y) + tǫQ(0,0)where

K(x, y) = 1− t
∑

(i,j)∈S

xiyj

is the kernel of the equation,
A−1(x) =

∑

(i,−1)∈S

xi, B−1(y) =
∑

(−1,j)∈S

yj

and ǫ is 1 if (−1,−1) ∈ S and 0 otherwise.



II. The group of the walk

[Fayolle et al. 99℄



What is this group?The kernel reads
K(x, y) = 1− tS(x, y)where

S(x, y) =
∑

(i,j)∈S

xiyj =
1
∑

i=−1

xiBi(y) =
1
∑

j=−1

yjAj(x)

Observation: S(x, y) (and thus K(x, y)) is left unhanged by the rational trans-formations

Φ : (x, y) 7→

(

x̄
B−1(y)

B1(y)
, y

) and Ψ : (x, y) 7→

(

x, ȳ
A−1(x)

A1(x)

)

.

Lemma

• Φ and Ψ are involutions

• They generate a (dihedral) group denoted G ≡ G(S)



Two examples

• If S = {N, W, SE}, then Φ : (x, y) 7→ (x̄y, y) and Ψ : (x, y) 7→ (x, xȳ) generate agroup of order 6:
(x̄y, y)

(x, xȳ)

(x̄y, x̄)

(ȳ, xȳ)

Ψ

ΦΨ

Φ

(x, y)

Ψ

Φ

(ȳ, x̄)



Two examples

• If S = {N, W, SE}, then Φ : (x, y) 7→ (x̄y, y) and Ψ : (x, y) 7→ (x, xȳ) generate agroup of order 6:
(x̄y, y)

(x, xȳ)

(x̄y, x̄)

(ȳ, xȳ)

Ψ

ΦΨ

Φ

(x, y)

Ψ

Φ

(ȳ, x̄)

• If S = {S, W, SW, NE}:
Φ : (x, y) 7→ (x̄ȳ(1 + ȳ), y) and Ψ : (x, y) 7→ (x, x̄ȳ(1 + x̄))seem to generate an in�nite group

Ψ

Φ

(x, y)

· · ·

· · ·(x, x̄ȳ(1 + x̄))

(x̄ȳ(1 + ȳ), y)
Ψ

Φ

· · ·

· · ·

· · ·

· · ·

Φ

Ψ

Ψ

Φ



Classi�ation

Proposition. Among the 79 quarter plane models, exatly 23 have a �nitegroup:� 16 have a vertial symmetry and a group of order 4,� 5 have a group of order 6,� 2 have a group of order 8.



Classi�ation

Proposition. Among the 79 quarter plane models, exatly 23 have a �nitegroup.
Theorem. For all models with a �nite group, Q(x, y; t) is D-�nite.



Classi�ation

Proposition. Among the 79 quarter plane models, exatly 23 have a �nitegroup.
Theorem. For all models with a �nite group, Q(x, y; t) is D-�nite.([mbm-Mishna℄ for 22 models, [Bostan-Kauers 09℄ for the 23rd)



Classi�ation

Proposition. Among the 79 quarter plane models, exatly 23 have a �nitegroup.
Theorem. For all models with a �nite group, Q(x, y; t) is D-�nite.([mbm-Mishna℄ for 22 models,[Bostan-Kauers 09℄ for the 23rd)

Conjeture. For all models with an in�nite group, Q(x, y; t) is non-D-�nite(proved in two ases [Mishna-Rehnitzer 07℄).



III. Models with a �nite group:The orbit sum



Example: S = {N, W, SE}

• The equation reads
K(x, y) xyQ(x, y) = xy− txQ(x,0)− tyQ(0, y) with K(x, y) = 1− t(y+ x̄+xȳ).

• The orbit of (x, y) under G = G(S) is
(x, y)

Φ
←→(x̄y, y)

Ψ
←→(x̄y, x̄)

Φ
←→(ȳ, x̄)

Ψ
←→(ȳ, xȳ)

Φ
←→(x, xȳ)

Ψ
←→(x, y).

• All transformations of G leave K(x, y) invariant. Hene

K(x, y) xyQ(x, y) = xy − txQ(x,0) − tyQ(0, y)

K(x, y) x̄y2Q(x̄y, y) = x̄y2 − tx̄yQ(x̄y,0) − tyQ(0, y)



Example: S = {N, W, SE}

• The equation reads
K(x, y) xyQ(x, y) = xy− txQ(x,0)− tyQ(0, y) with K(x, y) = 1− t(y+ x̄+xȳ).

• The orbit of (x, y) under G = G(S) is
(x, y)

Φ
←→(x̄y, y)

Ψ
←→(x̄y, x̄)

Φ
←→(ȳ, x̄)

Ψ
←→(ȳ, xȳ)

Φ
←→(x, xȳ)

Ψ
←→(x, y).

• All transformations of G leave K(x, y) invariant. Hene

K(x, y) xyQ(x, y) = xy − txQ(x,0) − tyQ(0, y)

K(x, y) x̄y2Q(x̄y, y) = x̄y2 − tx̄yQ(x̄y,0) − tyQ(0, y)

K(x, y) x̄2yQ(x̄y, x̄) = x̄2y − tx̄yQ(x̄y,0) − tx̄Q(0, x̄)
· · · = · · ·

K(x, y) x2ȳQ(x, xȳ) = x2ȳ − txQ(x,0) − txȳQ(0, xȳ).



Example: S = {N, W, SE}

• All transformations of G leave K(x, y) invariant. Hene

K(x, y) xyQ(x, y) = xy − txQ(x,0) − tyQ(0, y)

K(x, y) x̄y2Q(x̄y, y) = x̄y2 − tx̄yQ(x̄y,0) − tyQ(0, y)

K(x, y) x̄2yQ(x̄y, x̄) = x̄2y − tx̄yQ(x̄y,0) − tx̄Q(0, x̄)
· · · = · · ·

K(x, y) x2ȳQ(x, xȳ) = x2ȳ − txQ(x,0) − txȳQ(0, xȳ).

⇒ Form the alternating sum of the equation over all elements of the orbit:

K(x, y)

(

xyQ(x, y)− x̄y2Q(x̄y, y) + x̄2yQ(x̄y, x̄)

− x̄ȳQ(ȳ, x̄) + xȳ2Q(ȳ, xȳ)− x2ȳQ(x, xȳ)

)

=

xy − x̄y2 + x̄2y − x̄ȳ + xȳ2 − x2ȳ.



Sneak preview: Why is this interesting?

xyQ(x, y)− x̄y2Q(x̄y, y) + x̄2yQ(x̄y, x̄)

− x̄ȳQ(ȳ, x̄) + xȳ2Q(ȳ, xȳ)− x2ȳQ(x, xȳ) =

xy − x̄y2 + x̄2y − x̄ȳ + xȳ2 − x2ȳ

1− t(y + x̄ + xȳ)

• Both sides are power series in t, with oe�ients in Q[x, x̄, y, ȳ].

• Extrat the part with positive powers of x and y:
xyQ(x, y) = [x>0y>0]

xy − x̄y2 + x̄2y − x̄ȳ + xȳ2 − x2ȳ

1− t(y + x̄ + xȳ)is a D-�nite series.[Lipshitz 88℄



The orbit sum in generalFor the 23 models with a �nite group,

∑

g∈G(S)

sign(g)g(xyQ(x, y; t)) =
1

K(x, y; t)

∑

g∈G(S)

sign(g)g(xy),where

g(A(x, y)) := A(g(x, y))

• The right-hand side is a rational series.



IV. Solutions via orbit-sums(and half-orbit sums)



1. When the orbit sum is non-zero

Theorem. Among the 23 models with a �nite group, the orbit sum is non-zeroin exatly 19 ases:
∑

g∈G(S)

sign(g)g(xyQ(x, y; t)) =
1

K(x, y; t)

∑

g∈G(S)

sign(g(S))g(xy).

In those 19 ases, extrating the positive part in x and y gives

xyQ(x, y; t) = [x>0y>0]
1

K(x, y; t)

∑

g∈G(S)

sign(g)g(xy),a D-�nite series.Remark. In many ases, one an perform an expliit oe�ient extration andobtain losed form expressions.



2. When the orbit sum is zeroIn 4 ases, the orbit sum vanishes:

∑

g∈G(S)

sign(g)g(xyQ(x, y; t)) =
1

K(x, y; t)

∑

g∈G(S)

sign(g(S))g(xy) = 0.This happens:
• for Gessel's walks, S = {E, W, NE, SW}

• for the Kreweras trilogy, S = {W, S, NE}, {E, N, SW}, {W, S, E, N, NE, SW}.

In the latter ase, the orbit sum reads
xyQ(x, y)− x̄Q(x̄ȳ, y) + ȳQ(x̄ȳ, x) = xyQ(y, x)− x̄Q(y, x̄ȳ) + ȳQ(x, x̄ȳ),whih is trivial beause Q(x, y) = Q(y, x).



2. When the orbit sum is zeroIn 4 ases, the orbit sum vanishes:

∑

g∈G(S)

sign(g)g(xyQ(x, y; t)) =
1

K(x, y; t)

∑

g∈G(S)

sign(g(S))g(xy) = 0.This happens:
• for Gessel's walks, S = {E, W, NE, SW}

• for the Kreweras trilogy, S = {W, S, NE}, {E, N, SW}, {W, S, E, N, NE, SW}.In all 4 ases, Q(x, y; t) is algebrai.([mbm-Mishna℄ for the Kreweras trilogy,[Bostan-Kauers 09℄ for Gessel's model)



The Kreweras trilogy: solution

• Again a oe�ient extration

• Form the half-orbit sum:
xyQ(x, y)− x̄Q(x̄ȳ, y) + ȳQ(x̄ȳ, x) =

xy − x̄ + ȳ − 2txA−1(x)Q(x,0) + tǫQ(0,0)

K(x, y)with

K(x, y) = 1− t
∑

(i,j)∈S

xiyj, Aj(x) =
∑

(i,j)∈S

xi

and ǫ is 1 if (−1,−1) ∈ S and 0 otherwise.



The Kreweras trilogy: solution

• Again a oe�ient extration

• Form the half-orbit sum:
xyQ(x, y)− x̄Q(x̄ȳ, y) + ȳQ(x̄ȳ, x) =

xy − x̄ + ȳ − 2txA−1(x)Q(x,0) + tǫQ(0,0)

K(x, y)

• 1/K(x, y) is a rational funtion in t, x and y. Extrat the oe�ient of y0:

−x̄Qd(x̄) = −
x

tA1(x)
+

1
√

∆(x)

(

x(1− tA0(x))

tA1(x)
− x̄− 2txA−1(x)Q(x,0) + tǫQ(0,0)

)

where

∆(x) = (1− tA0(x))
2 − 4t2A−1(x)A1(x),

Qd(x) ≡ Qd(x; t) =
∑

n,i≥0

tnxiq(i, i;n).



• Write ∆(x) as
∆(x) = ∆0

δ
∏

i=1

(1− x̄Xi)
δ+d
∏

i=δ+1

(1− x/Xi) = ∆0∆+(x)∆−(x̄),where X1, . . . , Xδ (resp. Xδ+1, . . . , Xδ+d) are the roots of ∆(x) that are �nite(resp. in�nite) at t = 0.
• The equation now reads
√

∆−(x̄)

(

x

t
− x̄A1(x)Qd(x̄)

)

=

1
√

∆0∆+(x)

(

x(1− tA0(x))

t
− x̄A1(x)− 2txA−1(x)A1(x)Q(x,0) + tǫA1(x)Q(0,0)

)

.

• Eah term in this equation is a Laurent series in t with oe�ients in Q[x, x̄].Moreover,1. few positive powers of x our in the left-hand side,2. few negative powers in x our in the right-hand side.
⇒ Extrat the positive and negative parts in x to obtain algebrai expressionsfor the series Qd(x) and Q(x,0).



Kreweras' model: S = {W, S, NE}Let W ≡W (t) be the power series in t de�ned by W = t(2 + W3). Then

Q(x,0; t) =
1

tx

(

1

2t
−

1

x
−

(

1

W
−

1

x

)√

1− xW2
)

.Consequently,
q(i,0; 3m + 2i) =

4m(2i + 1)

(m + i + 1)(2m + 2i + 1)

(2i

i

)(3m + 2i

m

)

.The generating funtion of walks ending on the diagonal is

Qd(x; t) =
W − x̄

t
√

1− xW (1 + W3/4) + x2W2/4
+ x̄/t.

Remark. Q(0, y; t) = Q(y,0; t) and Q(x, y; t) an be reovered in terms of

Q(x,0; t) and Q(0, y; t) via the funtional equation.



Reversing Kreweras' steps: S = {E, N, SW}Let W ≡W (t) be the power series in t de�ned by W = t(2 + W3). Then

Q(x,0; t) =
W
(

4−W3
)

16t

−
t− x2 + tx3

2xt2
−

(

2x2 − xW2 −W
)

√

1− xW (W3 + 4)/4 + x2W2/4

2txWThe generating funtion of walks ending on the diagonal is

Qd(x; t) =
xW (x + W )− 2

2tx2
√

1− xW2
+

1

tx2Consequently,

q(i, i; 3m + 2i) =
4m(i + 1)2

(m + i + 1)(2m + 2i + 1)

(2i + 1

i

)(3m + 2i

m

)



Kreweras' steps and their reverse: S = {W, S, E, N, NE, SW}Let Z ≡ Z(t) be de�ned by Z(0) = 0 and

Z = t
1− 2Z + 6Z2 − 2Z3 + Z4

(1− Z)2
,and denote

∆+(x) = 1− 2Z
1 + Z2

(1− Z)2
x + Z2x2.Then

Q(x,0; t) =

(

Z(1− Z) + 2xZ − (1− Z)x2
)√

∆+(x)

2txZ(1− Z)(1 + x)2

−
Z(1− Z)2 + Z

(

Z3 + 4Z2 − 5Z + 2
)

x−
(

1− 2Z + 7Z2 − 4Z3
)

x2 + x3Z(1− Z)2

2txZ(1− Z)2(1 + x)2The generating funtion of walks ending on the diagonal is
Qd(x; t) =

1− Z − 2xZ + x2Z(Z − 1)

tx(1 + x)(Z − 1)
√

∆+(x)
+

1

tx(1 + x)



Kreweras' steps and their reverse: S = {W, S, E, N, NE, SW}Speial ases

Let Z ≡ Z(t) be de�ned by Z(0) = 0 and

Z = t
1− 2Z + 6Z2 − 2Z3 + Z4

(1− Z)2
,

• For walks ending at the origin:
Q(0,0) =

Z(1− 2Z − Z2)

t(1− Z)2

• All walks, ounted by the length: Q ≡ Q(1,1) has degree 4:

Q (1 + tQ)
(

1 + 2t Q + 2 t2Q2
)

=
1

1− 6t



V. Questions



Solve Gessel's model!

• The funtional equation:
(1− t(x + x̄ + xy + x̄ȳ))xyQ(x, y) = 1− tQ(x,0)− t(1 + y)Q(0, y) + tQ(0,0)

• The group G(S) has order 8. The orbit of (x, y) reads:

(x, y)
Φ
←→(x̄ȳ, y)

Ψ
←→(x̄ȳ, x2y)

Φ
←→(x̄, x2y)

Ψ
←→(x̄, ȳ)

Φ
←→(xy, ȳ)

Ψ
←→(xy, x̄2ȳ)

Φ
←→(x, x̄2ȳ)

Ψ
←→(x, y)

• The orbit sum vanishes:
xyQ(x, y)− x̄Q(x̄ȳ, y) + xQ(x̄ȳ, x2y)− xyQ(x̄, x2y)

+ x̄ȳQ(x̄, ȳ)− xQ(xy, ȳ) + x̄Q(xy, x̄2ȳ)− x̄ȳQ(x, x̄2ȳ) = 0

• Work with the half-orbit sum?



Explain losed form expressions

• Simple losed form expressions for Kreweras, reverse Kreweras

qκ(i,0; 3m + 2i) =
4m(2i + 1)

(m + i + 1)(2m + 2i + 1)

(2i

i

)(3m + 2i

m

)

,

qκ̄(i, i; 3m + 2i) =
4m(i + 1)2

(m + i + 1)(2m + 2i + 1)

(2i + 1

i

)(3m + 2i

m

)

.

[Bernardi 07℄: onnetion between qκ(0,0; 3m) and planar triangulations.



Explain losed form expressions

• Motzkin numbers for S1 = {E, S, NW} and S2 = {E, W, S, N, NW, SE}

q1(−,−;n) = Mn, q2(−,−;n) = 2nMn.

[Françon-Viennot 79℄: bijetion between q1(−,−;n) and Motzkin paths (viainvolutions)



Explain losed form expressions

• Many simple expressions for S = {E, W, NW, SE}. For instane,

q(−,0; 2m) = q(0,− ; 2m) =
(2m)!(2m + 2)!

m!(m + 1)!2(m + 2)!
.

[Gouyou-Beauhamps 86℄: ombinatorial derivation of q(−,0; 2m)



Explain algebraiity

• For the Kreweras' trilogy

[Bernardi 07℄ ≃ algebraiity for planar maps
• For Gessel's walks...



Prove non-D-�niteness

Conjeture. For all models with a �nite group, Q(x, y; t) is non-D-�nite.Proved in two ases [Mishna-Rehnitzer 07℄: solution as an expliit in�nitesum, and proof that the series has in�nitely many singularities.

Also [mbm-Petkov²ek 03℄ for knight walks (S = {(−1,2), (2,−1)})



Construt di�erential equations

For the 19 models with a �nite group and a non-zero orbit sum:

xyQ(x, y; t) = [x>0y>0]
1

K(x, y; t)

∑

g∈G

sign(g)g(xy),a D-�nite series.
⇒ Work out (automatially?) a di�erential equation for Q(0,0; t) and/or

Q(1,1; t)f. [Bostan-Kauers 08℄



Variations and extensions

• More parameters (e.g., ontats with the axes)

• Markov hains in the quarter plane [Fayolle et al. 99℄: design new modelswith and algebrai stationary distribution?
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• Higher dimension (f. [Bostan-Kauers 08℄)


