Self-avoiding walks

interacting with a surface

on the honeycomb lattice

Mireille Bousquet-Mélou, CNRS, LaBRI, Bordeaux, France joint work with
Nick Beaton, Hugo Duminil-Copin, Jan de Gier and

Tony Guttmann

ArXiv 1109.0358 (v3 in June 2012)

A. Introduction

Self-avoiding walks (SAW)

What is c_{n}, the number of n-step SAWs?

Hard! c_{n} is known up to $n=105$ [Jensen 06]

The growth constant

Clearly,

$$
c_{m+n} \leq c_{m} c_{n}
$$

$\Rightarrow \lim _{n} c_{n}^{1 / n}$ exists and

$$
\mu:=\lim _{n} c_{n}^{1 / n}=\inf _{n} c_{n}^{1 / n}
$$

Conjecture [Nienhuis 82]: the growth constant is

$$
\mu=\sqrt{2+\sqrt{2}}
$$

The growth constant

Clearly,

$$
c_{m+n} \leq c_{m} c_{n}
$$

$\Rightarrow \lim _{n} c_{n}^{1 / n}$ exists and

$$
\mu:=\lim _{n} c_{n}^{1 / n}=\inf _{n} c_{n}^{1 / n}
$$

Theorem [Duminil-Copin \& Smirnov 10]: the growth constant is

$$
\mu=\sqrt{2+\sqrt{2}}
$$

Growth constants and generating functions

- Let $C(x)$ be the length generating function of SAWs:

$$
C(x)=\sum_{n \geq 0} c_{n} x^{n}
$$

- The radius of convergence of $C(x)$ is

$$
\rho=1 / \mu
$$

where

$$
\mu=\lim _{n} c_{n}^{1 / n}
$$

is the growth constant.

Walks in a half-plane interacting with a "surface"

- Enumeration by contacts of n-step walks:

$$
\bar{c}_{n}(y)=\sum_{\omega} y^{\operatorname{contacts}(\omega)}
$$

In statistical physics, the parameter y is called "fugacity"

Walks in a half-plane interacting with a "surface"

- Enumeration by contacts of n-step walks:

$$
\bar{c}_{n}(y)=\sum_{\omega} y^{\operatorname{contacts}(\omega)}
$$

- Generating function

$$
\bar{C}(x, y)=\sum_{n \geq 0} \bar{c}_{n}(y) x^{n}
$$

In statistical physics, the parameter y is called "fugacity"

Walks in a half-plane interacting with a "surface"

- Enumeration by contacts of n-step walks:

$$
\bar{c}_{n}(y)=\sum_{\omega} y^{\operatorname{contacts}(\omega)}
$$

- Generating function

$$
\bar{C}(x, y)=\sum_{n \geq 0} \bar{c}_{n}(y) x^{n}
$$

- Radius and growth constant ($y>0$ fixed):

$$
\rho(y)=\frac{1}{\mu(y)}=\lim _{n} \bar{c}_{n}(y)^{-1 / n}
$$

[Hammersley, Torrie and Whittington 82]

In statistical physics, the parameter y is called "fugacity"

The critical fugacity

- Radius and growth constant: for $y>0$,

$$
\rho(y)=\frac{1}{\mu(y)}=\lim _{n} \bar{c}_{n}(y)^{-1 / n}
$$

Proposition: $\rho(y)$ is a continuous, weakly decreasing function of $y \in(0, \infty)$. There exists $y_{c}>1$ such that

$$
\rho(y) \begin{cases}=1 / \mu & \text { if } y \leq y_{c} \\ <1 / \mu & \text { if } y>y_{c}\end{cases}
$$

where μ is the growth constant of (unrestricted) SAWs. [Whittington 75, Hammersley, Torrie and Whittington 82]

The critical fugacity: probabilistic meaning

Take half-space SAWs of length n under the Boltzmann distribution

$$
\mathbb{P}_{n}(\omega)=\frac{y^{\operatorname{contacts}(\omega)}}{\bar{c}_{n}(y)}
$$

Then for $y<y_{c}$, the walk escapes from the surface. For $y>y_{c}$, a positive fraction of its vertices lie on the surface.

(C) A. Rechnitzer

The critical fugacity: probabilistic meaning

Take half-space SAWs of length n under the Boltzmann distribution

$$
\mathbb{P}_{n}(\omega)=\frac{y^{\operatorname{contacts}(\omega)}}{c_{n}(y)}
$$

Then for $y<y_{c}$, the walk escapes from the surface. For $y>y_{c}$, a positive fraction of its vertices lie on the surface.

(C) A. Rechnitzer

Theorem [B-BM-dG-DC-G 12]: this phase transition occurs at

$$
y_{c}=1+\sqrt{2}
$$

(conjectured by Batchelor and Yung in 1995)
B. Three ingredients

1. Duminil-Copin and Smirnov's "global" identity

Consider the following finite domain $D_{h, \ell}$.

$A_{h, \ell}$ arches
$B_{h, \ell}$ bridges
$E_{h, \ell} \ldots$

Let $A_{h, \ell}(x)$ (resp. $\left.B_{h, \ell}(x), E_{h, \ell}(x)\right)$ be the length generating function of SAWs that start from the origin and end on the bottom (resp. top, right/left) border of the domain $D_{h, \ell}$. These series are polynomials in x.

1. Duminil-Copin and Smirnov's "global" identity

For $x=x^{*}=1 / \sqrt{2+\sqrt{2}}$ (that is, $x=1 / \mu$),

$$
\alpha A_{h, \ell}\left(x^{*}\right)+B_{h, \ell}\left(x^{*}\right)+\varepsilon E_{h, \ell}\left(x^{*}\right)=1
$$

with $\alpha=\frac{\sqrt{2-\sqrt{2}}}{2}$ and $\varepsilon=\frac{1}{\sqrt{2}}$.

$A_{h, \ell}$ arches
$B_{h, \ell}$ bridges
$E_{h, \ell} \ldots$

1. Duminil-Copin and Smirnov's "global" identity: refinement with upper contacts

For $x=x^{*}=1 / \sqrt{2+\sqrt{2}}$ (that is, $x=1 / \mu$), and for any y,

$$
\alpha A_{h, \ell}\left(x^{*}, y\right)+\frac{y^{*}-y}{y\left(y^{*}-1\right)} B_{h, \ell}\left(x^{*}, y\right)+\varepsilon E_{h, \ell}\left(x^{*}, y\right)=1
$$

with $\alpha=\frac{\sqrt{2-\sqrt{2}}}{2}, \varepsilon=\frac{1}{\sqrt{2}}$ and $y^{*}=1+\sqrt{2}$.

$A_{h, \ell}$ arches
$B_{h, \ell}$ bridges
$E_{h, \ell} \ldots$

2. An alternative description of the critical fugacity

Proposition: The radius $\rho(y)$ of $\bar{C}(x, y)$ is a continuous, weakly decreasing function of $y \in(0, \infty)$. There exists $y_{c}>1$ such that

$$
\rho(y) \begin{cases}=1 / \mu & \text { if } y \leq y_{c} \\ <1 / \mu & \text { if } y>y_{c}\end{cases}
$$

where μ is the growth constant of (unrestricted) SAWs.

Our identity

For $x=x^{*}=1 / \sqrt{2+\sqrt{2}}$ (that is, $x=1 / \mu$), and for any y,

$$
\alpha A_{h, \ell}\left(x^{*}, y\right)+\frac{y^{*}-y}{y\left(y^{*}-1\right)} B_{h, \ell}\left(x^{*}, y\right)+\varepsilon E_{h, \ell}\left(x^{*}, y\right)=1
$$

with $\alpha=\frac{\sqrt{2-\sqrt{2}}}{2}, \varepsilon=\frac{1}{\sqrt{2}}$ and $y^{*}=1+\sqrt{2}$.

- Walks in a bounded domain
- Contacts on the "wrong" side
- Only valid at $x=x^{*}=1 / \mu$

2. An alternative description of the critical fugacity

Proposition: Let $A_{h}(x, y)$ be the generating function of arches in a strip of height h, counted by length and upper contacts. Let y_{h} be the radius of convergence of $A_{h}\left(x^{*}, y\right)$, where $x^{*}=1 / \mu(*)$.
Then, as $h \rightarrow \infty$,

A_{h}
(*) For all k, the coefficient of y^{k} in $A_{h}(x, y)$ is finite at $x^{*}=1 / \mu$

2. An alternative description of the critical fugacity

Proposition: Let $A_{h}(x, y)$ be the generating function of arches in a strip of height h, counted by length and upper contacts. Let y_{h} be the radius of convergence of $A_{h}\left(x^{*}, y\right)$, where $x^{*}=1 / \mu(*)$.
Then, as $h \rightarrow \infty$,

$$
y_{h} \searrow y_{c} .
$$

The same holds for the generating function $B_{h}(x, y)$ of bridges, and for the generating function $C_{h}(x, y)$ of all SAWs in the h-strip, with the same value of y_{h}.
(*) For all k, the coefficient of y^{k} in $A_{h}(x, y)$ is finite at $x^{*}=1 / \mu$

The complete picture

For $y>0$ fixed, let $\rho_{h}(y)$ be the radius of $A_{h}(x, y)$ (or $B_{h}(x, y)$, or $C_{h}(x, y)$). Then $\rho_{h}(y)$ decreases to $\rho(y)$ as $h \rightarrow \infty$.

3. Bridges of height h

Proposition: The length generating function $B_{h}(x, 1)$ of bridges of height h, taken at $x^{*}=1 / \mu$, satisfies

$$
B_{h}\left(x^{*}, 1\right) \rightarrow 0 \quad \text { as } h \rightarrow \infty .
$$

Remark: the global identity implies that $B_{h}\left(x^{*}, 1\right)$ converges.

Conjecture (from SLE):

$$
B_{h}\left(x^{*}, 1\right) \simeq h^{-1 / 4}
$$

Inspired by [Duminil-Copin \& Hammond], "The self-avoiding walk is sub-ballistic", ArXiv 2012
C. Putting everything together

1. A lower bound on y_{c}

- For $x=x^{*}=1 / \sqrt{2+\sqrt{2}}$ (that is, $x=1 / \mu$), and for any y,

$$
\alpha A_{h, \ell}\left(x^{*}, y\right)+\frac{y^{*}-y}{y\left(y^{*}-1\right)} B_{h, \ell}\left(x^{*}, y\right)+\varepsilon E_{h, \ell}\left(x^{*}, y\right)=1
$$

with $\alpha=\frac{\sqrt{2-\sqrt{2}}}{2}, \varepsilon=\frac{1}{\sqrt{2}}$ and $y^{*}=1+\sqrt{2}$.

- Let $y=y^{*}$. Then $A_{h, \ell}\left(x^{*}, y^{*}\right)$ increases with ℓ but remains bounded: its limit is $A_{h}\left(x^{*}, y^{*}\right)$ (arches in an h-strip), and is finite.

Thus

$$
y^{*} \leq y_{h}
$$

and by taking the limit on h,

$$
y^{*} \leq y_{c}
$$

2. A limit identity

We have
$\alpha A_{h, \ell}\left(x^{*}, y\right)+\frac{y^{*}-y}{y\left(y^{*}-1\right)} B_{h, \ell}\left(x^{*}, y\right)+\varepsilon E_{h, \ell}\left(x^{*}, y\right)=1$.
with $\alpha=\frac{\sqrt{2-\sqrt{2}}}{2}, \varepsilon=\frac{1}{\sqrt{2}}$ and $y^{*}=1+\sqrt{2}$.

Let $\ell \rightarrow \infty$. For $y<y_{h}$,

$$
\alpha A_{h}\left(x^{*}, y\right)+\frac{y^{*}-y}{y\left(y^{*}-1\right)} B_{h}\left(x^{*}, y\right)=1
$$

2. A limit identity

We have
$\alpha A_{h, \ell}\left(x^{*}, y\right)+\frac{y^{*}-y}{y\left(y^{*}-1\right)} B_{h, \ell}\left(x^{*}, y\right)+\varepsilon E_{h, \ell}\left(x^{*}, y\right)=1$
with $\alpha=\frac{\sqrt{2-\sqrt{2}}}{2}, \varepsilon=\frac{1}{\sqrt{2}}$ and $y^{*}=1+\sqrt{2}$.

Let $h \rightarrow \infty$. For $y<y_{h}$,

$$
\alpha A_{h}\left(x^{*}, y\right)+\frac{y^{*}-y}{y\left(y^{*}-1\right)} B_{h}\left(x^{*}, y\right)=1
$$

Proof. $A_{h, \ell}\left(x^{*}, y\right)$ and $B_{h, \ell}\left(x^{*}, y\right)$ converge, and $E_{h, \ell}\left(x^{*}, y\right)$ tends to 0 (because it counts walks of length at least ℓ, and $C_{h}\left(x^{*}, y\right)$, the generating function of all SAWs in the h-strip, converges for $y<y_{h}$).

Remark. Implies that $B_{h}\left(x^{*}, 1\right)$ converges as $h \rightarrow \infty$.

3. Upper bound on y_{c}

- Arches that hit the top boundary:

$$
A_{h+1}\left(x^{*}, y\right)-A_{h}\left(x^{*}, 1\right) \leq x^{*} B_{h+1}\left(x^{*}, y\right) B_{h}\left(x^{*}, 1\right)
$$

3. Upper bound on y_{c}

- Arches that hit the top boundary:

$$
A_{h+1}\left(x^{*}, y\right)-A_{h}\left(x^{*}, 1\right) \leq x^{*} B_{h+1}\left(x^{*}, y\right) B_{h}\left(x^{*}, 1\right)
$$

- Combine this with

$$
\alpha A_{h+1}\left(x^{*}, y\right)+\frac{y^{*}-y}{y\left(y^{*}-1\right)} B_{h+1}\left(x^{*}, y\right)=1=\alpha A_{h}\left(x^{*}, 1\right)+B_{h}\left(x^{*}, 1\right)
$$

- This gives, for $0<y<y_{h+1}$ (and in particular for $y=y_{c}$),

$$
\frac{1}{B_{h+1}\left(x^{*}, y\right)} \leq \alpha x^{*}+\frac{1}{B_{h}\left(x^{*}, 1\right)} \frac{y^{*}-y}{y\left(y^{*}-1\right)}
$$

3. Upper bound on y_{c} (end)

We have

$$
\frac{1}{B_{h+1}\left(x^{*}, y_{c}\right)} \leq \alpha x^{*}+\frac{1}{B_{h}\left(x^{*}, 1\right)} \frac{y^{*}-y_{c}}{y_{c}\left(y^{*}-1\right)} .
$$

In particular,

$$
0 \leq \alpha x^{*}+\frac{1}{B_{h}\left(x^{*}, 1\right)} \frac{y^{*}-y_{c}}{y_{c}\left(y^{*}-1\right)}
$$

Given that $\lim _{h} B_{h}\left(x^{*}, 1\right)=0$, this implies that

$$
y_{c} \leq y^{*}
$$

Concluding remarks

- A similar result has been proved by Nick Beaton for SAWs confined to the half-plane $\{x \geq 0\}$ (rather than $\{y \geq 0\}$ here):

$$
y_{c}=\sqrt{\frac{2+\sqrt{2}}{1+\sqrt{2}-\sqrt{2+\sqrt{2}}}}
$$

B1. The first ingredient: Duminil-Copin and Smirnov's global identity

Duminil-Copin and Smirnov's global identity

$$
\frac{\sqrt{2-\sqrt{2}}}{2} A_{h, \ell}\left(x^{*}\right)+B_{h, \ell}\left(x^{*}\right)+\frac{1}{\sqrt{2}} E_{h, \ell}\left(x^{*}\right)=1
$$

Where does it come from?

From a local identity that is re-summed over all vertices of the domain.

A local identity

Let $D \equiv D_{h, \ell}$ be our domain, a the origin of the walks, and p a point in the domain. Let

$$
F(p) \equiv F(x, \alpha ; p)=\sum_{\omega: a \rightsquigarrow p} x^{|\omega|} e^{i \alpha W(\omega)}
$$

where $|\omega|$ is the length of ω, and $W(\omega)$ its winding number:

$$
W(\omega)=\frac{\pi}{3}(\text { left turns }- \text { right turns })
$$

$$
W(\omega)=0
$$

$$
W(\omega)=-2 \pi
$$

$$
W(\omega)=-\pi
$$

$W(\omega)=-\pi$

A local identity

Let

$$
F(p) \equiv F(x, \alpha ; p)=\sum_{\omega: a \rightsquigarrow p \text { in } D} x^{|\omega|} e^{i \alpha W(\omega)},
$$

If p, q and r are the 3 mid-edges around a vertex v of the honeycomb lattice, then, for $x=x^{*}$ and $\alpha=-5 / 8$,

$$
(p-v) F(p)+(q-v) F(q)+(r-v) F(r)=0
$$

Rem: $(p-v)$ is here a complex number!

A local identity

Proof: Group walks three by three or two by two as follows

- Walks that visit p, q and r :

- Walks that only visit one or two of p, q and r :

The contribution of all walks in a group is zero.

A local identity

- Walks that visit p, q and r :

$$
e^{4 i \alpha \pi / 3}+j^{2} e^{-4 i \alpha \pi / 3}=2 / j \cos \left(\frac{\pi}{3}+4 \alpha \frac{\pi}{3}\right)=0
$$

- Walks that only visit one or two of p, q and r :

Proof of the global identity

Sum the local identity

$$
(p-v) F(p)+(q-v) F(q)+(r-v) F(r)=0
$$

over all vertices v of the domain $D_{h, \ell}$.

- The inner mid-edges do not contribute.
- The winding number of walks ending on the boundary is known.
- The domain has a right-left symmetry.

Proof of the global identity

Sum the local identity

$$
(p-v) F(p)+(q-v) F(q)+(r-v) F(r)=0
$$

over all vertices v of the domain $D_{h, \ell}$.

- The inner mid-edges do not contribute.
- The winding number of walks ending on the boundary is known.
- The domain has a right-left symmetry.

This gives:

$$
\frac{\sqrt{2-\sqrt{2}}}{2} A_{h, \ell}\left(x^{*}\right)+B_{h, \ell}\left(x^{*}\right)+\frac{1}{\sqrt{2}} E_{h, \ell}\left(x^{*}\right)=1
$$

B3. The third ingredient: Bridges of height h

Bridges of height h

Proposition: The length generating function $B_{h}(x, 1)$ of bridges of height h, taken at $x^{*}=1 / \mu$, satisfies

$$
B_{h}\left(x^{*}, 1\right) \rightarrow 0 \quad \text { as } h \rightarrow \infty .
$$

Remark: the global identity implies that $B_{h}\left(x^{*}, 1\right)$ converges.

Conjecture (from SLE):

$$
B_{h}\left(x^{*}, 1\right) \simeq h^{-1 / 4}
$$

Inspired by [Duminil-Copin \& Hammond], "The self-avoiding walk is sub-ballistic", ArXiv 2012

Some tools and steps in the proof

- Irreducible bridges

Reducible

Irreducible

Some tools and steps in the proof

- Irreducible bridges

Reducible

Irreducible

Proposition [Kesten 63]:

$$
\sum_{\omega \in \mathrm{iB}} x_{c}{ }^{|\omega|}=1
$$

(Related to $B(x)=1 /(1-I B(x)))$
One can thus define random irreducible bridges by $\mathbb{P}_{\mathrm{i} \mathrm{B}}(\omega)=x_{c}{ }^{|\omega|}$.

- Lemma: (renewal theory) As $h \rightarrow \infty$,

$$
B_{h}\left(x_{c}, 1\right) \rightarrow \frac{1}{\mathbb{E}_{\mathrm{iB}}(\mathrm{H}(\omega))}
$$

where $H(\omega)$ is the height of ω.

- Lemma: (renewal theory) As $h \rightarrow \infty$,

$$
B_{h}\left(x_{c}, 1\right) \rightarrow \frac{1}{\mathbb{E}_{\mathrm{iB}}(\mathrm{H}(\omega))}
$$

where $H(\omega)$ is the height of ω.

$$
\Rightarrow \text { Prove that } E_{\mathrm{iB}}(\mathrm{H}(\omega))=\infty!
$$

We assume this is not the case.

- Lemma: (renewal theory) As $h \rightarrow \infty$,

$$
B_{h}\left(x_{c}, 1\right) \rightarrow \frac{1}{\mathbb{E}_{\mathrm{iB}}(\mathrm{H}(\omega))}
$$

where $H(\omega)$ is the height of ω.

$$
\Rightarrow \text { Prove that } E_{\mathrm{iB}}(\mathrm{H}(\omega))=\infty!
$$

We assume this is not the case.

- Proposition: If $E_{\mathrm{iB}}(\mathrm{H}(\omega))<\infty$, then $E_{\mathrm{iB}}(\mathrm{W}(\omega))<\infty$.

The proof uses a global identity on a rectangle.

- Corollary: If $E_{\mathrm{i} \mathrm{B}}(\mathrm{H}(\omega))<\infty$, a random infinite bridge is tall and skinny.

Proof: law of large numbers

- Proposition: If $E_{\mathrm{iB}}(\mathrm{H}(\omega))<\infty$, a positive fraction of the renewal points of a random infinite bridge are diamond points.

Contradicts the fact that $E_{\mathrm{iB}}(\mathrm{H}(\omega))<\infty$, and thus

$$
B_{h}\left(x_{c}, 1\right) \rightarrow \frac{1}{\mathbb{E}_{\mathrm{iB}}(\mathrm{H}(\omega))}=0
$$

