Self-avoiding walks

interacting with a surface

on the honeycomb lattice

Mireille Bousquet-Mélou, CNRS, LaBRI, Bordeaux, France joint work with Nick Beaton, Hugo Duminil-Copin, Jan de Gier and Tony Guttmann

ArXiv 1109.0358 (v3 in June 2012)

A. Introduction

Self-avoiding walks (SAW)

What is c_n , the number of *n*-step SAWs?

Hard! c_n is known up to n = 105 [Jensen 06]

The growth constant

Clearly,

$$c_{m+n} \le c_m \, c_n$$

 $\Rightarrow \lim_{n} c_n^{1/n} \text{ exists and}$ $\mu := \lim_{n} c_n^{1/n} = \inf_{n} c_n^{1/n}$

Conjecture [Nienhuis 82]: the growth constant is

$$\mu = \sqrt{2 + \sqrt{2}}$$

The growth constant

Clearly,

$$c_{m+n} \le c_m \, c_n$$

 $\Rightarrow \lim_{n} c_n^{1/n} \text{ exists and}$ $\mu := \lim_{n} c_n^{1/n} = \inf_{n} c_n^{1/n}$

Theorem [Duminil-Copin & Smirnov 10]: the growth constant is

$$\mu = \sqrt{2 + \sqrt{2}}$$

Growth constants and generating functions

• Let C(x) be the length generating function of SAWs:

$$C(x) = \sum_{n \ge 0} c_n x^n.$$

• The radius of convergence of C(x) is

$$\rho = 1/\mu,$$

where

$$\mu = \lim_n c_n^{1/n}$$

is the growth constant.

Walks in a half-plane interacting with a "surface"

• Enumeration by contacts of *n*-step walks:

$$\bar{c}_n(y) = \sum_{\omega} y^{\operatorname{contacts}(\omega)}$$

In statistical physics, the parameter y is called "fugacity"

Walks in a half-plane interacting with a "surface"

• Enumeration by contacts of *n*-step walks:

$$\bar{c}_n(y) = \sum_{\omega} y^{\operatorname{contacts}(\omega)}$$

• Generating function

$$\overline{C}(x,y) = \sum_{n\geq 0} \overline{c}_n(y) x^n$$

In statistical physics, the parameter y is called "fugacity"

Walks in a half-plane interacting with a "surface"

• Enumeration by contacts of *n*-step walks:

$$\bar{c}_n(y) = \sum_{\omega} y^{\operatorname{contacts}(\omega)}$$

• Generating function

$$\overline{C}(x,y) = \sum_{n \ge 0} \overline{c}_n(y) x^n$$

• Radius and growth constant (y > 0 fixed):

$$\rho(y) = \frac{1}{\mu(y)} = \lim_{n} \bar{c}_n(y)^{-1/n}$$

[Hammersley, Torrie and Whittington 82]

In statistical physics, the parameter y is called "fugacity"

 y^3

The critical fugacity

• Radius and growth constant: for y > 0,

$$\rho(y) = \frac{1}{\mu(y)} = \lim_{n} \bar{c}_n(y)^{-1/n}$$

Proposition: $\rho(y)$ is a continuous, weakly decreasing function of $y \in (0, \infty)$. There exists $y_c > 1$ such that

$$\rho(y) \begin{cases} = 1/\mu & \text{if } y \leq y_c, \\ < 1/\mu & \text{if } y > y_c, \end{cases}$$

where μ is the growth constant of (unrestricted) SAWs. [Whittington 75, Hammersley, Torrie and Whittington 82]

The critical fugacity: probabilistic meaning

Take half-space SAWs of length n under the Boltzmann distribution

$$\mathbb{P}_n(\omega) = \frac{y^{\text{contacts}(\omega)}}{\bar{c}_n(y)}.$$

Then for $y < y_c$, the walk escapes from the surface. For $y > y_c$, a positive fraction of its vertices lie on the surface.

The critical fugacity: probabilistic meaning

Take half-space SAWs of length n under the Boltzmann distribution

$$\mathbb{P}_n(\omega) = \frac{y^{\text{contacts}(\omega)}}{c_n(y)}.$$

Then for $y < y_c$, the walk escapes from the surface. For $y > y_c$, a positive fraction of its vertices lie on the surface.

Theorem [B-BM-dG-DC-G 12]: this phase transition occurs at

 $y_c = 1 + \sqrt{2}$

(conjectured by Batchelor and Yung in 1995)

B. Three ingredients

1. Duminil-Copin and Smirnov's "global" identity

Consider the following finite domain $D_{h,\ell}$.

Let $A_{h,\ell}(x)$ (resp. $B_{h,\ell}(x)$, $E_{h,\ell}(x)$) be the length generating function of SAWs that start from the origin and end on the bottom (resp. top, right/left) border of the domain $D_{h,\ell}$. These series are polynomials in x.

1. Duminil-Copin and Smirnov's "global" identity

For
$$x = x^* = 1/\sqrt{2 + \sqrt{2}}$$
 (that is, $x = 1/\mu$),
 $\alpha A_{h,\ell}(x^*) + B_{h,\ell}(x^*) + \varepsilon E_{h,\ell}(x^*) = 1$
with $\alpha = \frac{\sqrt{2-\sqrt{2}}}{2}$ and $\varepsilon = \frac{1}{\sqrt{2}}$.

 $A_{h,\ell}$ arches $B_{h,\ell}$ bridges $E_{h,\ell}$...

1. Duminil-Copin and Smirnov's "global" identity: refinement with *upper* contacts

For $x = x^* = 1/\sqrt{2} + \sqrt{2}$ (that is, $x = 1/\mu$), and for any y, $\alpha A_{h,\ell}(x^*, y) + \frac{y^* - y}{y(y^* - 1)} B_{h,\ell}(x^*, y) + \varepsilon E_{h,\ell}(x^*, y) = 1$ with $\alpha = \frac{\sqrt{2-\sqrt{2}}}{2}$, $\varepsilon = \frac{1}{\sqrt{2}}$ and $y^* = 1 + \sqrt{2}$.

 $A_{h,\ell}$ arches $B_{h,\ell}$ bridges $E_{h,\ell}$...

2. An alternative description of the critical fugacity

Proposition: The radius $\rho(y)$ of $\overline{C}(x,y)$ is a continuous, weakly decreasing function of $y \in (0,\infty)$. There exists $y_c > 1$ such that

$$\rho(y) \begin{cases} = 1/\mu & \text{if } y \leq y_c, \\ < 1/\mu & \text{if } y > y_c, \end{cases}$$

where μ is the growth constant of (unrestricted) SAWs.

Our identity

For
$$x = x^* = 1/\sqrt{2 + \sqrt{2}}$$
 (that is, $x = 1/\mu$), and for any y ,

$$\alpha A_{h,\ell}(x^*, y) + \frac{y^* - y}{y(y^* - 1)} B_{h,\ell}(x^*, y) + \varepsilon E_{h,\ell}(x^*, y) = 1$$
with $\alpha = \frac{\sqrt{2-\sqrt{2}}}{2}$, $\varepsilon = \frac{1}{\sqrt{2}}$ and $y^* = 1 + \sqrt{2}$.

- Walks in a bounded domain
- Contacts on the "wrong" side
- Only valid at $x = x^* = 1/\mu$

2. An alternative description of the critical fugacity

Proposition: Let $A_h(x, y)$ be the generating function of arches in a strip of height h, counted by length and upper contacts. Let y_h be the radius of convergence of $A_h(x^*, y)$, where $x^* = 1/\mu$ (*). Then, as $h \to \infty$,

 $y_h \searrow y_c$.

(*) For all k, the coefficient of y^k in $A_h(x,y)$ is finite at $x^* = 1/\mu$

(uses [van Rensburg, Orlandini and Whittington 06])

2. An alternative description of the critical fugacity

Proposition: Let $A_h(x, y)$ be the generating function of arches in a strip of height h, counted by length and upper contacts. Let y_h be the radius of convergence of $A_h(x^*, y)$, where $x^* = 1/\mu$ (*). Then, as $h \to \infty$,

The same holds for the generating function $B_h(x,y)$ of bridges, and for the generating function $C_h(x,y)$ of all SAWs in the *h*-strip, with the same value of y_h .

(*) For all k, the coefficient of y^k in $A_h(x,y)$ is finite at $x^* = 1/\mu$

(uses [van Rensburg, Orlandini and Whittington 06])

The complete picture

For y > 0 fixed, let $\rho_h(y)$ be the radius of $A_h(x,y)$ (or $B_h(x,y)$, or $C_h(x,y)$). Then $\rho_h(y)$ decreases to $\rho(y)$ as $h \to \infty$.

3. Bridges of height h

Proposition: The length generating function $B_h(x, 1)$ of bridges of height h, taken at $x^* = 1/\mu$, satisfies

 $B_h(x^*,1) \to 0$ as $h \to \infty$.

Remark: the global identity implies that $B_h(x^*, 1)$ converges.

Conjecture (from SLE):

$$B_h(x^*, 1) \simeq h^{-1/4}$$

Inspired by [Duminil-Copin & Hammond], "The self-avoiding walk is sub-ballistic", ArXiv 2012

C. Putting everything together

1. A lower bound on y_c

• For
$$x = x^* = 1/\sqrt{2 + \sqrt{2}}$$
 (that is, $x = 1/\mu$), and for any y ,

$$\alpha A_{h,\ell}(x^*, y) + \frac{y^* - y}{y(y^* - 1)} B_{h,\ell}(x^*, y) + \varepsilon E_{h,\ell}(x^*, y) = 1$$
with $\alpha = \frac{\sqrt{2-\sqrt{2}}}{2}$, $\varepsilon = \frac{1}{\sqrt{2}}$ and $y^* = 1 + \sqrt{2}$.

• Let $y = y^*$. Then $A_{h,\ell}(x^*, y^*)$ increases with ℓ but remains bounded: its limit is $A_h(x^*, y^*)$ (arches in an *h*-strip), and is finite.

Thus

$$y^* \leq y_h$$

and by taking the limit on h,

$$y^* \leq y_c$$
.

2. A limit identity

Let $\ell \to \infty$. For $y < y_h$,

$$\alpha A_h(x^*, y) + \frac{y^* - y}{y(y^* - 1)} B_h(x^*, y) = 1$$

2. A limit identity

We have

$$\begin{split} &\alpha A_{h,\ell}(x^*,y) + \frac{y^* - y}{y(y^* - 1)} B_{h,\ell}(x^*,y) + \varepsilon E_{h,\ell}(x^*,y) = 1 \\ &\text{with } \alpha = \frac{\sqrt{2 - \sqrt{2}}}{2}, \ \varepsilon = \frac{1}{\sqrt{2}} \text{ and } y^* = 1 + \sqrt{2}. \end{split}$$

Let
$$h \to \infty$$
. For $y < y_h$,

$$\alpha A_h(x^*, y) + \frac{y^* - y}{y(y^* - 1)} B_h(x^*, y) = 1$$

Proof. $A_{h,\ell}(x^*, y)$ and $B_{h,\ell}(x^*, y)$ converge, and $E_{h,\ell}(x^*, y)$ tends to 0 (because it counts walks of length at least ℓ , and $C_h(x^*, y)$, the generating function of *all* SAWs in the *h*-strip, converges for $y < y_h$).

Remark. Implies that $B_h(x^*, 1)$ converges as $h \to \infty$.

3. Upper bound on y_c

• Arches that hit the top boundary:

3. Upper bound on y_c

• Arches that hit the top boundary:

$$A_{h+1}(x^*, y) - A_h(x^*, 1) \le x^* B_{h+1}(x^*, y) B_h(x^*, 1)$$

• Combine this with

$$\alpha A_{h+1}(x^*, y) + \frac{y^* - y}{y(y^* - 1)} B_{h+1}(x^*, y) = 1 = \alpha A_h(x^*, 1) + B_h(x^*, 1).$$

• This gives, for $0 < y < y_{h+1}$ (and in particular for $y = y_c$),

$$\frac{1}{B_{h+1}(x^*,y)} \le \alpha x^* + \frac{1}{B_h(x^*,1)} \frac{y^* - y}{y(y^*-1)}.$$

3. Upper bound on y_c (end)

We have

$$\frac{1}{B_{h+1}(x^*, y_c)} \le \alpha x^* + \frac{1}{B_h(x^*, 1)} \frac{y^* - y_c}{y_c(y^* - 1)}.$$

In particular,

$$0 \le \alpha x^* + \frac{1}{B_h(x^*, 1)} \frac{y^* - y_c}{y_c(y^* - 1)}.$$

Given that $\lim_{h \to h} B_h(x^*, 1) = 0$, this implies that

 $y_c \leq y^*$.

Concluding remarks

• A similar result has been proved by Nick Beaton for SAWs confined to the half-plane $\{x \ge 0\}$ (rather than $\{y \ge 0\}$ here):

$$y_c = \sqrt{\frac{2 + \sqrt{2}}{1 + \sqrt{2} - \sqrt{2} + \sqrt{2}}}$$

$$y^3$$

$$y^3$$

(conjectured by [Batchelor, Bennett-Wood and Owczarek 98])

B1. The first ingredient: Duminil-Copin and Smirnov's global identity

Duminil-Copin and Smirnov's global identity

$$\frac{\sqrt{2-\sqrt{2}}}{2} A_{h,\ell}(x^*) + B_{h,\ell}(x^*) + \frac{1}{\sqrt{2}} E_{h,\ell}(x^*) = 1$$

Where does it come from?

From a local identity that is re-summed over all vertices of the domain.

Let $D \equiv D_{h,\ell}$ be our domain, a the origin of the walks, and p a point in the domain. Let

$$F(p) \equiv F(x, \alpha; p) = \sum_{\omega: a \rightsquigarrow p} x^{|\omega|} e^{i\alpha W(\omega)},$$

where $|\omega|$ is the length of ω , and $W(\omega)$ its winding number:

$$W(\omega) = \frac{\pi}{3}$$
 (left turns – right turns).

Let

$$F(p) \equiv F(x,\alpha;p) = \sum_{\omega:a \rightsquigarrow p \text{ in } D} x^{|\omega|} e^{i\alpha W(\omega)},$$

If p, q and r are the 3 mid-edges around a vertex v of the honeycomb lattice, then, for $x = x^*$ and $\alpha = -5/8$,

(p-v)F(p) + (q-v)F(q) + (r-v)F(r) = 0.

Rem: (p - v) is here a complex number!

Proof: Group walks three by three or two by two as follows

• Walks that visit p, q and r:

• Walks that only visit one or two of p, q and r:

The contribution of all walks in a group is zero.

• Walks that visit p, q and r:

$$e^{4i\alpha\pi/3} + j^2 e^{-4i\alpha\pi/3} = 2/j \cos\left(\frac{\pi}{3} + 4\alpha\frac{\pi}{3}\right) = 0$$

• Walks that only visit one or two of p, q and r:

Proof of the global identity

Sum the local identity

$$(p-v)F(p) + (q-v)F(q) + (r-v)F(r) = 0$$

over all vertices v of the domain $D_{h,\ell}$.

- The inner mid-edges do not contribute.
- The winding number of walks ending on the boundary is known.
- The domain has a right-left symmetry.

Proof of the global identity

Sum the local identity

$$(p-v)F(p) + (q-v)F(q) + (r-v)F(r) = 0$$

over all vertices v of the domain $D_{h,\ell}$.

- The inner mid-edges do not contribute.
- The winding number of walks ending on the boundary is known.
- The domain has a right-left symmetry.

This gives:

$$\frac{\sqrt{2-\sqrt{2}}}{2} A_{h,\ell}(x^*) + B_{h,\ell}(x^*) + \frac{1}{\sqrt{2}} E_{h,\ell}(x^*) = 1.$$

B3. The third ingredient: Bridges of height h

Bridges of height h

Proposition: The length generating function $B_h(x, 1)$ of bridges of height h, taken at $x^* = 1/\mu$, satisfies

 $B_h(x^*,1) \to 0$ as $h \to \infty$.

Remark: the global identity implies that $B_h(x^*, 1)$ converges.

Conjecture (from SLE):

$$B_h(x^*, 1) \simeq h^{-1/4}$$

Inspired by [Duminil-Copin & Hammond], "The self-avoiding walk is sub-ballistic", ArXiv 2012

Some tools and steps in the proof

• Irreducible bridges

Reducible

Irreducible

Some tools and steps in the proof

• Irreducible bridges

Irreducible

Reducible

Proposition [Kesten 63]:

$$\sum_{\omega \in \mathsf{iB}} x_c^{|\omega|} = 1.$$

(Related to B(x) = 1/(1 - IB(x)))

One can thus define random irreducible bridges by $\mathbb{P}_{iB}(\omega) = x_c^{|\omega|}$.

• Lemma: (renewal theory) As $h \to \infty$,

$$B_h(x_c, 1) o rac{1}{\mathbb{E}_{\mathsf{iB}}(\mathsf{H}(\omega))}$$

where $H(\omega)$ is the height of ω .

• Lemma: (renewal theory) As $h \to \infty$,

$$B_h(x_c, 1) o rac{1}{\mathbb{E}_{\mathsf{iB}}(\mathsf{H}(\omega))}$$

where $H(\omega)$ is the height of ω .

$$\Rightarrow$$
 Prove that $E_{iB}(H(\omega)) = \infty!$

We assume this is not the case.

• Lemma: (renewal theory) As $h \to \infty$,

$$B_h(x_c, 1) o rac{1}{\mathbb{E}_{\mathsf{iB}}(\mathsf{H}(\omega))}$$

where $H(\omega)$ is the height of ω .

```
\Rightarrow Prove that E_{iB}(H(\omega)) = \infty!
```

We assume this is not the case.

• Proposition: If $E_{iB}(H(\omega)) < \infty$, then $E_{iB}(W(\omega)) < \infty$.

The proof uses a global identity on a rectangle.

• Corollary: If $E_{iB}(H(\omega)) < \infty$, a random infinite bridge is tall and skinny.

Proof: law of large numbers

• Proposition: If $E_{iB}(H(\omega)) < \infty$, a positive fraction of the renewal points of a random infinite bridge are diamond points.

Contradicts the fact that $E_{iB}(H(\omega)) < \infty$, and thus

$$B_h(x_c, 1) \rightarrow \frac{1}{\mathbb{E}_{\mathsf{iB}}(\mathsf{H}(\omega))} = 0.$$