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A. Introduction



Self-avoiding walks (SAW)

What is cn, the number of n-step SAWs?

Hard! cn is known up to n = 105 [Jensen 06]



The growth constant

Clearly,

cm+n ≤ cm cn

⇒ limn c
1/n
n exists and

µ := lim
n

c
1/n
n = inf

n
c
1/n
n

Conjecture [Nienhuis 82]: the growth constant is

µ =

√

2 +
√
2



The growth constant

Clearly,

cm+n ≤ cm cn

⇒ limn c
1/n
n exists and

µ := lim
n

c
1/n
n = inf

n
c
1/n
n

Theorem [Duminil-Copin & Smirnov 10]: the growth constant is

µ =

√

2 +
√
2



Growth constants and generating functions

• Let C(x) be the length generating function of SAWs:

C(x) =
∑

n≥0

cnx
n.

• The radius of convergence of C(x) is

ρ = 1/µ,

where

µ = lim
n

c
1/n
n

is the growth constant.



Walks in a half-plane interacting with a “surface”

• Enumeration by contacts of n-step walks:

c̄n(y) =
∑

ω
ycontacts(ω)

y3

In statistical physics, the parameter y is called “fugacity”
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Walks in a half-plane interacting with a “surface”

• Enumeration by contacts of n-step walks:

c̄n(y) =
∑

ω
ycontacts(ω)

• Generating function

C̄(x, y) =
∑

n≥0

c̄n(y)x
n

• Radius and growth constant (y > 0 fixed):

ρ(y) =
1

µ(y)
= lim

n
c̄n(y)

−1/n

y3

[Hammersley, Torrie and Whittington 82]

In statistical physics, the parameter y is called “fugacity”



The critical fugacity

• Radius and growth constant: for y > 0,

ρ(y) =
1

µ(y)
= lim

n
c̄n(y)

−1/n

Proposition: ρ(y) is a continuous, weakly decreasing function of y ∈ (0,∞).

There exists yc > 1 such that

ρ(y)

{

= 1/µ if y ≤ yc,
< 1/µ if y > yc,

where µ is the growth constant of (unrestricted) SAWs.

[Whittington 75, Hammersley, Torrie and Whittington 82]

yc y

1/µ

10

ρ(y)



The critical fugacity: probabilistic meaning

Take half-space SAWs of length n under the Boltzmann distribution

Pn(ω) =
ycontacts(ω)

c̄n(y)
.

Then for y < yc, the walk escapes from the surface. For y > yc, a positive

fraction of its vertices lie on the surface.

c© A. Rechnitzer



The critical fugacity: probabilistic meaning

Take half-space SAWs of length n under the Boltzmann distribution

Pn(ω) =
ycontacts(ω)

cn(y)
.

Then for y < yc, the walk escapes from the surface. For y > yc, a positive

fraction of its vertices lie on the surface.

c© A. Rechnitzer

Theorem [B-BM-dG-DC-G 12]: this phase transition occurs at

yc = 1+
√
2

(conjectured by Batchelor and Yung in 1995)



B. Three ingredients



1. Duminil-Copin and Smirnov’s “global” identity

Consider the following finite domain Dh,ℓ.

Eh,ℓ

Bh,ℓ

ℓ
Ah,ℓ

Eh,ℓ ...

Bh,ℓ bridges

Ah,ℓ arches
h

Let Ah,ℓ(x) (resp. Bh,ℓ(x), Eh,ℓ(x)) be the length generating function of SAWs

that start from the origin and end on the bottom (resp. top, right/left) border

of the domain Dh,ℓ. These series are polynomials in x.



1. Duminil-Copin and Smirnov’s “global” identity

For x = x∗ = 1/
√

2+
√
2 (that is, x = 1/µ),

αAh,ℓ(x
∗) +Bh,ℓ(x

∗) + εEh,ℓ(x
∗) = 1

with α =

√
2−

√
2

2 and ε = 1√
2
.

Eh,ℓ

h

Bh,ℓ

ℓ
Ah,ℓ

Eh,ℓ ...

Bh,ℓ bridges

Ah,ℓ arches



1. Duminil-Copin and Smirnov’s “global” identity:

refinement with upper contacts

For x = x∗ = 1/
√

2+
√
2 (that is, x = 1/µ), and for any y,

αAh,ℓ(x
∗, y) +

y∗ − y

y(y∗ − 1)
Bh,ℓ(x

∗, y) + εEh,ℓ(x
∗, y) = 1

with α =

√
2−

√
2

2 , ε = 1√
2

and y∗ = 1+
√
2.

Eh,ℓ

h

Bh,ℓ

ℓ
Ah,ℓ

Eh,ℓ ...

Bh,ℓ bridges

Ah,ℓ arches



2. An alternative description of the critical fugacity

Proposition: The radius ρ(y) of C̄(x, y) is a continuous, weakly decreasing

function of y ∈ (0,∞). There exists yc > 1 such that

ρ(y)

{

= 1/µ if y ≤ yc,
< 1/µ if y > yc,

where µ is the growth constant of (unrestricted) SAWs.

y3

yc y

1/µ

10

ρ(y)



Our identity

For x = x∗ = 1/
√

2+
√
2 (that is, x = 1/µ), and for any y,

αAh,ℓ(x
∗, y) +

y∗ − y

y(y∗ − 1)
Bh,ℓ(x

∗, y) + εEh,ℓ(x
∗, y) = 1

with α =

√
2−

√
2

2 , ε = 1√
2

and y∗ = 1+
√
2.

• Walks in a bounded domain

• Contacts on the “wrong” side

• Only valid at x = x∗ = 1/µ

Eh,ℓ

h

Bh,ℓ

ℓ
Ah,ℓ



2. An alternative description of the critical fugacity

Proposition: Let Ah(x, y) be the generat-

ing function of arches in a strip of height

h, counted by length and upper contacts.

Let yh be the radius of convergence of

Ah(x
∗, y), where x∗ = 1/µ (*).

Then, as h → ∞,

yh ց yc. Ah

h

(*) For all k, the coefficient of yk in Ah(x, y) is finite at x∗ = 1/µ

(uses [van Rensburg, Orlandini and Whittington 06])



2. An alternative description of the critical fugacity

Proposition: Let Ah(x, y) be the generat-

ing function of arches in a strip of height

h, counted by length and upper contacts.

Let yh be the radius of convergence of

Ah(x
∗, y), where x∗ = 1/µ (*).

Then, as h → ∞,

yh ց yc. Ah

Bh

h

Ch

The same holds for the generating function Bh(x, y) of bridges, and for the

generating function Ch(x, y) of all SAWs in the h-strip, with the same value of

yh.

(*) For all k, the coefficient of yk in Ah(x, y) is finite at x∗ = 1/µ

(uses [van Rensburg, Orlandini and Whittington 06])



The complete picture

For y > 0 fixed, let ρh(y) be the radius of Ah(x, y) (or Bh(x, y), or Ch(x, y)).

Then ρh(y) decreases to ρ(y) as h → ∞.

0

ρ

yc
y

ρh+1

ρh

yhyh+1

x∗ = 1/µ



3. Bridges of height h

Proposition: The length generating function Bh(x,1) of bridges of height h,

taken at x∗ = 1/µ, satisfies

Bh(x
∗,1) → 0 as h → ∞.

Remark: the global identity implies that Bh(x
∗,1) converges.

Conjecture (from SLE):

Bh(x
∗,1) ≃ h−1/4

Inspired by [Duminil-Copin & Hammond], “The self-avoiding walk is sub-ballistic”,

ArXiv 2012



C. Putting everything together



1. A lower bound on yc

• For x = x∗ = 1/
√

2 +
√
2 (that is, x = 1/µ), and for any y,

αAh,ℓ(x
∗, y) +

y∗ − y

y(y∗ − 1)
Bh,ℓ(x

∗, y) + εEh,ℓ(x
∗, y) = 1

with α =

√
2−

√
2

2 , ε = 1√
2

and y∗ = 1+
√
2.

• Let y = y∗. Then Ah,ℓ(x
∗, y∗) increases with ℓ but remains bounded: its limit

is Ah(x
∗, y∗) (arches in an h-strip), and is finite.

Thus

y∗ ≤ yh,

and by taking the limit on h,

y∗ ≤ yc.

Eh,ℓ

h

Bh,ℓ

ℓ
Ah,ℓ



2. A limit identity

We have

αAh,ℓ(x
∗, y)+

y∗ − y

y(y∗ − 1)
Bh,ℓ(x

∗, y)+εEh,ℓ(x
∗, y) = 1.

with α =

√
2−

√
2

2 , ε = 1√
2

and y∗ = 1+
√
2.

Eh,ℓ

Bh,ℓ

Ah,ℓ ℓ

h

Let ℓ → ∞. For y < yh,

αAh(x
∗, y) +

y∗ − y

y(y∗ − 1)
Bh(x

∗, y) = 1



2. A limit identity

We have

αAh,ℓ(x
∗, y)+

y∗ − y

y(y∗ − 1)
Bh,ℓ(x

∗, y)+ εEh,ℓ(x
∗, y) = 1

with α =

√
2−

√
2

2 , ε = 1√
2

and y∗ = 1+
√
2.

Eh,ℓ

Bh,ℓ

Ah,ℓ ℓ

h

Let h → ∞. For y < yh,

αAh(x
∗, y) +

y∗ − y

y(y∗ − 1)
Bh(x

∗, y) = 1

Proof. Ah,ℓ(x
∗, y) and Bh,ℓ(x

∗, y) converge, and Eh,ℓ(x
∗, y) tends to 0 (because

it counts walks of length at least ℓ, and Ch(x
∗, y), the generating function of

all SAWs in the h-strip, converges for y < yh).

Remark. Implies that Bh(x
∗,1) converges as h → ∞.



3. Upper bound on yc

• Arches that hit the top boundary:

Ah+1(x
∗, y)− Ah(x

∗,1) ≤ x∗Bh+1(x
∗, y)Bh(x

∗,1)



3. Upper bound on yc

• Arches that hit the top boundary:

Ah+1(x
∗, y)− Ah(x

∗,1) ≤ x∗Bh+1(x
∗, y)Bh(x

∗,1)

• Combine this with

αAh+1(x
∗, y) +

y∗ − y

y(y∗ − 1)
Bh+1(x

∗, y) = 1 = αAh(x
∗,1) +Bh(x

∗,1).

• This gives, for 0 < y < yh+1 (and in particular for y = yc),

1

Bh+1(x
∗, y)

≤ αx∗ +
1

Bh(x
∗,1)

y∗ − y

y(y∗ − 1)
.



3. Upper bound on yc (end)

We have

1

Bh+1(x
∗, yc)

≤ αx∗ +
1

Bh(x
∗,1)

y∗ − yc

yc(y∗ − 1)
.

In particular,

0 ≤ αx∗ +
1

Bh(x
∗,1)

y∗ − yc

yc(y∗ − 1)
.

Given that limhBh(x
∗,1) = 0, this implies that

yc ≤ y∗.



Concluding remarks

• A similar result has been proved by Nick Beaton for SAWs confined to the

half-plane {x ≥ 0} (rather than {y ≥ 0} here):

yc =

√

√

√

√

√

2 +
√
2

1 +
√
2−

√

2+
√
2
.

y3

(conjectured by [Batchelor, Bennett-Wood and Owczarek 98])



B1. The first ingredient: Duminil-Copin and

Smirnov’s global identity



Duminil-Copin and Smirnov’s global identity

√

2−
√
2

2
Ah,ℓ(x

∗) +Bh,ℓ(x
∗) +

1√
2

Eh,ℓ(x
∗) = 1

Where does it come from?

From a local identity that is re-summed over all vertices of the domain.



A local identity

Let D ≡ Dh,ℓ be our domain, a the origin of the walks, and p a point in the

domain. Let

F(p) ≡ F(x, α; p) =
∑

ω:a p
x|ω|eiαW(ω),

where |ω| is the length of ω, and W (ω) its winding number:

W (ω) =
π

3
(left turns − right turns) .

p

W (ω) = 0 W (ω) = −2π W (ω) = −π



A local identity

Let

F(p) ≡ F(x, α; p) =
∑

ω:a p in D

x|ω|eiαW(ω),

If p, q and r are the 3 mid-edges around a vertex v of the honeycomb lattice,
then, for x = x∗ and α = −5/8,

(p− v)F(p) + (q − v)F(q) + (r − v)F(r) = 0.

Rem: (p− v) is here a complex number!

v

r

p

q

a



A local identity

Proof: Group walks three by three or two by two as follows

• Walks that visit p, q and r:

• Walks that only visit one or two of p, q and r:

The contribution of all walks in a group is zero.



A local identity

• Walks that visit p, q and r:

e4iαπ/3 + j2e−4iαπ/3 = 2/j cos

(

π

3
+ 4α

π

3

)

= 0

• Walks that only visit one or two of p, q and r:

1+ jx∗ e−iαπ/3 + j2x∗ eiαπ/3 = 0



Proof of the global identity

Sum the local identity

(p− v)F(p) + (q − v)F(q) + (r − v)F(r) = 0

over all vertices v of the domain Dh,ℓ.

• The inner mid-edges do not contribute.

• The winding number of walks ending on the

boundary is known.

• The domain has a right-left symmetry.

Bh,ℓ

ℓ
Ah,ℓ

h



Proof of the global identity

Sum the local identity

(p− v)F(p) + (q − v)F(q) + (r − v)F(r) = 0

over all vertices v of the domain Dh,ℓ.

• The inner mid-edges do not contribute.

• The winding number of walks ending on the

boundary is known.

• The domain has a right-left symmetry.

Bh,ℓ

ℓ
Ah,ℓ

h

This gives:
√

2−
√
2

2
Ah,ℓ(x

∗) +Bh,ℓ(x
∗) +

1√
2

Eh,ℓ(x
∗) = 1.



B3. The third ingredient: Bridges of height h



Bridges of height h

Proposition: The length generating function Bh(x,1) of bridges of height h,

taken at x∗ = 1/µ, satisfies

Bh(x
∗,1) → 0 as h → ∞.

Remark: the global identity implies that Bh(x
∗,1) converges.

Conjecture (from SLE):

Bh(x
∗,1) ≃ h−1/4

Inspired by [Duminil-Copin & Hammond], “The self-avoiding walk is sub-ballistic”,

ArXiv 2012



Some tools and steps in the proof

• Irreducible bridges

Reducible Irreducible



Some tools and steps in the proof

• Irreducible bridges

Reducible Irreducible

Proposition [Kesten 63]:
∑

ω∈iB
xc

|ω| = 1.

(Related to B(x) = 1/(1− IB(x)))

One can thus define random irreducible bridges by PiB(ω) = xc|ω|.



• Lemma: (renewal theory) As h → ∞,

Bh(xc,1) → 1

EiB(H(ω))

where H(ω) is the height of ω.
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• Lemma: (renewal theory) As h → ∞,

Bh(xc,1) → 1

EiB(H(ω))

where H(ω) is the height of ω.

⇒ Prove that EiB(H(ω)) = ∞!

We assume this is not the case.

• Proposition: If EiB(H(ω)) < ∞, then EiB(W(ω)) < ∞.

The proof uses a global identity on a rectangle.

• Corollary: If EiB(H(ω)) < ∞, a random infinite bridge is tall and skinny.

Proof: law of large numbers



• Proposition: If EiB(H(ω)) < ∞, a positive fraction of the renewal points of a

random infinite bridge are diamond points.



• Stickbreaking in bridges



Contradicts the fact that EiB(H(ω)) < ∞, and thus

Bh(xc,1) → 1

EiB(H(ω))
= 0.


