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A. Introduction



Self-avoiding walks (SAW)

What is ¢,, the number of n-step SAWS?

Hard! ¢, is known up to n = 105 [Jensen 06]



The growth constant

Clearly,
Crn4-n < ¢m Cn
. 1 .
— limy, ct/™ exists and
Y 1/n . 1/n
U= IITI’Ln cnl = Il;]bf Cn,

Conjecture [Nienhuis 82]: the growth constant is

p=1\2+v2



The growth constant

Clearly,
Crn4-n < ¢m Cn
. 1 .
— limy, ct/™ exists and
Y 1/n . 1/n
o= IITI’Ln S |I;11f Cn

Theorem [Duminil-Copin & Smirnov 10]: the growth constant is

p=\2+v2



Growth constants and generating functions

e Let C(x) be the length generating function of SAWSs:
C(z) = ) cpa™

n>0

e The radius of convergence of C(x) is

p=1/u,

where
1/n

= |lim c
M oten

iIs the growth constant.



Walks in a half-plane interacting with a ‘‘surface”

e Enumeration by contacts of n-step walks:

cn(y) = Zycontacts(w)

In statistical physics, the parameter y is called “fugacity”



Walks in a half-plane interacting with a ‘‘surface”

e Enumeration by contacts of n-step walks:

cn(y) = Zycontacts(w)

e Generating function

C(z,y) = > en(y)z" .

n>0 Y

In statistical physics, the parameter y is called *fugacity”



Walks in a half-plane interacting with a ‘‘surface”

e Enumeration by contacts of n-step walks:

cn(y) = Zycontacts(w)

e Generating function
C(z,y) = ) n(y)a”
n>0 y3
e Radius and growth constant (y > O fixed):

p(w) = s = lim 2u(y) V"

[Hammersley, Torrie and Whittington 82]

In statistical physics, the parameter y is called *fugacity”



T he critical fugacity

e Radius and growth constant: for y > 0O,

p(y) = ﬁ = lim Cn(y)L/m

Proposition: p(y) is a continuous, weakly decreasing function of y € (0,0).
There exists y. > 1 such that

p(y){ <1l/p ify>ye,

where p is the growth constant of (unrestricted) SAWs.
[Whittington 75, Hammersley, Torrie and Whittington 82]

p(y)

1/p




T he critical fugacity: probabilistic meaning

Take half-space SAWSs of length n under the Boltzmann distribution

ycontacts(w)
Pn(w) =

En(y)
Then for y < y., the walk escapes from the surface. For y > y., a positive
fraction of its vertices lie on the surface.

© A. Rechnitzer
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T he critical fugacity: probabilistic meaning

Take half-space SAWSs of length n under the Boltzmann distribution

ycontacts(w)
Pn(w) =

Cn(y)
Then for y < y., the walk escapes from the surface. For y > y., a positive
fraction of its vertices lie on the surface.

© A. Rechnitzer

Theorem [B-BM-dG-DC-G 12]: this phase transition occurs at

yc:]-‘l‘\/§

(conjectured by Batchelor and Yung in 1995)



B. Three ingredients



1. Duminil-Copin and Smirnov’s ‘“global”’ identity

Consider the following finite domain Dy, 4.

By, ¢

Y

Ap e arches

B bridges

| Eny ...

An 7 -

Let Ay o(x) (resp. By (x), Ep ¢(x)) be the length generating function of SAWs
that start from the origin and end on the bottom (resp. top, right/left) border
of the domain Dh’g. These series are polynomials in x.



1. Duminil-Copin and Smirnov’s ‘“global”’ identity

For x = x* = 1/y/2 + 2 (that is, z = 1/u),
aAp (™) + By (z) +eEp o(™) = 1

Ap arches
Bh,g bridges
Ehg

)




1. Duminil-Copin and Smirnov'’s ‘“global’ identity:
refinement with upper contacts

For x = x* = 1/4/2 + 2 (that is, z = 1/u), and for any v,

y* —y
y(y* — 1)

: __ V22 _— 1 *
with a = ,5—\/§andy_1—|—\/§.

aAp (%, y) + By, o(z",y) +eEp (z%,y) =1

By, g

)

Ap e arches

B bridges

' Eh,g




2. An alternative description of the critical fugacity

Proposition: The radius p(y) of C(x,y) is a continuous, weakly decreasing
function of y € (0,00). There exists y. > 1 such that

p(y){ < 1/:“ if v > ye,

where p is the growth constant of (unrestricted) SAWs.

P p(y)
/ N 1/p
, ( / /
Y NN N
Y SR — 3



Our identity

For x = x* = 1/y/2 + 2 (that is, z = 1/u), and for any v,

*

y* —y
aAp (%, y) + —— By o(z",y) +eEp (2%, y) =1
y(y*—1)
with o = Y2-v2 . _ - and y* =142,

N

e \Walks in a bounded domain
e Contacts on the “wrong’” side

e Only valid atz =2 =1/pu




2. An alternative description of the critical fugacity

Proposition: Let A,(x,y) be the generat-
ing function of arches in a strip of height
h, counted by length and upper contacts.
Let y;, be the radius of convergence of
Ap(x*,y), where x* = 1/u (*).

Then, as h — oo,

Yh \1 Ye-

(*) For all k, the coefficient of y* in A, (z,y) is finite at z* = 1/u

(uses [van Rensburg, Orlandini and Whittington 06])




2. An alternative description of the critical fugacity

By,

Proposition: Let Ap(x,y) be the generat-
ing function of arches in a strip of height
h, counted by length and upper contacts.
Let y;, be the radius of convergence of
Ap(x*,y), where x* = 1/u (*).

Then, as h — oo,

Yh N Ye. A,

The same holds for the generating function By(z,y) of bridges, and for the
generating function Cy(xz,y) of all SAWSs in the h-strip, with the same value of

Yh-

(*) For all k, the coefficient of y* in A, (z,y) is finite at z* = 1/u

(uses [van Rensburg, Orlandini and Whittington 06])



The complete picture

For y > 0 fixed, let p,(y) be the radius of A,(xz,y) (or By(x,y), or Cp(x,y)).
Then p;,(y) decreases to p(y) as h — oo.

Yc Yh+1  Yh



3. Bridges of height A

Proposition: The length generating function Bj(xz,1) of bridges of height h,
taken at z* = 1/u, satisfies

Bp(z*,1) -0 as h — oo.

Remark: the global identity implies that B (z*,1) converges.

Conjecture (from SLE):
By (z*,1) ~ h~ /4

Inspired by [Duminil-Copin & Hammond], “The self-avoiding walk is sub-ballistic”,
ArXiv 2012



C. Putting everything together



1. A lower bound on y.

o For xt = x* =1/y/2+ 2 (that is, z = 1/u), and for any v,

vt —y
y(y*—1)

: _ V22 _— 1 S
with o = ,a—ﬁandy—l—l-\/i.

aAp (™, y) + By (x*,y) +ebp (%, y) =1

e Let y =y*. Then A, ,(z*,y*) increases with £ but remains bounded: its limit
is Ap(x*,y*) (arches in an h-strip), and is finite.

B
Thus ot

v < Yn,
and by taking the limit on h,

y* < ye.




2. A limit identity

We have

aAp (%, y) + By (2%, y) +eEy o(z",y) = 1.

Y —y
y(y* —1)

: _ V2—/2 — 1 *
with o = ,a—ﬁandy—l—l—\/i.

Let ¢ — oco. For y <y,

Y —y
y(y*—1)




2. A limit identity

By
We have
* Yy —y En,
aAp (z%,y) + —— By o(x*,y) +eBp o(2™,y) =1
y(y* — 1)
with o = Y2-V2 e=Jand y* =142,
Ane

Let h — co. For y <y,

Y —y
y(y*—1)

Proof. Ay (z*,y) and By, o(z*,y) converge, and Ej ,(z*,y) tends to O (because
it counts walks of length at least ¢, and Cy(«*,y), the generating function of
all SAWSs in the h-strip, converges for y < yy,).

Remark. Implies that By (z*,1) converges as h — oc.



3. Upper bound on y.

e Arches that hit the top boundary:

Apy1(@™y) — Ap(e™, 1) < a™Bpiq(z™,y)Bp(z™, 1)




3. Upper bound on y.

e Arches that hit the top boundary:

Apy1(@™y) — Ap(e™, 1) < a™Bpiq(z™,y)Bp(z™, 1)

e Combine this with

Y —y

aApy1(c”,y) +

P E ) = 1= a6 D+ B D).

e This gives, for 0 <y <wyp41 (and in particular for y = y),
1 1 Yt —y

< azr® + :
Bpy1(z*,y) Bp(z*, 1) y(y* — 1)




3. Upper bound on y. (end)

We have
1 1 *—
* Sam*_l_ * , * g )
By 1(x*, yc) Bp(z*, 1) ye(y* — 1)
In particular,
1 *

Bp(z*,1) ye(y* — 1)

Given that limy, By (z*,1) = 0, this implies that

ye < y*.



Concluding remarks

e A similar result has been proved by Nick Beaton for SAWSs confined to the
half-plane {x > 0} (rather than {y > 0} here):

vo — 2 ++2 |
\1+v2—y2+v2

(conjectured by [Batchelor, Bennett-Wood and Owczarek 98])



B1l. The first ingredient: Duminil-Copin and
Smirnov’s global identity



Duminil-Copin and Smirnov’s global identity

2 — /2 § . 1
5 Ap (™) + By, o(x7) + 7

Where does it come from?

Ep (™) =1

From a local identity that is re-summed over all vertices of the domain.



A local identity

Let D = Dh,g be our domain, a the origin of the walks, and p a point in the
domain. Let

F(p) = F(z,c;p) = > alleiaW(w)

w:a~>p

where |w| is the length of w, and W (w) its winding number:

W(w) = g(left turns — right turns).

W(w) =0 W(w) = —27 Wlw) = —7x



A local identity

Let

F(p) = F(z,a;p) = Y alvleioaW(w)
wia~sp 1IN D

If p, ¢ and r are the 3 mid-edges around a vertex v of the honeycomb lattice,
then, for x = ™ and o = —5/8,

(p—v)F(p)+(@—v)F(q) + (r—v)F(r) =0.

Rem: (p —wv) is here a complex number!




A local identity
Proof: Group walks three by three or two by two as follows

e Walks that visit p, ¢ and r:

e Walks that only visit one or two of p, ¢ and r:

A

The contribution of all walks in a group is zero.



A local identity

e Walks that visit p, ¢ and r:

4za7r/3 _I_]2€—4zoz7r/3 =2/ COS _|_ 4043 —0

e Walks that only visit one or two of p, ¢ and r:

A

1+ ja* 6—2047?/3_|_]2 * glam/3 — g



Proof of the global identity

Sum the local identity
(p—v)F(p)+(@—v)F(q) + (r—v)F(r) =0 '

over all vertices v of the domain Dy, 4.

e [ he inner mid-edges do not contribute.

e [ he winding number of walks ending on the
boundary is known.

e T he domain has a right-left symmetry.




Proof of the global identity

Sum the local identity
(p—v)F(p)+(@—v)F(q) + (r—v)F(r) =0 '

over all vertices v of the domain Dy, 4.

e The inner mid-edges do not contribute. h
e [ he winding number of walks ending on the
boundary is known.
e T he domain has a right-left symmetry. ' A
h,¢
This gives:
2 — /2 1
Apo(z™) + Bpo(z®) + —= Ep (z") = 1.

2 V2



B3. The third ingredient: Bridges of height A



Bridges of height h

Proposition: The length generating function Bj(xz,1) of bridges of height h,
taken at z* = 1/u, satisfies

Bp(z*,1) -0 as h — oo.

Remark: the global identity implies that B (z*,1) converges.

Conjecture (from SLE):
By (z*,1) ~ h~ /4

Inspired by [Duminil-Copin & Hammond], “The self-avoiding walk is sub-ballistic”,
ArXiv 2012



Some tools and steps in the proof

e Irreducible bridges

AN
AN

Reducible Irreducible



Some tools and steps in the proof

e Irreducible bridges

AN
AN

Reducible Irreducible

Proposition [Kesten 63]:

(Related to B(z) = 1/(1 — IB(z)))

One can thus define random irreducible bridges by Pig(w) = zelvl.



e Lemma: (renewal theory) As h — oo,

1
Bh(ﬂ?c, 1) —

Eig(H(w))
where H(w) is the height of w.



e Lemma: (renewal theory) As h — oo,
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where H(w) is the height of w.
= Prove that Eig(H(w)) = oc!

We assume this is not the case.



e Lemma: (renewal theory) As h — oo,
1

Bulwe 1) = & ()

where H(w) is the height of w.
= Prove that Eig(H(w)) = oc!
We assume this is not the case.
e Proposition: If Fig(H(w)) < oo, then Eig(W(w)) < oo.
The proof uses a global identity on a rectangle.
e Corollary: If Eig(H(w)) < oo, a random infinite bridge is tall and skinny.

Proof: law of large numbers



e Proposition: If Eig(H(w)) < oo, a positive fraction of the renewal points of a
random infinite bridge are diamond points.







Contradicts the fact that Eig(H(w)) < oo, and thus

1

Bulee 1) = g thwy) =

0.




