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A typical question

Let S be a finite subset of Zd (set of steps) and p0 ∈ Zd (starting point).

A path (walk) of length n starting at p0 is a sequence (p0, p1, . . . , pn)
such that pi+1 − pi ∈ S for all i .

Let C be a cone of Rd .

Example. S = {10, 1̄0, 11̄, 1̄1}, p0 = (0, 0)

and C = R2
+.
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A typical question

Questions
What is the number a(n) of n-step walks starting at p0 and
contained in C?
For i = (i1, . . . , id) ∈ C , what is the number a(i ; n) of such walks
that end at i?

Example. S = {10, 1̄0, 11̄, 1̄1}, p0 = (0, 0) and C = R2
+.
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(i , j) = (5, 1)



Example [Gouyou-Beauchamps 86], [mbm-Mishna 10]

Take S = {10, 1̄0, 11̄, 1̄1}, p0 = (0, 0) and C = R2
+

(i , j) = (5, 1) '

Nice numbers
If n = 2m + δ, with δ ∈ {0, 1},

a(n) =
n!(n + 1)!

m!(m + 1)!(m + δ)!(m + δ + 1)!
.

Moreover, if n = 2m + i ,

a(i , j ; n) =
(i + 1)(j + 1)(i + j + 2)(i + 2j + 3)n!(n + 2)!

(m − j)!(m + 1)!(m + i + 2)!(m + i + j + 3)!
.
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Why count walks in cones?

Many discrete objects can be encoded in that way:
I in combinatorics, statistical physics...
I in (discrete) probability theory: random walks, queuing theory...
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Young tableaux of height 4 [Gouyou-Beauchamps 89]+



Why count walks in cones?

Many discrete objects can be encoded in that way:
I in combinatorics, statistical physics...
I in (discrete) probability theory: random walks, queuing theory...

To reach a better understanding of functional equations with divided
differences

Q(x , y) = 1 + txyQ(x , y) + t
Q(x , y)− Q(0, y)

x
+ t

Q(x , y)− Q(x , 0)

y



Many contributions

Adan, Banderier, Bernardi, Bostan, Budd, Cori, Denisov, Duchon,
Dulucq, Fayolle, Gessel, Fisher, Flajolet, Gouyou-Beauchamps, Guttmann,
Guy, Janse van Rensburg, Johnson, Kauers, Koutschan, Krattenthaler,
Kurkova, Kreweras, van Leeuwarden, MacMahon, Melczer, Mishna,
Niederhausen, Petkovšek, Prellberg, Raschel, Rechnitzer, Sagan, Salvy,
Viennot, Wachtel, Wilf, Yeats, Zeilberger...

etc.

Specific question

Ad hoc solution
Systematic approach
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A too ambitious question?

• Our original question: exact enumeration

a(n) = ? a(i ; n) = ?

• Weaker question: asymptotic enumeration

a(n) ∼ ? a(i ; n) ∼ ?

• Generating functions:

A(t) =
∑
n≥0

a(n)tn, A(x1, . . . , xd ; t) =
∑
i ,n

a(i ; n)x i tn

=
∑

w walk
x i (w)t |w |

Remarks
A(1, . . . , 1; t) = A(t)
if C ⊂ Rd

+, then A(0, . . . , 0; t) counts walks ending at (0, . . . , 0)
A(0, x2, . . . , xd ; t) counts walks ending on the hyperplane i1 = 0
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A too ambitious question?

• Our original question: exact enumeration

a(n) = ? a(i ; n) = ?

• Weaker question: asymptotic enumeration

a(n) ∼ ? a(i ; n) ∼ ?

• Generating functions:
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∑
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+, then A(0, . . . , 0; t) counts walks ending at (0, . . . , 0)
A(0, x2, . . . , xd ; t) counts walks ending on the hyperplane i1 = 0

Can one express these series? What is their nature?



A hierarchy of formal power series

• Rational series

A(t) =
P(t)

Q(t)

• Algebraic series

P(t,A(t)) = 0

• Differentially finite series (D-finite)
d∑

i=0

Pi (t)A(i)(t) = 0

• D-algebraic series

P(t,A(t),A′(t), . . . ,A(d)(t)) = 0

Multi-variate series: one DE per variable
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A (very) basic cone: the full space

Rational series
If S ⊂ Zd is finite and C = Rd , then A(x ; t) is rational:

a(n) = |S|n ⇔ A(t) =
∑
n≥0

a(n)tn =
1

1− |S| t

More generally:

A(x ; t) =
1

1− t
∑

s∈S xs .



Caveat: rational cones only!

The bounding hyperplanes are given by linear equations with
integer/rational coefficients.

Example: the generating function of walks with N and E steps under a
line of irrational slope is not known.



Also well-known: a (rational) half-space

Algebraic series

If S ⊂ Zd is finite and C is a rational half-space, then A(x ; t) is algebraic,
given by an explicit system of polynomial equations.

[Gessel 80]; [mbm-Petkovšek 00], [Duchon 00], [Banderier & Flajolet 02]...



Also well-known: a (rational) half-space

By projection: Equivalent to walks in 1D confined to a half-line

−2

−1
+3

projection



The “next” case: two bounding hyperplanes

• Convex cone: walks in a quadrant

• Non-convex cone: walks avoiding a quadrant



Counting walks confined to cones

[Gessel 80]

Walks in a cone

2D1D

half-line

algebraic

half-plane three quadrants

3D, and more

orthant Ndquadrant

[Raschel-Trotignon 18] [Du-Hou-Wang 16]
[Bacher-Kauers-Yatchak 16]

[Bostan-mbm-Kauers-Melczer 16]

[mbm 16]

[Budd 18]
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A typical question

Let S be a finite subset of Z2 (set of steps) and p0 ∈ Zd (starting point).

Questions
What is the number q(n) of n-step walks starting at p0 and
contained in the quadrant N2?
For (i , j) ∈ N2, what is the number q(i , j ; n) of such walks that end
at (i , j)?

The associated generating function:

Q(x , y ; t) =
∑

i ,j ,n≥0

q(i , j ; n)x iy j tn = ?



II. Walks in a quadrant:
asymptotic enumeration

1. Excursions (prescribed endpoint (i , j))

2. All quadrant walks

Expected:

q(i , j ; n) ∼ κµnenγe q(n) ∼ κµnwnγw

possibly with periodicity conditions on n.



The 1D case: excursions on a half-line

• The brownian exponent: as t →∞,

P(Bs > −a for s ∈ [0, t] and Bt ∈ K ) ∼ κt−3/2

K

Bs

s

−a
t

• Lattice walks: let S be a (finite) step set, and let S(x) =
∑

s∈S x
s . For

walks on the non-negative half-line ending at position i ,

h(i ; n) ∼ κµnn−3/2

where
µ = min

x>0
S(x)

= S(xc) with S ′(xc) = 0

i

n

Remark: µ ≤ S(1), with equality iff S ′(1) =
∑

s∈S s = 0 ⇔ NO DRIFT
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The 2D case: excursions in a quadrant

• The (2D) brownian exponent: as t →∞,

P(Bs > −a for s ∈ [0, t] and Bt ∈ K ) ∼ κt−3

$K$

• Lattice walks:

q(0, 0; n) ∼ κ 4nn−3

κ 3nn−4 κ 3nn−5/2

What’s happening?

The x- and y -moves are correlated.



The 2D case: excursions in a quadrant

• The (2D) brownian exponent: as t →∞,

P(Bs > −a for s ∈ [0, t] and Bt ∈ K ) ∼ κt−3

$K$

• Lattice walks:

q(0, 0; n) ∼ κ 4nn−3

κ 3nn−4 κ 3nn−5/2

What’s happening?

The x- and y -moves are correlated.



The 2D case: excursions in a quadrant

• The (2D) brownian exponent: as t →∞,

P(Bs > −a for s ∈ [0, t] and Bt ∈ K ) ∼ κt−3

$K$

• Lattice walks:

q(0, 0; n) ∼ κ 4nn−3 κ 3nn−4

κ 3nn−5/2

What’s happening?

The x- and y -moves are correlated.



The 2D case: excursions in a quadrant

• The (2D) brownian exponent: as t →∞,

P(Bs > −a for s ∈ [0, t] and Bt ∈ K ) ∼ κt−3

$K$

• Lattice walks:

q(0, 0; n) ∼ κ 4nn−3 κ 3nn−4 κ 3nn−5/2

What’s happening?

The x- and y -moves are correlated.



The 2D case: excursions in a quadrant

• The (2D) brownian exponent: as t →∞,

P(Bs > −a for s ∈ [0, t] and Bt ∈ K ) ∼ κt−3

$K$

• Lattice walks:

q(0, 0; n) ∼ κ 4nn−3 κ 3nn−4 κ 3nn−5/2

What’s happening?

The x- and y -moves are correlated.



Excursions in a quadrant: an example

Take a uniform random walk with steps (0, 1), (−1, 0), (1,−1). We have

E(X ) = E(Y ) = 0, E(X 2) = E(Y 2) = 2/3 and E(XY ) = −1/3.

Define
Y ′ =

1√
3

(X + 2Y ),

so that

E(X ) = E(Y ′) = 0, E(X 2) = E(Y ′2) = 2/3 and E(XY ′) = 0.

But the confining quadrant has become a wedge of π/3 !
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The 2D case: excursions in a wedge

• Brownian exponents: as t →∞,

P(Bs ∈Wθ for s ∈ [0, t] and Bt ∈ K ) ∼ κt−1−π/θ

θ = π/4

• Lattice walks:

θ π/2 π/3 2π/3

q(0, 0; n) ∼ κ 4nn−3 κ 3nn−4 κ 3nn−5/2



The 2D case: excursions in a wedge

• Brownian exponents: as t →∞,

P(Bs ∈Wθ for s ∈ [0, t] and Bt ∈ K ) ∼ κt−1−π/θ

θ = π/4

• Lattice walks: let S ⊂ Z2 be a (finite) step set, and let
S(x , y) =

∑
(k,`)∈S x

ky `. For walks in the quadrant N2 ending at (i , j),

q(i , j ; n) ∼ κµnn−1−π/θ

where

µ = min
x>0,y>0

S(x , y)

= S(xc , yc) with S ′1(xc , yc) = S ′2(xc , yc) = 0

and

θ = arccos

− S ′′1,2(xc , yc)√
S ′′1,1(xc , yc)S ′′2,2(xc , yc)

 [Denisov &
Wachtel 15]



III. Walks in a quadrant:
exact enumeration
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The 79 interesting distinct quadrant models with small steps
Non-singular

Singular
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The starting point: a recurrence relation...

The numbers q(i , j ; n) satisfy

q(i , j ; n) =


0 if i < 0 or j < 0 or n < 0,

1i=j=0 if n = 0,∑
(i ,′j ′)∈S

q(i − i ′, j − j ′; n − 1) otherwise.

⇒ an equation for

Q(x , y ; t) =
∑

i ,j ,n≥0

q(i , j ; n)x iy j tn



... and the corresponding functional equation

Example: S = {01, 1̄0, 11̄}, with x̄ := 1/x and ȳ := 1/y

Q(x , y ; t) ≡ Q(x , y) = 1+t(y + x̄ + xȳ)Q(x , y)−tx̄Q(0, y)−txȳQ(x , 0)

Q(x , y ; t) =
∑

i ,j ,n≥0

q(i , j ; n)x iy j tn

or(
1− t(y + x̄ + xȳ)

)
xyQ(x , y) = xy − tyQ(0, y)− tx2Q(x , 0)

• The polynomial 1− t(y + x̄ + xȳ) is the kernel of this equation

• The equation is linear, with two catalytic variables x and y (tautological
at x = 0 or y = 0)
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Exact results: examples

expressions for q(n), for q(i , j ; n)

expressions for the generating functions

Q(t) :=
∑
n

q(n)tn and Q(x , y ; t) :=
∑
i ,j ,n

x iy j tnq(i , j ; n)

nature of these generating functions



A hierarchy of formal power series

• Rational series

A(t) =
P(t)

Q(t)

• Algebraic series

P(t,A(t)) = 0

• Differentially finite series (D-finite)
d∑

i=0

Pi (t)A(i)(t) = 0

• D-algebraic series

P(t,A(t),A′(t), . . . ,A(d)(t)) = 0



1. Expressions for numbers

• Square lattice walks

q(0, 0; 2n) = CnCn+1 with Cn =
1

n + 1

(
2n
n

)
• Kreweras’ walks [Kreweras 65]

q(0, 0; 3n) =
4n

(n + 1)(2n + 1)

(
3n
n

)
• Gessel’s walks [Kauers-Zeilberger 09]

q(0, 0; 2n) = 16n
(5/6)n(1/2)n

(5/3)n(2)n

where (a)n = a(a + 1) · · · (a + n − 1) = Γ(a+n)
Γ(a) is the ascending factorial.



2. Expressions for series

As positive parts of rational series in t (with x̄ := 1/x , ȳ := 1/y):

Q(x , y ; t) = [x≥0y≥0]
1− x̄2y + x̄3 − x̄2ȳ2 + ȳ3 − xȳ2

1− t(y + x̄ + xȳ)

[mbm-Mishna 09]

As explicit integrals involving hypergeometric series

Q(0, 0; t) =
2
t2

∫ t

0

∫ u

0

1

(1− 4 v2)3/2 2F1

(
3
4
,
5
4

; 2; 64
(v + 1) v3

(1− 4 v2)2

)
dv du

[Bostan-Chyzak-van Hoeij-Kauers-Pech 17]
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2. Expressions for series (cont’d)

In terms of Weierstrass’ function and elliptic integrals

t(1 + y)Q(0, y ; t) +
1
y

=
I ′(0)

I (y)− I (0)
− I ′(0)

I (−1)− I (0)
− 1

with
I (y) ≡ I (y ; t) = ℘ (R(y ; t), ω1(t), ω3(t))

where
I ℘ is Weierstrass’ elliptic function
I its periods ω1 and ω3 are explicit elliptic integrals
I its argument R is also an explicit elliptic integral

[Bernardi-mbm-Raschel 17(a)]



2. Expressions for series (cont’d)

Climax: an integral expression involving the same ingredients

K̃ (0, y ; t)Q(0, y ; t)− K̃ (0, 0; t)Q(0, 0; t) = yX0(y ; t)+

1
2iπ

∫ y2(t)

y1(t)
u [X0(u; t)− X1(u; t)]

[
∂uI (u; t)

I (u; t)− I (y ; t)
− ∂uI (u; t)

I (u; t)− I (0; t)

]
du

where K̃ (x , y ; t) = xy(1− tS(x , y)), X0, X1, y1 and y2 are explicit
algebraic series and I (y ; t) is as given on the previous slide.

Valid for all (non-singular) small step models
[Raschel 12]



3. Nature of the series

Algebraic [Kreweras 65, Gessel 86]

(1− t(x̄ + ȳ + xy))xyQ(x , y) = xy − tyQ(0, y)− txQ(x , 0)

D-finite, but transcendental [Gessel 90](
1− t(y + x̄ + xȳ)

)
xyQ(x , y) = xy − tyQ(0, y)− tx2Q(x , 0)

Not D-finite, but D-algebraic [Bernardi, mbm & Raschel 17]

(1− t(x + x̄ + y + xȳ))xyQ(x , y) = xy − tyQ(0, y)− tx2Q(x , 0)

Not D-algebraic (in y) [Dreyfus, Hardouin, Roques & Singer 17]

(1− t(xȳ + x̄ + ȳ + y))xyQ(x , y) = xy − tyQ(0, y)− tx(1 + x)Q(x , 0)



Classification of quadrant walks: a variety of tools

quadrant models: 79

|G |<∞: 23

D-finite

OS=0: 4

algebraic

OS6=0: 19

DF transc.

|G |=∞: 56

Not D-finite

decoupled: 9

D-alg.

not decoupled: 47

not D-alg.

Computer algebra

Formal power
series algebra

arithmetic properties

G-functions
asymptotics

D-finite series
effective closure properties

Differential Galois theory

in probability
Random walks

Complex analysis



III.1. The group of the walk,
and D-finite cases

quadrant models: 79

|G |<∞: 23

D-finite

OS=0: 4

algebraic

OS6=0: 19

DF transc.

|G |=∞: 56

Not D-finite

decoupled: 9

D-alg.

not decoupled: 47

not D-alg.

Formal power
series algebra

[mbm & Mishna 09]



The group of the model

Example. Take S = {1̄0, 01, 11̄}, with step polynomial

S(x , y) =
1
x

+ y +
x

y
= x̄ + y + xȳ

Observation: S(x , y) is left unchanged by the rational transformations

Φ : (x , y) 7→ (x̄y , y) and Ψ : (x , y) 7→ (x , xȳ) .

They are involutions, and generate a finite dihedral group G :

(x̄y , y)

(x , xȳ)

(x̄y , x̄)

(ȳ , xȳ)

Ψ

ΦΨ

Φ

(x , y)

Ψ

Φ

(ȳ , x̄)

Remark. G can be defined for any quadrant model with small steps
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The group is not always finite

• If S = {01̄, 1̄1̄, 1̄0, 11}, then S(x , y) = x̄(1 + ȳ) + ȳ + xy and

Φ : (x , y) 7→ (x̄ ȳ(1 + ȳ), y) and Ψ : (x , y) 7→ (x , x̄ ȳ(1 + x̄))

generate an infinite group:

Ψ

Φ

(x , y)

· · ·

· · ·(x , x̄ ȳ(1 + x̄))

(x̄ ȳ(1 + ȳ), y)
Ψ

Φ

· · ·

· · ·

· · ·

· · ·

Φ

Ψ

Ψ

Φ



The algebraic kernel method

• The equation reads (with K (x , y) = 1− t(y + x̄ + xȳ)):

K (x , y)xyQ(x , y) = xy − tx2Q(x , 0)− tyQ(0, y)

• The orbit of (x , y) under G is

(x , y)
Φ←→(x̄y , y)

Ψ←→(x̄y , x̄)
Φ←→(ȳ , x̄)

Ψ←→(ȳ , xȳ)
Φ←→(x , xȳ)

Ψ←→(x , y).

• All transformations of G leave K (x , y) invariant. Hence

K (x , y) xyQ(x , y) = xy − tx2Q(x , 0) − tyQ(0, y)

K (x , y) x̄y2Q(x̄y , y) = x̄y2 − tx̄2y2Q(x̄y , 0) − tyQ(0, y)

K (x , y) x̄2yQ(x̄y , x̄) = x̄2y − tx̄2y2Q(x̄y , 0) − tx̄Q(0, x̄)

· · · = · · ·

K (x , y) x2ȳQ(x , xȳ) = x2ȳ − tx2Q(x , 0) − txȳQ(0, xȳ).
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The algebraic kernel method

⇒ Form the alternating sum of the equation over all elements of the orbit:

K (x , y)
(
xyQ(x , y)− x̄y2Q(x̄y , y) + x̄2yQ(x̄y , x̄)

− x̄ ȳQ(ȳ , x̄) + xȳ2Q(ȳ , xȳ)− x2ȳQ(x , xȳ)
)

=

xy − x̄y2 + x̄2y − x̄ ȳ + xȳ2 − x2ȳ

(the orbit sum).



Why is this interesting?

xyQ(x , y)− x̄y2Q(x̄y , y) + x̄2yQ(x̄y , x̄)

− x̄ ȳQ(ȳ , x̄) + xȳ2Q(ȳ , xȳ)− x2ȳQ(x , xȳ) =

xy − x̄y2 + x̄2y − x̄ ȳ + xȳ2 − x2ȳ

1− t(y + x̄ + xȳ)

• Both sides are power series in t, with coefficients in Q[x , x̄ , y , ȳ ].

• Extract the part with positive powers of x and y :

xyQ(x , y) = [x>0y>0]
xy − x̄y2 + x̄2y − x̄ ȳ + xȳ2 − x2ȳ

1− t(y + x̄ + xȳ)

is a D-finite series.
[Lipshitz 88]
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The kernel method in general (finite groups)

• For all models with a finite group,∑
g∈G

sign(g)g(xyQ(x , y ; t)) =
1

K (x , y ; t)

∑
g∈G

sign(g)g(xy) =
OS

K (x , y ; t)
,

where g(Q(x , y)) := Q(g(x , y)).

• The right-hand side is an explicit rational series.

• For the 19 models where the orbit sum is non-zero,

xyQ(x , y ; t) = [x>0y>0]
OS

K (x , y ; t)

is a D-finite series.

[mbm-Mishna 10]
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The group of the walk, and D-finite cases

quadrant models: 79

|G |<∞: 23

D-finite

OS=0: 4

algebraic

OS6=0: 19

DF transc.

|G |=∞: 56

Not D-finite

decoupled: 9

D-alg.

not decoupled: 47

not D-alg.

Formal power
series algebra

[mbm & Mishna 09]



III.2. Computer algebra:
a guess & check approach



In 1D: Walks on a half-line with steps +1,−1
• Generating function:

H(y ; t) ≡ H(y) =
∑
n≥0

∑
j≥0

h(j ; n)y j tn

h(j ; n) : number of n-step walks on the half-line ending at ordinate j

j

n



In 1D: Walks on a half-line with steps +1,−1
• Generating function:

H(y ; t) ≡ H(y) =
∑
n≥0

∑
j≥0

h(j ; n)y j tn

• Step-by-step construction:

H(y) = 1 + t(y + ȳ)H(y)− tȳH(0)

with ȳ = 1/y .



In 1D: Walks on a half-line with steps +1,−1
• Generating function:

H(y ; t) ≡ H(y) =
∑
n≥0

∑
j≥0

h(j ; n)y j tn

• Step-by-step construction:

H(y) = 1 + t(y + ȳ)H(y)− tȳH(0)

or (
1− t(y + ȳ)

)
H(y) = 1− tȳH(0).



Guess & check for walks on a half-line

• The equation: (
1− t(y + ȳ)

)
H(y ; t) = 1− tȳH(0; t). (1)

• A uniqueness result: there exists a unique series H(y ; t) ≡ H(y) in t,
with coefficients in Q[y ], satisfying the above equation.

• Generate the first coefficients:

H(0) ≡ H(0; t) = 1 + t2 + 2 t4 + 5 t6 + 14 t8 + 42 t10 + O(t12).

• Guess that [Gfun]
H(0) = 1 + t2H(0)2 and H(y) = 1 + t(ty2 + t − y)H(y)2 + 2tyH(y).

• This equation has a unique solution H̃(y) that is a power series in t,
and its coefficients are polynomials in y .

• Check (using resultants, and the first coeffs.) that H̃(y) satisfies (1).
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Some guess & check quadrant results

Algebraicity results for Q(x , y ; t)

I Kreweras’ walks [Bostan, Kauers 10]

I Gessel’s walks [Bostan, Kauers 10]

D-finiteness results for Q(x , y ; t)

I Gessel’s walks (for Q(0, 0; t) only) [Kauers, Zeilberger 09]
I For weighted D-finite models that resist the algebraic kernel method

[Bostan, mbm, Kauers, Melczer 16]

For Gessel’s walks, the polynomial annihilating Q(x , y ; t) has size about
30Gb.

Even with big computers, one needs to be clever!
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III.3. Non-D-finiteness via
asymptotics

quadrant models: 79

|G |<∞: 23

D-finite

OS=0: 4

algebraic

OS 6=0: 19

DF transc.

|G |=∞: 56

Not D-finite

singular: 5 not singular: 51

arithmetic properties
asymptotics

D-finite series
G-functions

in probability
Random walks



Non-D-finiteness via asymptotics

• The excursion exponent: let S ⊂ Z2 be a (finite) step set, and let
S(x , y) =

∑
(k,`)∈S x

ky `. For walks in the quadrant N2 ending at (0, 0):

q(0, 0; n) ∼ κµnn−1−π/θ

where

θ = arccos (−c) , c =
S ′′1,2(xc , yc)√

S ′′1,1(xc , yc)S ′′2,2(xc , yc)

with S ′1(xc , yc) = S ′2(xc , yc) = 0.

Asymptotics of D-finite generating functions (G-functions)
[André 89], [Chudnovsky2 85], [Katz 70]
then Q(0, 0; t) cannot be D-finite.

Non-D-finiteness [Bostan, Raschel, Salvy 14]
The series Q(0, 0; t) is not D-finite for 51 of the 79 small step models.
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Asymptotics of D-finite generating functions (G-functions)
[André 89], [Chudnovsky2 85], [Katz 70]
If the exponent −1− π/θ is irrational, then Q(0, 0; t) cannot be D-finite.

Non-D-finiteness [Bostan, Raschel, Salvy 14]
The series Q(0, 0; t) is not D-finite for 51 of the 79 small step models.
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• The excursion exponent: let S ⊂ Z2 be a (finite) step set, and let
S(x , y) =

∑
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Asymptotics of D-finite generating functions (G-functions)
[André 89], [Chudnovsky2 85], [Katz 70]
If c is not the root of a cyclotomic polynomial, then Q(0, 0; t) cannot be
D-finite.

Non-D-finiteness [Bostan, Raschel, Salvy 14]
The series Q(0, 0; t) is not D-finite for 51 of the 79 small step models.
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Non-D-finiteness via asymptotics

quadrant models: 79

|G |<∞: 23

D-finite

OS=0: 4

algebraic

OS 6=0: 19

DF transc.

|G |=∞: 56

Not D-finite

singular: 5 not singular: 51

arithmetic properties
asymptotics

D-finite series
G-functions

in probability
Random walks



Classification of quadrant walks: a variety of tools

quadrant models: 79

|G |<∞: 23

D-finite

OS=0: 4

algebraic

OS6=0: 19

DF transc.

|G |=∞: 56

Not D-finite

decoupled: 9

D-alg.

not decoupled: 47

not D-alg.

Computer algebra

Formal power
series algebra

arithmetic properties

G-functions
asymptotics

D-finite series
effective closure properties

Differential Galois theory

in probability
Random walks

Complex analysis



Beyond small steps in the quadrant

[Gessel 80]

Walks in a cone

2D1D

half-line

algebraic

half-plane three quadrants

3D, and more

orthant Nd

[Raschel-Trotignon 18] [Du-Hou-Wang 16]
[Bacher-Kauers-Yatchak 16]

[Bostan-mbm-Kauers-Melczer 16]

[mbm 16]

arbitrary stepssmall steps
[Bostan-mbm-Melczer 18]

quadrant

[Budd 18]

• Arbitrary steps in the quadrant ⇒ equivalence between D-finiteness and
finite “group”?
• Walks avoiding a quadrant: same dichotomy between D-finite and
non-D-finite models?
• Walks with small steps in N3: some non-D-finite models with a finite
group?
Example. The model {111, 1̄00, 01̄0, 001̄} has a finite group of order 24.
The orbit sum vanishes. Is it D-finite?
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