Counting lattice paths confined to cones

Mireille Bousquet-Mélou, CNRS, Bordeaux, France

(c) Raschel, Trotignon

A typical question

Let \mathcal{S} be a finite subset of \mathbb{Z}^{d} (set of steps) and $p_{0} \in \mathbb{Z}^{d}$ (starting point).

Example. $\mathcal{S}=\{10, \overline{1} 0,1 \overline{1}, \overline{1} 1\}, p_{0}=(0,0)$

A typical question

Let \mathcal{S} be a finite subset of \mathbb{Z}^{d} (set of steps) and $p_{0} \in \mathbb{Z}^{d}$ (starting point).
A path (walk) of length n starting at p_{0} is a sequence $\left(p_{0}, p_{1}, \ldots, p_{n}\right)$ such that $p_{i+1}-p_{i} \in \mathcal{S}$ for all i.

Example. $\mathcal{S}=\{10, \overline{1} 0,1 \overline{1}, \overline{1} 1\}, p_{0}=(0,0)$

A typical question

Let \mathcal{S} be a finite subset of \mathbb{Z}^{d} (set of steps) and $p_{0} \in \mathbb{Z}^{d}$ (starting point).
A path (walk) of length n starting at p_{0} is a sequence $\left(p_{0}, p_{1}, \ldots, p_{n}\right)$ such that $p_{i+1}-p_{i} \in \mathcal{S}$ for all i.

Let C be a cone of \mathbb{R}^{d}.

Example. $\mathcal{S}=\{10, \overline{1} 0,1 \overline{1}, \overline{1} 1\}, p_{0}=(0,0)$ and $C=\mathbb{R}_{+}^{2}$.

A typical question

Questions

- What is the number $a(n)$ of n-step walks starting at p_{0} and contained in C?
- For $\boldsymbol{i}=\left(i_{1}, \ldots, i_{d}\right) \in C$, what is the number $a(i ; n)$ of such walks that end at i ?

Example. $\mathcal{S}=\{10, \overline{1} 0,1 \overline{1}, \overline{1} 1\}, p_{0}=(0,0)$ and $C=\mathbb{R}_{+}^{2}$.

Example [Gouyou-Beauchamps 86], [mbm-Mishna 10]

Take $\mathcal{S}=\{10, \overline{1} 0,1 \overline{1}, \overline{1} 1\}, p_{0}=(0,0)$ and $C=\mathbb{R}_{+}^{2}$

Example [Gouyou-Beauchamps 86], [mbm-Mishna 10]
Take $\mathcal{S}=\{10, \overline{1} 0,1 \overline{1}, \overline{1} 1\}, p_{0}=(0,0)$ and $C=\mathbb{R}_{+}^{2}$

Nice numbers
If $n=2 m+\delta$, with $\delta \in\{0,1\}$,

$$
a(n)=\frac{n!(n+1)!}{m!(m+1)!(m+\delta)!(m+\delta+1)!} .
$$

Moreover, if $n=2 m+i$,

$$
a(i, j ; n)=\frac{(i+1)(j+1)(i+j+2)(i+2 j+3) n!(n+2)!}{(m-j)!(m+1)!(m+i+2)!(m+i+j+3)!} .
$$

Why count walks in cones?

Why count walks in cones?

- Many discrete objects can be encoded in that way:
- in combinatorics, statistical physics...
- in (discrete) probability theory: random walks, queuing theory...

Why count walks in cones?

- Many discrete objects can be encoded in that way:
- in combinatorics, statistical physics...
- in (discrete) probability theory: random walks, queuing theory...

$+\quad$ Young tableaux of height 4 [Gouyou-Beauchamps 89]

Why count walks in cones?

- Many discrete objects can be encoded in that way:
- in combinatorics, statistical physics...
- in (discrete) probability theory: random walks, queuing theory...
- To reach a better understanding of functional equations with divided differences

$$
Q(x, y)=1+\operatorname{txy} Q(x, y)+t \frac{Q(x, y)-Q(0, y)}{x}+t \frac{Q(x, y)-Q(x, 0)}{y}
$$

Many contributions

Adan, Banderier, Bernardi, Bostan, Budd, Cori, Denisov, Duchon, Dulucq, Fayolle, Gessel, Fisher, Flajolet, Gouyou-Beauchamps, Guttmann, Guy, Janse van Rensburg, Johnson, Kauers, Koutschan, Krattenthaler, Kurkova, Kreweras, van Leeuwarden, MacMahon, Melczer, Mishna, Niederhausen, Petkovšek, Prellberg, Raschel, Rechnitzer, Sagan, Salvy, Viennot, Wachtel, Wilf, Yeats, Zeilberger...
etc.

Many contributions

Adan, Banderier, Bernardi, Bostan, Budd, Cori, Denisov, Duchon, Dulucq, Fayolle, Gessel, Fisher, Flajolet, Gouyou-Beauchamps, Guttmann, Guy, Janse van Rensburg, Johnson, Kauers, Koutschan, Krattenthaler, Kurkova, Kreweras, van Leeuwarden, MacMahon, Melczer, Mishna, Niederhausen, Petkovšek, Prellberg, Raschel, Rechnitzer, Sagan, Salvy, Viennot, Wachtel, Wilf, Yeats, Zeilberger...

etc.

> Systematic approach

A too ambitious question?

- Our original question: exact enumeration

$$
a(n)=? \quad a(\boldsymbol{i} ; n)=?
$$

A too ambitious question?

- Our original question: exact enumeration

$$
a(n)=? \quad a(\boldsymbol{i} ; n)=?
$$

- Weaker question: asymptotic enumeration

$$
a(n) \sim ? \quad a(\boldsymbol{i} ; n) \sim ?
$$

A too ambitious question?

- Our original question: exact enumeration

$$
a(n)=? \quad a(i ; n)=?
$$

- Weaker question: asymptotic enumeration

$$
a(n) \sim ? \quad a(\boldsymbol{i} ; n) \sim ?
$$

- Generating functions:

$$
\begin{aligned}
A(t)=\sum_{n \geq 0} a(n) t^{n}, \quad A\left(x_{1}, \ldots, x_{d} ; t\right) & =\sum_{i, n} a(\boldsymbol{i} ; n) \boldsymbol{x}^{\boldsymbol{i}} t^{n} \\
& =\sum_{w \text { walk }} \boldsymbol{x}^{\boldsymbol{i}(w)} t^{|w|}
\end{aligned}
$$

A too ambitious question?

- Our original question: exact enumeration

$$
a(n)=? \quad a(i ; n)=?
$$

- Weaker question: asymptotic enumeration

$$
a(n) \sim ? \quad a(\boldsymbol{i} ; n) \sim ?
$$

- Generating functions:

$$
A(t)=\sum_{n \geq 0} a(n) t^{n}, \quad A\left(x_{1}, \ldots, x_{d} ; t\right)=\sum_{i, n} a(\boldsymbol{i} ; n) \boldsymbol{x}^{i} t^{n}
$$

Remarks

$$
=\sum_{w \text { walk }} x^{i(w)} t^{|w|}
$$

- $A(1, \ldots, 1 ; t)=A(t)$
- if $C \subset \mathbb{R}_{+}^{d}$, then $A(0, \ldots, 0 ; t)$ counts walks ending at $(0, \ldots, 0)$
- $A\left(0, x_{2}, \ldots, x_{d} ; t\right)$ counts walks ending on the hyperplane $i_{1}=0$

A too ambitious question?

- Our original question: exact enumeration

$$
a(n)=? \quad a(i ; n)=?
$$

- Weaker question: asymptotic enumeration

$$
a(n) \sim ? \quad a(\boldsymbol{i} ; n) \sim ?
$$

- Generating functions:

$$
A(t)=\sum_{n \geq 0} a(n) t^{n}, \quad A\left(x_{1}, \ldots, x_{d} ; t\right)=\sum_{i, n} a(\boldsymbol{i} ; n) \boldsymbol{x}^{\boldsymbol{i}} t^{n}
$$

Remarks

$$
=\sum_{w \text { walk }} x^{i(w)} t^{|w|}
$$

- $A(1, \ldots, 1 ; t)=A(t)$
- if $C \subset \mathbb{R}_{+}^{d}$, then $A(0, \ldots, 0 ; t)$ counts walks ending at $(0, \ldots, 0)$
- $A\left(0, x_{2}, \ldots, x_{d} ; t\right)$ counts walks ending on the hyperplane $i_{1}=0$

Can one express these series? What is their nature?

A hierarchy of formal power series

- Rational series

$$
A(t)=\frac{P(t)}{Q(t)}
$$

- Algebraic series

$$
P(t, A(t))=0
$$

- Differentially finite series (D-finite)

$$
\sum_{i=0}^{d} P_{i}(t) A^{(i)}(t)=0
$$

- D-algebraic series

$$
P\left(t, A(t), A^{\prime}(t), \ldots, A^{(d)}(t)\right)=0
$$

A hierarchy of formal power series

- Rational series

$$
A(t)=\frac{P(t)}{Q(t)}
$$

- Algebraic series

$$
P(t, A(t))=0
$$

- Differentially finite series (D-finite)

Multi-variate series: one DE per variable

A (very) basic cone: the full space

Rational series

If $\mathcal{S} \subset \mathbb{Z}^{d}$ is finite and $C=\mathbb{R}^{d}$, then $A(x ; t)$ is rational:

$$
a(n)=|\mathcal{S}|^{n} \quad \Leftrightarrow \quad A(t)=\sum_{n \geq 0} a(n) t^{n}=\frac{1}{1-|\mathcal{S}| t}
$$

More generally:

$$
A(x ; t)=\frac{1}{1-t \sum_{s \in \mathcal{S}} \boldsymbol{x}^{s}} .
$$

Caveat: rational cones only!

The bounding hyperplanes are given by linear equations with integer/rational coefficients.

Example: the generating function of walks with N and E steps under a line of irrational slope is not known.

Also well-known: a (rational) half-space

Algebraic series
If $\mathcal{S} \subset \mathbb{Z}^{d}$ is finite and C is a rational half-space, then $A(x ; t)$ is algebraic, given by an explicit system of polynomial equations.
[Gessel 80]; [mbm-Petkovšek 00], [Duchon 00], [Banderier \& Flajolet 02]...

Also well-known: a (rational) half-space

By projection: Equivalent to walks in 1D confined to a half-line

The "next" case: two bounding hyperplanes

- Convex cone: walks in a quadrant

- Non-convex cone: walks avoiding a quadrant

Counting walks confined to cones

Counting walks confined to cones

A typical question

Let \mathcal{S} be a finite subset of \mathbb{Z}^{2} (set of steps) and $p_{0} \in \mathbb{Z}^{d}$ (starting point).

Questions

- What is the number $q(n)$ of n-step walks starting at p_{0} and contained in the quadrant \mathbb{N}^{2} ?
- For $(i, j) \in \mathbb{N}^{2}$, what is the number $q(i, j ; n)$ of such walks that end at (i, j) ?

The associated generating function:

$$
Q(x, y ; t)=\sum_{i, j, n \geq 0} q(i, j ; n) x^{i} y^{j} t^{n}=?
$$

II. Walks in a quadrant: asymptotic enumeration

1. Excursions (prescribed endpoint (i, j))
2. All quadrant walks

Expected:

$$
q(i, j ; n) \sim \kappa \mu_{e}^{n} n^{\gamma_{e}} \quad q(n) \sim \kappa \mu_{w}^{n} \gamma^{\gamma_{w}}
$$

possibly with periodicity conditions on n.

The 1D case: excursions on a half-line

- The brownian exponent: as $t \rightarrow \infty$,
$\mathbb{P}\left(B_{s}>-a\right.$ for $s \in[0, t]$ and $\left.B_{t} \in K\right) \sim \kappa t^{-3 / 2}$

The 1D case: excursions on a half-line

- The brownian exponent: as $t \rightarrow \infty$,

$$
\mathbb{P}\left(B_{s}>-a \text { for } s \in[0, t] \text { and } B_{t} \in K\right) \sim \kappa t^{-3 / 2}
$$

- Lattice walks: let \mathcal{S} be a (finite) step set, and let $S(x)=\sum_{s \in \mathcal{S}} x^{s}$. For walks on the non-negative half-line ending at position i,

$$
h(i ; n) \sim \kappa \mu^{n} n^{-3 / 2}
$$

where

$$
\begin{aligned}
\mu & =\min _{x>0} S(x) \\
& =S\left(x_{c}\right) \quad \text { with } \quad S^{\prime}\left(x_{c}\right)=0
\end{aligned}
$$

The 1D case: excursions on a half-line

- The brownian exponent: as $t \rightarrow \infty$,

$$
\mathbb{P}\left(B_{s}>-a \text { for } s \in[0, t] \text { and } B_{t} \in K\right) \sim \kappa t^{-3 / 2}
$$

- Lattice walks: let \mathcal{S} be a (finite) step set, and let $S(x)=\sum_{s \in \mathcal{S}} x^{s}$. For walks on the non-negative half-line ending at position i,

$$
h(i ; n) \sim \kappa \mu^{n} n^{-3 / 2}
$$

where

$$
\begin{aligned}
\mu & =\min _{x>0} S(x) \\
& =S\left(x_{c}\right) \quad \text { with } \quad S^{\prime}\left(x_{c}\right)=0
\end{aligned}
$$

Remark: $\mu \leq S(1)$, with equality iff $S^{\prime}(1)=\sum_{s \in \mathcal{S}} s=0 \quad \Leftrightarrow$ NO DRIFT

The 2D case: excursions in a quadrant

- The (2D) brownian exponent: as $t \rightarrow \infty$, $\mathbb{P}\left(B_{s}>-\boldsymbol{a}\right.$ for $s \in[0, t]$ and $\left.B_{t} \in K\right) \sim \kappa t^{-3}$

The 2D case: excursions in a quadrant

- The (2D) brownian exponent: as $t \rightarrow \infty$, $\mathbb{P}\left(B_{s}>-\boldsymbol{a}\right.$ for $s \in[0, t]$ and $\left.B_{t} \in K\right) \sim \kappa t^{-3}$
- Lattice walks:

The 2D case: excursions in a quadrant

- The (2D) brownian exponent: as $t \rightarrow \infty$, $\mathbb{P}\left(B_{s}>-\boldsymbol{a}\right.$ for $s \in[0, t]$ and $\left.B_{t} \in K\right) \sim \kappa t^{-3}$
- Lattice walks:

The 2D case: excursions in a quadrant

- The (2D) brownian exponent: as $t \rightarrow \infty$, $\mathbb{P}\left(B_{s}>-\boldsymbol{a}\right.$ for $s \in[0, t]$ and $\left.B_{t} \in K\right) \sim \kappa t^{-3}$
- Lattice walks:

The 2D case: excursions in a quadrant

- The (2D) brownian exponent: as $t \rightarrow \infty$, $\mathbb{P}\left(B_{s}>-\boldsymbol{a}\right.$ for $s \in[0, t]$ and $\left.B_{t} \in K\right) \sim \kappa t^{-3}$
- Lattice walks:

The x - and y-moves are correlated.

Excursions in a quadrant: an example

Take a uniform random walk with steps $(0,1),(-1,0),(1,-1)$. We have $\mathbb{E}(X)=\mathbb{E}(Y)=0, \quad \mathbb{E}\left(X^{2}\right)=\mathbb{E}\left(Y^{2}\right)=2 / 3 \quad$ and $\quad \mathbb{E}(X Y)=-1 / 3$.

Excursions in a quadrant: an example

Take a uniform random walk with steps $(0,1),(-1,0),(1,-1)$. We have $\mathbb{E}(X)=\mathbb{E}(Y)=0, \quad \mathbb{E}\left(X^{2}\right)=\mathbb{E}\left(Y^{2}\right)=2 / 3 \quad$ and $\quad \mathbb{E}(X Y)=-1 / 3$.

Excursions in a quadrant: an example

Take a uniform random walk with steps $(0,1),(-1,0),(1,-1)$. We have

$$
\mathbb{E}(X)=\mathbb{E}(Y)=0, \quad \mathbb{E}\left(X^{2}\right)=\mathbb{E}\left(Y^{2}\right)=2 / 3 \quad \text { and } \quad \mathbb{E}(X Y)=-1 / 3
$$

Define

$$
Y^{\prime}=\frac{1}{\sqrt{3}}(X+2 Y)
$$

so that

$$
\mathbb{E}(X)=\mathbb{E}\left(Y^{\prime}\right)=0, \quad \mathbb{E}\left(X^{2}\right)=\mathbb{E}\left(Y^{\prime 2}\right)=2 / 3 \quad \text { and } \quad \mathbb{E}\left(X Y^{\prime}\right)=0
$$

But the confining quadrant has become a wedge of $\pi / 3$!

The 2D case: excursions in a wedge

- Brownian exponents: as $t \rightarrow \infty$,
$\mathbb{P}\left(B_{s} \in W_{\theta}\right.$ for $s \in[0, t]$ and $\left.B_{t} \in K\right) \sim \kappa t^{-1-\pi / \theta}$
- Lattice walks:

$\square+$	\square	\square	
θ	$\pi / 2$	$\pi / 3$	$2 \pi / 3$
$q(0,0 ; n) \sim$	$\kappa 4^{n} n^{-3}$	$\kappa 3^{n} n^{-4}$	$\kappa 3^{n} n^{-5 / 2}$

The 2D case: excursions in a wedge

- Brownian exponents: as $t \rightarrow \infty$,

$$
\mathbb{P}\left(B_{s} \in W_{\theta} \text { for } s \in[0, t] \text { and } B_{t} \in K\right) \sim \kappa t^{-1-\pi / \theta}
$$

- Lattice walks: let $\mathcal{S} \subset \mathbb{Z}^{2}$ be a (finite) step set, and let $S(x, y)=\sum_{(k, \ell) \in \mathcal{S}} x^{k} y^{\ell}$. For walks in the quadrant \mathbb{N}^{2} ending at (i, j),

$$
q(i, j ; n) \sim \kappa \mu^{n} n^{-1-\pi / \theta}
$$

where

$$
\begin{aligned}
\mu & =\min _{x>0, y>0} S(x, y) \\
& =S\left(x_{c}, y_{c}\right) \quad \text { with } \quad S_{1}^{\prime}\left(x_{c}, y_{c}\right)=S_{2}^{\prime}\left(x_{c}, y_{c}\right)=0
\end{aligned}
$$

and

$$
\theta=\arccos \left(-\frac{S_{1,2}^{\prime \prime}\left(x_{c}, y_{c}\right)}{\sqrt{S_{1,1}^{\prime \prime}\left(x_{c}, y_{c}\right) S_{2,2}^{\prime \prime}\left(x_{c}, y_{c}\right)}}\right) \quad \begin{aligned}
& {[\text { Denisov \& }} \\
& \text { Wachtel 15] }
\end{aligned}
$$

III. Walks in a quadrant: exact enumeration

Counting walks confined to cones

Counting walks confined to cones

The 79 interesting distinct quadrant models with small steps

Singular

The 79 interesting distinct quadrant models with small steps

$Y \triangle \nearrow \square \quad$ Non-singular

\nsim

Singular

The starting point: a recurrence relation...

The numbers $q(i, j ; n)$ satisfy

$$
q(i, j ; n)= \begin{cases}0 & \text { if } i<0 \text { or } j<0 \text { or } n<0, \\ \mathbb{1}_{i=j=0} q\left(i-i^{\prime}, j-j^{\prime} ; n-1\right) & \text { if } n=0, \\ \sum_{\left(i, j^{\prime}\right) \in \mathcal{S}} q(h e r w i s e\end{cases}
$$

\Rightarrow an equation for

$$
Q(x, y ; t)=\sum_{i, j, n \geq 0} q(i, j ; n) x^{i} y^{j} t^{n}
$$

... and the corresponding functional equation

Example: $\mathcal{S}=\{01, \overline{1} 0,1 \overline{1}\}$, with $\bar{x}:=1 / x$ and $\bar{y}:=1 / y$

$$
Q(x, y ; t) \equiv Q(x, y)=1+t(y+\bar{x}+x \bar{y}) Q(x, y)-t \bar{x} Q(0, y)-t x \bar{y} Q(x, 0)
$$

$$
Q(x, y ; t)=\sum_{i, j, n \geq 0} q(i, j ; n) x^{i} y^{j} t^{n}
$$

and the corresponding functional equation

Example: $\mathcal{S}=\{01, \overline{1} 0,1 \overline{1}\}$, with $\bar{x}:=1 / x$ and $\bar{y}:=1 / y$
$Q(x, y ; t) \equiv Q(x, y)=1+t(y+\bar{x}+x \bar{y}) Q(x, y)-t \bar{x} Q(0, y)-t x \bar{y} Q(x, 0)$
or

$$
(1-t(y+\bar{x}+x \bar{y})) Q(x, y)=1-t \bar{x} Q(0, y)-t x \bar{y} Q(x, 0),
$$

and the corresponding functional equation

Example: $\mathcal{S}=\{01, \overline{1} 0,1 \overline{1}\}$, with $\bar{x}:=1 / x$ and $\bar{y}:=1 / y$
$Q(x, y ; t) \equiv Q(x, y)=1+t(y+\bar{x}+x \bar{y}) Q(x, y)-t \bar{x} Q(0, y)-t x \bar{y} Q(x, 0)$
or

$$
(1-t(y+\bar{x}+x \bar{y})) Q(x, y)=1-t \bar{x} Q(0, y)-t x \bar{y} Q(x, 0)
$$

or

$$
(1-t(y+\bar{x}+x \bar{y})) x y Q(x, y)=x y-t y Q(0, y)-t x^{2} Q(x, 0)
$$

- The polynomial $1-t(y+\bar{x}+x \bar{y})$ is the kernel of this equation
- The equation is linear, with two catalytic variables x and y (tautological at $x=0$ or $y=0$)

Exact results: examples

- expressions for $q(n)$, for $q(i, j ; n)$
- expressions for the generating functions

$$
Q(t):=\sum_{n} q(n) t^{n} \quad \text { and } \quad Q(x, y ; t):=\sum_{i, j, n} x^{i} y^{j} t^{n} q(i, j ; n)
$$

- nature of these generating functions

A hierarchy of formal power series

- Rational series

$$
A(t)=\frac{P(t)}{Q(t)}
$$

- Algebraic series

$$
P(t, A(t))=0
$$

- Differentially finite series (D-finite)

$$
\sum_{i=0}^{d} P_{i}(t) A^{(i)}(t)=0
$$

- D-algebraic series

$$
P\left(t, A(t), A^{\prime}(t), \ldots, A^{(d)}(t)\right)=0
$$

1. Expressions for numbers

- Square lattice walks

$$
q(0,0 ; 2 n)=C_{n} C_{n+1} \quad \text { with } \quad C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

- Kreweras' walks [Kreweras 65]

$$
q(0,0 ; 3 n)=\frac{4^{n}}{(n+1)(2 n+1)}\binom{3 n}{n}
$$

- Gessel's walks [Kauers-Zeilberger 09]

$$
q(0,0 ; 2 n)=16^{n} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(5 / 3)_{n}(2)_{n}}
$$

where $(a)_{n}=a(a+1) \cdots(a+n-1)=\frac{\Gamma(a+n)}{\Gamma(a)}$ is the ascending factorial.

2. Expressions for series

- As positive parts of rational series in t (with $\bar{x}:=1 / x, \bar{y}:=1 / y$):

$$
Q(x, y ; t)=\left[x^{\geq 0} y^{\geq 0}\right] \frac{1-\bar{x}^{2} y+\bar{x}^{3}-\bar{x}^{2} \bar{y}^{2}+\bar{y}^{3}-x \bar{y}^{2}}{1-t(y+\bar{x}+x \bar{y})}
$$

\square [mbm-Mishna 09]

2. Expressions for series

- As positive parts of rational series in t (with $\bar{x}:=1 / x, \bar{y}:=1 / y$):

$$
Q(x, y ; t)=\left[x^{\geq 0} y^{\geq 0}\right] \frac{1-\bar{x}^{2} y+\bar{x}^{3}-\bar{x}^{2} \bar{y}^{2}+\bar{y}^{3}-x \bar{y}^{2}}{1-t(y+\bar{x}+x \bar{y})}
$$

\square [mbm-Mishna 09]

- As explicit integrals involving hypergeometric series

$$
Q(0,0 ; t)=\frac{2}{t^{2}} \int_{0}^{t} \int_{0}^{u} \frac{1}{\left(1-4 v^{2}\right)^{3 / 2}}{ }_{2} F_{1}\left(\frac{3}{4}, \frac{5}{4} ; 2 ; 64 \frac{(v+1) v^{3}}{\left(1-4 v^{2}\right)^{2}}\right) \mathrm{d} v \mathrm{~d} u
$$

[Bostan-Chyzak-van Hoeij-Kauers-Pech 17]

2. Expressions for series (cont'd)

- In terms of Weierstrass' function and elliptic integrals

$$
t(1+y) Q(0, y ; t)+\frac{1}{y}=\frac{I^{\prime}(0)}{I(y)-I(0)}-\frac{I^{\prime}(0)}{I(-1)-I(0)}-1
$$

with

$$
I(y) \equiv I(y ; t)=\wp\left(\mathcal{R}(y ; t), \omega_{1}(t), \omega_{3}(t)\right)
$$

where

- \wp is Weierstrass' elliptic function
- its periods ω_{1} and ω_{3} are explicit elliptic integrals
- its argument \mathcal{R} is also an explicit elliptic integral
\square [Bernardi-mbm-Raschel 17(a)]

2. Expressions for series (cont'd)

- Climax: an integral expression involving the same ingredients

$$
\begin{aligned}
& \tilde{K}(0, y ; t) Q(0, y ; t)-\tilde{K}(0,0 ; t) Q(0,0 ; t)=y X_{0}(y ; t)+ \\
& \frac{1}{2 i \pi} \int_{y_{1}(t)}^{y_{2}(t)} u\left[X_{0}(u ; t)-X_{1}(u ; t)\right]\left[\frac{\partial_{u} I(u ; t)}{I(u ; t)-I(y ; t)}-\frac{\partial_{u} I(u ; t)}{I(u ; t)-I(0 ; t)}\right] d u
\end{aligned}
$$

where $\tilde{K}(x, y ; t)=x y(1-t S(x, y)), X_{0}, X_{1}, y_{1}$ and y_{2} are explicit algebraic series and $I(y ; t)$ is as given on the previous slide.

Valid for all (non-singular) small step models [Raschel 12]

3. Nature of the series

Algebraic
[Kreweras 65, Gessel 86]

$$
(1-t(\bar{x}+\bar{y}+x y)) x y Q(x, y)=x y-t y Q(0, y)-t x Q(x, 0)
$$

D-finite, but transcendental
[Gessel 90]
$(1-t(y+\bar{x}+x \bar{y})) x y Q(x, y)=x y-t y Q(0, y)-t x^{2} Q(x, 0)$
\square Not D-finite, but D-algebraic [Bernardi, mbm \& Raschel 17]

$$
(1-t(x+\bar{x}+y+x \bar{y})) x y Q(x, y)=x y-t y Q(0, y)-t x^{2} Q(x, 0)
$$

\square Not D-algebraic (in y)
[Dreyfus, Hardouin, Roques \& Singer 17]

$$
(1-t(x \bar{y}+\bar{x}+\bar{y}+y)) x y Q(x, y)=x y-t y Q(0, y)-t x(1+x) Q(x, 0)
$$

Classification of quadrant walks: a variety of tools

quadrant models: 79

Formal power series algebra

Complex analysis

Differential Galois theory
D-finite series
effective closure properties arithmetic properties
asymptotics
G-functions

III.1. The group of the walk, and D-finite cases

The group of the model

Example. Take $\mathcal{S}=\{\overline{1} 0,01,1 \overline{1}\}$, with step polynomial

$$
S(x, y)=\frac{1}{x}+y+\frac{x}{y}=\bar{x}+y+x \bar{y}
$$

The group of the model

Example. Take $\mathcal{S}=\{\overline{1} 0,01,1 \overline{1}\}$, with step polynomial

$$
S(x, y)=\frac{1}{x}+y+\frac{x}{y}=\bar{x}+y+x \bar{y}
$$

Observation: $S(x, y)$ is left unchanged by the rational transformations

$$
\Phi:(x, y) \mapsto(\bar{x} y, y) \quad \text { and } \quad \psi:(x, y) \mapsto(x, x \bar{y}) .
$$

The group of the model

Example. Take $\mathcal{S}=\{\overline{1} 0,01,1 \overline{1}\}$, with step polynomial

$$
S(x, y)=\frac{1}{x}+y+\frac{x}{y}=\bar{x}+y+x \bar{y}
$$

Observation: $S(x, y)$ is left unchanged by the rational transformations

$$
\Phi:(x, y) \mapsto(\bar{x} y, y) \quad \text { and } \quad \psi:(x, y) \mapsto(x, x \bar{y}) .
$$

They are involutions, and generate a finite dihedral group G :

The group of the model

Example. Take $\mathcal{S}=\{\overline{1} 0,01,1 \overline{1}\}$, with step polynomial

$$
S(x, y)=\frac{1}{x}+y+\frac{x}{y}=\bar{x}+y+x \bar{y}
$$

Observation: $S(x, y)$ is left unchanged by the rational transformations

$$
\Phi:(x, y) \mapsto(\bar{x} y, y) \quad \text { and } \quad \psi:(x, y) \mapsto(x, x \bar{y}) .
$$

They are involutions, and generate a finite dihedral group G :

Remark. G can be defined for any quadrant model with small steps

The group is not always finite

- If $\mathcal{S}=\{0 \overline{1}, \overline{1} \overline{1}, \overline{1} 0,11\}$, then $S(x, y)=\bar{x}(1+\bar{y})+\bar{y}+x y$ and

$$
\Phi:(x, y) \mapsto(\bar{x} \bar{y}(1+\bar{y}), y) \quad \text { and } \quad \psi:(x, y) \mapsto(x, \bar{x} \bar{y}(1+\bar{x}))
$$

generate an infinite group:

The algebraic kernel method

- The equation reads (with $K(x, y)=1-t(y+\bar{x}+x \bar{y})$):

$$
K(x, y) x y Q(x, y)=x y-t x^{2} Q(x, 0)-t y Q(0, y)
$$

- The orbit of (x, y) under G is
$(x, y) \stackrel{\Phi}{\longleftrightarrow}(\bar{x} y, y) \stackrel{\Psi}{\longleftrightarrow}(\bar{x} y, \bar{x}) \stackrel{\Phi}{\longleftrightarrow}(\bar{y}, \bar{x}) \stackrel{\Psi}{\longleftrightarrow}(\bar{y}, x \bar{y}) \stackrel{\Phi}{\longleftrightarrow}(x, x \bar{y}) \stackrel{\Psi}{\longleftrightarrow}(x, y)$.

The algebraic kernel method

- The equation reads (with $K(x, y)=1-t(y+\bar{x}+x \bar{y})$):

$$
K(x, y) x y Q(x, y)=x y-t x^{2} Q(x, 0)-t y Q(0, y)
$$

- The orbit of (x, y) under G is

$$
(x, y) \stackrel{\Phi}{\longleftrightarrow}(\bar{x} y, y) \stackrel{\Psi}{\longleftrightarrow}(\bar{x} y, \bar{x}) \stackrel{\Phi}{\longleftrightarrow}(\bar{y}, \bar{x}) \stackrel{\Psi}{\longleftrightarrow}(\bar{y}, x \bar{y}) \stackrel{\Phi}{\longleftrightarrow}(x, x \bar{y}) \stackrel{\Psi}{\longleftrightarrow}(x, y) .
$$

- All transformations of G leave $K(x, y)$ invariant. Hence

$$
\begin{array}{rlcccc}
K(x, y) x y Q(x, y) & =x y & - & t x^{2} Q(x, 0) & - & t y Q(0, y) \\
K(x, y) \bar{x} y^{2} Q(\bar{x} y, y) & =\bar{x} y^{2} & -t \bar{x}^{2} y^{2} Q(\bar{x} y, 0) & - & t y Q(0, y) \\
K(x, y) \bar{x}^{2} y Q(\bar{x} y, \bar{x}) & =\bar{x}^{2} y & -t \bar{x}^{2} y^{2} Q(\bar{x} y, 0) & - & t \bar{x} Q(0, \bar{x}) \\
\ldots & = & \ldots & & \\
K(x, y) x^{2} \bar{y} Q(x, x \bar{y}) & =x^{2} \bar{y} & -t x^{2} Q(x, 0) & -t x \bar{y} Q(0, x \bar{y}) .
\end{array}
$$

\Rightarrow Form the alternating sum of the equation over all elements of the orbit:

$$
\begin{aligned}
& K(x, y)\left(x y Q(x, y)-\bar{x} y^{2} Q(\bar{x} y, y)+\bar{x}^{2} y Q(\bar{x} y, \bar{x})\right. \\
& \left.\quad-\bar{x} \bar{y} Q(\bar{y}, \bar{x})+x \bar{y}^{2} Q(\bar{y}, x \bar{y})-x^{2} \bar{y} Q(x, x \bar{y})\right)= \\
& x y-\bar{x} y^{2}+\bar{x}^{2} y-\bar{x} \bar{y}+x \bar{y}^{2}-x^{2} \bar{y}
\end{aligned}
$$

(the orbit sum).

Why is this interesting?

$$
\begin{aligned}
& x y Q(x, y)-\bar{x} y^{2} Q(\bar{x} y, y)+\bar{x}^{2} y Q(\bar{x} y, \bar{x}) \\
& -\bar{x} \bar{y} Q(\bar{y}, \bar{x})+x \bar{y}^{2} Q(\bar{y}, x \bar{y})-x^{2} \bar{y} Q(x, x \bar{y})= \\
& \frac{x y-\bar{x} y^{2}+\bar{x}^{2} y-\bar{x} \bar{y}+x \bar{y}^{2}-x^{2} \bar{y}}{1-t(y+\bar{x}+x \bar{y})}
\end{aligned}
$$

- Both sides are power series in t, with coefficients in $\mathbb{Q}[x, \bar{x}, y, \bar{y}]$.

Why is this interesting?

$$
\begin{aligned}
& x y Q(x, y)-\bar{x} y^{2} Q(\bar{x} y, y)+\bar{x}^{2} y Q(\bar{x} y, \bar{x}) \\
& -\bar{x} \bar{y} Q(\bar{y}, \bar{x})+x \bar{y}^{2} Q(\bar{y}, x \bar{y})-x^{2} \bar{y} Q(x, x \bar{y})= \\
& \frac{x y-\bar{x} y^{2}+\bar{x}^{2} y-\bar{x} \bar{y}+x \bar{y}^{2}-x^{2} \bar{y}}{1-t(y+\bar{x}+x \bar{y})}
\end{aligned}
$$

- Both sides are power series in t, with coefficients in $\mathbb{Q}[x, \bar{x}, y, \bar{y}]$.
- Extract the part with positive powers of x and y :

$$
x y Q(x, y)=\left[x^{>0} y^{>0}\right] \frac{x y-\bar{x} y^{2}+\bar{x}^{2} y-\bar{x} \bar{y}+x \bar{y}^{2}-x^{2} \bar{y}}{1-t(y+\bar{x}+x \bar{y})}
$$

is a D-finite series.
[Lipshitz 88]

The kernel method in general (finite groups)

- For all models with a finite group,

$$
\begin{aligned}
& \sum_{g \in G} \operatorname{sign}(g) g(x y Q(x, y ; t))=\frac{1}{K(x, y ; t)} \sum_{g \in G} \operatorname{sign}(g) g(x y)=\frac{O S}{K(x, y ; t)} \\
& \text { where } g(Q(x, y)):=Q(g(x, y))
\end{aligned}
$$

- The right-hand side is an explicit rational series.
[mbm-Mishna 10]

The kernel method in general (finite groups)

- For all models with a finite group,

$$
\begin{aligned}
& \sum_{g \in G} \operatorname{sign}(g) g(x y Q(x, y ; t))=\frac{1}{K(x, y ; t)} \sum_{g \in G} \operatorname{sign}(g) g(x y)=\frac{O S}{K(x, y ; t)}, \\
& \text { where } g(Q(x, y)):=Q(g(x, y))
\end{aligned}
$$

- The right-hand side is an explicit rational series.
- For the 19 models where the orbit sum is non-zero,

$$
x y Q(x, y ; t)=\left[x^{>0} y^{>0}\right] \frac{O S}{K(x, y ; t)}
$$

is a D-finite series.
[mbm-Mishna 10]

The group of the walk, and D-finite cases

[mbm \& Mishna 09]

III.2. Computer algebra: a guess \& check approach

In 1D: Walks on a half-line with steps $+1,-1$

- Generating function:

$$
H(y ; t) \equiv H(y)=\sum_{n \geq 0} \sum_{j \geq 0} h(j ; n) y^{j} t^{n}
$$

$h(j ; n)$: number of n-step walks on the half-line ending at ordinate j

In 1D: Walks on a half-line with steps $+1,-1$

- Generating function:

$$
H(y ; t) \equiv H(y)=\sum_{n \geq 0} \sum_{j \geq 0} h(j ; n) y^{j} t^{n}
$$

- Step-by-step construction:

$$
H(y)=1+t(y+\bar{y}) H(y)-t \bar{y} H(0)
$$

with $\bar{y}=1 / y$.

In 1D: Walks on a half-line with steps $+1,-1$

- Generating function:

$$
H(y ; t) \equiv H(y)=\sum_{n \geq 0} \sum_{j \geq 0} h(j ; n) y^{j} t^{n}
$$

- Step-by-step construction:

$$
H(y)=1+t(y+\bar{y}) H(y)-t \bar{y} H(0)
$$

or

$$
(1-t(y+\bar{y})) H(y)=1-t \bar{y} H(0)
$$

Guess \& check for walks on a half-line

- The equation:

$$
\begin{equation*}
(1-t(y+\bar{y})) H(y ; t)=1-t \bar{y} H(0 ; t) \tag{1}
\end{equation*}
$$

Guess \& check for walks on a half-line

- The equation:

$$
\begin{equation*}
(1-t(y+\bar{y})) H(y ; t)=1-t \bar{y} H(0 ; t) . \tag{1}
\end{equation*}
$$

- A uniqueness result: there exists a unique series $H(y ; t) \equiv H(y)$ in t, with coefficients in $\mathbb{Q}[y]$, satisfying the above equation.

Guess \& check for walks on a half-line

- The equation:

$$
\begin{equation*}
(1-t(y+\bar{y})) H(y ; t)=1-t \bar{y} H(0 ; t) . \tag{1}
\end{equation*}
$$

- A uniqueness result: there exists a unique series $H(y ; t) \equiv H(y)$ in t, with coefficients in $\mathbb{Q}[y]$, satisfying the above equation.
- Generate the first coefficients:

$$
H(0) \equiv H(0 ; t)=1+t^{2}+2 t^{4}+5 t^{6}+14 t^{8}+42 t^{10}+O\left(t^{12}\right)
$$

Guess \& check for walks on a half-line

- The equation:

$$
\begin{equation*}
(1-t(y+\bar{y})) H(y ; t)=1-t \bar{y} H(0 ; t) . \tag{1}
\end{equation*}
$$

- A uniqueness result: there exists a unique series $H(y ; t) \equiv H(y)$ in t, with coefficients in $\mathbb{Q}[y]$, satisfying the above equation.
- Generate the first coefficients:

$$
H(0) \equiv H(0 ; t)=1+t^{2}+2 t^{4}+5 t^{6}+14 t^{8}+42 t^{10}+O\left(t^{12}\right)
$$

- Guess that [Gfun]

$$
H(0)=1+t^{2} H(0)^{2} \quad \text { and } \quad H(y)=1+t\left(t y^{2}+t-y\right) H(y)^{2}+2 t y H(y) .
$$

Guess \& check for walks on a half-line

- The equation:

$$
\begin{equation*}
(1-t(y+\bar{y})) H(y ; t)=1-t \bar{y} H(0 ; t) . \tag{1}
\end{equation*}
$$

- A uniqueness result: there exists a unique series $H(y ; t) \equiv H(y)$ in t, with coefficients in $\mathbb{Q}[y]$, satisfying the above equation.
- Generate the first coefficients:

$$
H(0) \equiv H(0 ; t)=1+t^{2}+2 t^{4}+5 t^{6}+14 t^{8}+42 t^{10}+O\left(t^{12}\right)
$$

- Guess that [Gfun] $H(0)=1+t^{2} H(0)^{2} \quad$ and $\quad H(y)=1+t\left(t y^{2}+t-y\right) H(y)^{2}+2 t y H(y)$.
- This equation has a unique solution $\tilde{H}(y)$ that is a power series in t, and its coefficients are polynomials in y.

Guess \& check for walks on a half-line

- The equation:

$$
\begin{equation*}
(1-t(y+\bar{y})) H(y ; t)=1-t \bar{y} H(0 ; t) . \tag{1}
\end{equation*}
$$

- A uniqueness result: there exists a unique series $H(y ; t) \equiv H(y)$ in t, with coefficients in $\mathbb{Q}[y]$, satisfying the above equation.
- Generate the first coefficients:

$$
H(0) \equiv H(0 ; t)=1+t^{2}+2 t^{4}+5 t^{6}+14 t^{8}+42 t^{10}+O\left(t^{12}\right)
$$

- Guess that [Gfun] $H(0)=1+t^{2} H(0)^{2} \quad$ and $\quad H(y)=1+t\left(t y^{2}+t-y\right) H(y)^{2}+2 t y H(y)$.
- This equation has a unique solution $\tilde{H}(y)$ that is a power series in t, and its coefficients are polynomials in y.
- Check (using resultants, and the first coeffs.) that $\tilde{H}(y)$ satisfies (1).

Some guess \& check quadrant results

- Algebraicity results for $Q(x, y ; t)$
- Kreweras' walks [Bostan, Kauers 10]
- Gessel's walks [Bostan, Kauers 10]

Some guess \& check quadrant results

- Algebraicity results for $Q(x, y ; t)$
- Kreweras' walks [Bostan, Kauers 10]
- Gessel's walks [Bostan, Kauers 10]

- D-finiteness results for $Q(x, y ; t)$
- Gessel's walks (for $Q(0,0 ; t)$ only) [Kauers, Zeilberger 09]

- For weighted D-finite models that resist the algebraic kernel method
[Bostan, mbm, Kauers, Melczer 16]

Some guess \& check quadrant results

- Algebraicity results for $Q(x, y ; t)$
- Kreweras' walks [Bostan, Kauers 10]
- Gessel's walks [Bostan, Kauers 10]

- D-finiteness results for $Q(x, y ; t)$
- Gessel's walks (for $Q(0,0 ; t)$ only) [Kauers, Zeilberger 09]

- For weighted D-finite models that resist the algebraic kernel method
[Bostan, mbm, Kauers, Melczer 16]

For Gessel's walks, the polynomial annihilating $Q(x, y ; t)$ has size about 30Gb.

Even with big computers, one needs to be clever!

III.3. Non-D-finiteness via asymptotics

quadrant models: 79

Non-D-finiteness via asymptotics

- The excursion exponent: let $\mathcal{S} \subset \mathbb{Z}^{2}$ be a (finite) step set, and let $S(x, y)=\sum_{(k, \ell) \in \mathcal{S}} x^{k} y^{\ell}$. For walks in the quadrant \mathbb{N}^{2} ending at $(0,0)$:

$$
q(0,0 ; n) \sim \kappa \mu^{n} n^{-1-\pi / \theta}
$$

where

$$
\theta=\arccos (-c), \quad c=\frac{S_{1,2}^{\prime \prime}\left(x_{c}, y_{c}\right)}{\sqrt{S_{1,1}^{\prime \prime}\left(x_{c}, y_{c}\right) S_{2,2}^{\prime \prime}\left(x_{c}, y_{c}\right)}}
$$

with $S_{1}^{\prime}\left(x_{c}, y_{c}\right)=S_{2}^{\prime}\left(x_{c}, y_{c}\right)=0$.

Non-D-finiteness via asymptotics

- The excursion exponent: let $\mathcal{S} \subset \mathbb{Z}^{2}$ be a (finite) step set, and let $S(x, y)=\sum_{(k, \ell) \in \mathcal{S}} x^{k} y^{\ell}$. For walks in the quadrant \mathbb{N}^{2} ending at $(0,0)$:

$$
q(0,0 ; n) \sim \kappa \mu^{n} n^{-1-\pi / \theta}
$$

where

$$
\theta=\arccos (-c), \quad c=\frac{S_{1,2}^{\prime \prime}\left(x_{c}, y_{c}\right)}{\sqrt{S_{1,1}^{\prime \prime}\left(x_{c}, y_{c}\right) S_{2,2}^{\prime \prime}\left(x_{c}, y_{c}\right)}}
$$

with $S_{1}^{\prime}\left(x_{c}, y_{c}\right)=S_{2}^{\prime}\left(x_{c}, y_{c}\right)=0$.
Asymptotics of D-finite generating functions (G-functions) [André 89], [Chudnovsky² 85], [Katz 70]
If the exponent $-1-\pi / \theta$ is irrational, then $Q(0,0 ; t)$ cannot be D-finite.

Non-D-finiteness via asymptotics

- The excursion exponent: let $\mathcal{S} \subset \mathbb{Z}^{2}$ be a (finite) step set, and let $S(x, y)=\sum_{(k, \ell) \in \mathcal{S}} x^{k} y^{\ell}$. For walks in the quadrant \mathbb{N}^{2} ending at $(0,0)$:

$$
q(0,0 ; n) \sim \kappa \mu^{n} n^{-1-\pi / \theta}
$$

where

$$
\theta=\arccos (-c), \quad c=\frac{S_{1,2}^{\prime \prime}\left(x_{c}, y_{c}\right)}{\sqrt{S_{1,1}^{\prime \prime}\left(x_{c}, y_{c}\right) S_{2,2}^{\prime \prime}\left(x_{c}, y_{c}\right)}}
$$

with $S_{1}^{\prime}\left(x_{c}, y_{c}\right)=S_{2}^{\prime}\left(x_{c}, y_{c}\right)=0$.
Asymptotics of D-finite generating functions (G-functions) [André 89], [Chudnovsky ${ }^{2}$ 85], [Katz 70]
If c is not the root of a cyclotomic polynomial, then $Q(0,0 ; t)$ cannot be D-finite.

Non-D-finiteness via asymptotics

- The excursion exponent: let $\mathcal{S} \subset \mathbb{Z}^{2}$ be a (finite) step set, and let $S(x, y)=\sum_{(k, \ell) \in \mathcal{S}} x^{k} y^{\ell}$. For walks in the quadrant \mathbb{N}^{2} ending at $(0,0)$:

$$
q(0,0 ; n) \sim \kappa \mu^{n} n^{-1-\pi / \theta}
$$

where

$$
\theta=\arccos (-c), \quad c=\frac{S_{1,2}^{\prime \prime}\left(x_{c}, y_{c}\right)}{\sqrt{S_{1,1}^{\prime \prime}\left(x_{c}, y_{c}\right) S_{2,2}^{\prime \prime}\left(x_{c}, y_{c}\right)}}
$$

with $S_{1}^{\prime}\left(x_{c}, y_{c}\right)=S_{2}^{\prime}\left(x_{c}, y_{c}\right)=0$.
Asymptotics of D-finite generating functions (G-functions) [André 89], [Chudnovsky ${ }^{2}$ 85], [Katz 70]
If c is not the root of a cyclotomic polynomial, then $Q(0,0 ; t)$ cannot be D-finite.

Non-D-finiteness [Bostan, Raschel, Salvy 14]
The series $Q(0,0 ; t)$ is not D-finite for 51 of the 79 small step models.

Non-D-finiteness via asymptotics

Classification of quadrant walks: a variety of tools

quadrant models: 79

Formal power series algebra

Complex analysis

Differential Galois theory
D-finite series
effective closure properties arithmetic properties
asymptotics
G-functions

Beyond small steps in the quadrant

Beyond small steps in the quadrant

- Arbitrary steps in the quadrant \Rightarrow equivalence between D-finiteness and finite "group"?

Beyond small steps in the quadrant

- Arbitrary steps in the quadrant \Rightarrow equivalence between D-finiteness and finite "group"?
- Walks avoiding a quadrant: same dichotomy between D-finite and non-D-finite models?

Beyond small steps in the quadrant

- Arbitrary steps in the quadrant \Rightarrow equivalence between D-finiteness and finite "group"?
- Walks avoiding a quadrant: same dichotomy between D-finite and non-D-finite models?
- Walks with small steps in \mathbb{N}^{3} : some non-D-finite models with a finite group?
Example. The model $\{111, \overline{1} 00,0 \overline{1} 0,00 \overline{1}\}$ has a finite group of order 24. The orbit sum vanishes. Is it D-finite?

