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Two problems

Question: How many n-step walks on the square lattice, starting from
(0, 0), avoiding a given quadrant?

Two natural choices for the quadrant:

One can also prescribe the endpoint (i , j) of the walk.



I. Counting walks in cones



Counting walks in cones

Take a starting point p0 in Zd , a (finite) step set S ⊂ Zd and a cone C.

Questions
What is the number c(n) of n-step walks starting at p0, taking their
steps in S and contained in C?
For i = (i1, . . . , id ) ∈ C, what is the number c(i ; n) of such walks
that end at i?

Example: Gessel’s walks
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Why count walks in cones?

Many discrete objects can be encoded in that way:
in combinatorics, statistical physics...
in (discrete) probability theory: random walks, queuing theory...
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Ad hoc solution
Systematic approach
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A too ambitious question?

• Our original question:
c(n) = ? c(i ; n) = ?

• Generating functions and their nature

C (t) =
∑
n≥0

c(n)tn, C (x1, . . . , xd ; t) =
∑
i ,n

c(i ; n)x i tn

Can one express these series? Are they rational? algebraic? D-finite?

Remarks
C (1, . . . , 1; t) = C (t)
if C ⊂ Rd

+, then C (0, . . . , 0; t) counts walks ending at (0, . . . , 0)
C (0, x2, . . . , xd ; t) counts walks ending on the hyperplane i1 = 0
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A hierarchy of formal power series

• The formal power series C (t) is rational if it can be written

C (t) = P(t)/Q(t)

where P(t) and Q(t) are polynomials in t.

• The formal power series C (t) is algebraic (over Q(t)) if it satisfies a
(non-trivial) polynomial equation:

P(t,C (t)) = 0.

• The formal power series C (t) is D-finite (holonomic) if it satisfies a
(non-trivial) linear differential equation with polynomial coefficients:

Pk(t)C (k)(t) + · · ·+ P0(t)C (t) = 0.

◦ Nice and effective closure properties + asymptotics of the coefficients
◦ Extension to several variables (D-finite: one DE per variable)
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A (very) basic cone: the full space

Rational series
If S ⊂ Zd is finite and C = Rd , then C (x ; t) is rational:

c(n) = |S|n ⇔ C (t) =
∑
n≥0

c(n)tn =
1

1− |S| t

More generally:

C (x ; t) =
1

1− t
∑

s∈S xs .



Also well-known: a (rational) half-space

Algebraic series

If S ⊂ Zd is finite and C is a rational half-space, then C (x ; t) is algebraic,
given by an explicit system of polynomial equations.

[mbm-Petkovšek 00]; [Gessel 80], [Duchon 00]...



The “next” case: intersection of two half-spaces

• The quarter plane, with p0 = (0, 0)

Q(x , y ; t) =
∑

i ,j ,n≥0

q(i , j ; n)x iy j tn = ?

i

j



Quadrant walks with small steps: classification

• S ⊂ {1̄, 0, 1}2 \ {(0, 0)} ⇒ 28 = 256 step sets (or: models)

• However, some models are equivalent:
– to a model of walks in the full or half-plane (⇒ algebraic)

– to another model in the collection (diagonal symmetry)

'

• One is left with 79 interesting distinct models [mbm-Mishna 09].
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Classification of quadrant walks with small steps

Preview:

The series Q(x , y ; t) is D-finite
iff a certain group associated with S is finite.



The group of the model

Example. Take S = {1̄0, 01, 11̄}, with step polynomial

S(x , y) =
1
x

+ y + x · 1
y

= x̄ + y + xȳ

Observation: S(x , y) is left unchanged by the rational transformations

Φ : (x , y) 7→ (x̄y , y) and Ψ : (x , y) 7→ (x , xȳ) .

They are involutions, and generate a finite dihedral group G :

(x̄y , y)

(x , xȳ)

(x̄y , x̄)

(ȳ , xȳ)

Ψ

ΦΨ

Φ

(x , y)

Ψ

Φ

(ȳ , x̄)

The group can be defined for any quadrant model with small steps
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Classification of quadrant walks with small steps

Theorem
The series Q(x , y ; t) is D-finite iff the group G is finite.

[mbm-Mishna 10], [Bostan-Kauers 10] D-finite
[Kurkova-Raschel 12] non-singular non-D-finite
[Mishna-Rechnitzer 07], [Melczer-Mishna 13] singular non-D-finite

quadrant models: 79

|G |<∞: 23

OS6=0: 19

D-finite

OS=0: 3 + 1

algebraic

|G |=∞: 56

Not D-finite



One hard case: Gessel’s walks

Conjecture: [Gessel, around 2000]

g0,0(2n) = 16n (1/2)n(5/6)n

(2)n(5/3)n

with (a)n = a(a + 1) · · · (a + n − 1).

• Proved in 2009 using computer algebra [Kauers, Koutschan &
Zeilberger 09]

• In fact, Q(x , y ; t) is algebraic! (degree 72...) [Bostan & Kauers 10]

• Two other proofs, one analytic, one “elementary”
[Bostan, Kurkova and Raschel 13(a)], [mbm 15(a)]



Classification of quadrant walks with small steps

quadrant models: 79

|G |<∞: 23

OS6=0: 19

D-finite

OS=0: 3 + 1

algebraic

|G |=∞: 56

Not D-finite

in probability
Random walks

Formal power
series algebra

Complex analysis

Computer algebra effective closure properties
arithmetic properties

G-functions
asymptotics

D-finite series



II. Walks avoiding a quadrant



The “next” case: union of two half-spaces!

• Walks avoiding the negative quadrant,
with p0 = (0, 0)

C (x , y ; t) =
∑

i ,j ,n≥0

c(i , j ; n)x iy j tn = ?

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
���� i

j

Is there a nice story to tell for walks avoiding a quadrant?
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The “next” case: union of two half-spaces!

• Walks avoiding the negative quadrant,
with p0 = (0, 0)

C (x , y ; t) =
∑

i ,j ,n≥0

c(i , j ; n)x iy j tn = ?
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Another motivation: a new approach to Gessel’s walks

Idea: count Gessel’s walks by the reflection principle

If c(i , j ; n) counts walks starting at (−1, 0) and avoiding the negative
quadrant, then for j ≥ 0 and i < j ,

ci ,j(n)− cj ,i (n) = gi+1,j(n).

(i , j)

A Gessel walk

(i , j)

(j , i)

An alternative is to count walks on the diagonal square lattice starting
from (−2, 0) and avoiding the negative quadrant.
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An a posteriori motivation

A hard (?) problem with nice numbers!

Example: the number of square lattice walks of length 2n starting and
ending at (0, 0) and avoiding the West quadrant is

c(0, 0; 2n) =
16n

9

(
3

(1/2)2
n

(2)2
n

+ 8
(1/2)n(7/6)n

(2)n(4/3)n
− 2

(1/2)n(5/6)n

(2)n(5/3)n

)
with (a)n = a(a + 1) · · · (a + n − 1).
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An a posteriori motivation

A hard (?) problem with nice numbers!

Example: the number of square lattice walks of length 2n starting and
ending at (0, 0) and avoiding the West quadrant is

c(0, 0; 2n) =
16n

9

(
3

(1/2)2
n

(2)2
n

+ 8
(1/2)n(7/6)n

(2)n(4/3)n
− 2

(1/2)n(5/6)n

(2)n(5/3)n

)
with (a)n = a(a + 1) · · · (a + n − 1).

Two known components: Quadrant walks (left) and Gessel walks (right).
Conjectured before 2007...
Asymptotically,

c(0, 0; 2n) ∼ 25

32
Γ(2/3)

π

42n

(2n)5/3 .



Results (square lattice, starting point (0, 0))

• Let Q(x , y) ≡ Q(x , y ; t) be the generating function of square lattice
walks starting from (0, 0) and confined to the first quadrant:

Q(x , y) =
∑

i ,j ,n≥0

(i + 1)(j + 1)

(n + 1)(n + 2)

(
n + 2
n−i−j

2

)(
n + 2

n+i−j+2
2

)
x iy j tn

Theorem [mbm 15(a)]
The generating function C (x , y ; t) ≡ C (x , y) counting walks that avoid
the negative quadrant is

A(x , y) +
1
3
(
Q(x , y)− x̄2Q(x̄ , y)− ȳ2Q(x , ȳ)

)
where x̄ = 1/x , ȳ = 1/y and A(x , y) is algebraic. This series satisfies

(1− t(x + x̄ + y + ȳ))A(x , y) = (2 + x̄2 + ȳ2)/3− tȳA−(x̄)− tx̄A−(ȳ),

where A−(x) is a series in t with coefficients in Q[x ], algebraic of
degree 24.
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Results (square lattice, starting point (0, 0))

Theorem [mbm 15(a)], cont’d

C (x , y) = A(x , y) +
1
3
(
Q(x , y)− x̄2Q(x̄ , y)− ȳ2Q(x , ȳ)

)
where

(1− t(x + x̄ + y + ȳ))A(x , y) = (2 + x̄2 + ȳ2)/3− tȳA−(x̄)− tx̄A−(ȳ),

and A−(x) is a series in t with coefficients in Q[x ], algebraic of degree 24.

• Moreover, A−(tx) has a rational expression in terms of the (unique)
series Z = 1 + O(t) and U(x) = 1 + O(t) satisfying:

Z =
√
T , T = 1 + 256t2

T 3

(T + 3)3 ,

16T 2(U2 − T ) = x(U + UT − 2T )(U2 − 9T + 8TU + T 2 − TU2).



III. Two solutions for...
quadrant walks

the (ordinary) kernel method
the (algebraic) kernel method: the reflection principle in disguise

Starting point: a functional equation

i

j



Walks in the quadrant: a functional equation

Step by step construction:

Q(x , y ; t) ≡ Q(x , y) = 1+t(x + x̄ + y + ȳ)Q(x , y)−tx̄Q(0, y)−tȳQ(x , 0)

or(
1− t(x + x̄ + y + ȳ)

)
xyQ(x , y) = xy − tyQ(0, y)− txQ(x , 0)

• The polynomial 1− t(x + x̄ + y + ȳ) is the kernel of this equation

• The equation is linear, with two catalytic variables x and y (tautological
at x = 0 or y = 0)
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• The equation is linear, with two catalytic variables x and y (tautological
at x = 0 or y = 0)



The ordinary kernel method: cancel the kernel

• The equation:(
1− t(x + x̄ + y + ȳ)

)
xyQ(x , y) = xy − tyQ(0, y)− txQ(x , 0)

• Let

Y =
1− t(x + x̄)−

√
(1− t(x + x̄))2 − 4t2

2t
= t + (x + x̄)t2 + O(t3)

be the only power series in t such that K (x ,Y ) = 0.

Then

xY = tYQ(0,Y ) + txQ(x , 0)

• Since Y is symmetric in x and x̄ ,

x̄Y = tYQ(0,Y ) + tx̄Q(x̄ , 0).

• Thus
txQ(x , 0)− tx̄Q(x̄ , 0) = (x − x̄)Y ,

and txQ(x , 0) can be obtained by extracting positive powers of x in
(x − x̄)Y .
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The algebraic kernel method: use the full group

• The equation reads (with K (x , y) = 1− t(x + x̄ + y + ȳ)):

K (x , y)xyQ(x , y) = xy − txQ(x , 0)− tyQ(0, y)

• The kernel is invariant by x 7→ x̄ and y 7→ ȳ . Hence

K (x , y) xyQ(x , y) = xy − txQ(x , 0) − tyQ(0, y)

K (x , y) x̄yQ(x̄ , y) = x̄y − tx̄Q(x̄ , 0) − tyQ(0, y)

K (x , y) x̄ ȳQ(x̄ , ȳ) = x̄ ȳ − tx̄Q(x̄ , 0) − tȳQ(0, ȳ)

K (x , y) xȳQ(x , ȳ) = xȳ − txQ(x , 0) − tȳQ(0, ȳ).

⇒ Form the alternating sum of the four equations:

K (x , y)
(
xyQ(x , y)− x̄yQ(x̄ , y) + x̄ ȳQ(x̄ , ȳ)− xȳQ(x , ȳ)

)
=

xy − x̄y + x̄ ȳ − xȳ

(the orbit sum).



The algebraic kernel method: use the full group

• The equation reads (with K (x , y) = 1− t(x + x̄ + y + ȳ)):
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Why is this interesting?

xyQ(x , y)− x̄yQ(x̄ , y) + x̄ ȳQ(x̄ , ȳ)− xȳQ(x , ȳ) =
xy − x̄y + x̄ ȳ − xȳ
1− t(x + x̄ + y + ȳ)

• Both sides are power series in t, with coefficients in Q[x , x̄ , y , ȳ ].

• Extract the part with positive powers of x and y :

xyQ(x , y) = [x>0y>0]
xy − x̄y + x̄ ȳ − xȳ
1− t(x + x̄ + y + ȳ)

is a D-finite series.
[Lipshitz 88]

⇒ Q(x , y) =
∑

i ,j ,n≥0

(i + 1)(j + 1)

(n + 1)(n + 2)

(
n + 2
n−i−j

2

)(
n + 2

n+i−j+2
2

)
x iy j tn
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IV. Some ingredients for the
three quadrant problem

the (ordinary) kernel method
the (algebraic) kernel method
polynomial equations with one catalytic variable

Starting point: a functional equation again

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
���� i

j



Walks avoiding a quadrant: a functional equation

Step by step construction:

C (x , y ; t) ≡ C (x , y) = 1+ t(x + x̄ + y + ȳ)C (x , y)− tx̄C−(ȳ)− tȳC−(x̄)

with
C−(x̄) =

∑
i<0,n≥0

c(i , 0; n)x i tn.

or(
1− t(x + x̄ + y + ȳ)

)
xyC (x , y) = xy − tyC−(ȳ)− txC−(x̄)

Compare with(
1− t(x + x̄ + y + ȳ)

)
xyQ(x , y) = xy − tyQ(0, y)− txQ(x , 0)
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)
xyC (x , y) = xy − tyC−(ȳ)− txC−(x̄)
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Where the series A(x , y) comes from

• In particular, C (x , y) and Q(x , y) have the same orbit sum:

xyQ(x , y)− x̄yQ(x̄ , y) + x̄ ȳQ(x̄ , ȳ)− xȳQ(x , ȳ) =

xyC (x , y)− x̄yC (x̄ , y) + x̄ ȳC (x̄ , ȳ)− xȳC (x , ȳ) =
xy − x̄y + x̄ ȳ − xȳ
1− t(x + x̄ + y + ȳ)

−x̄2Q(x̄ , y) and −ȳ2Q(x , ȳ) (and x̄2ȳ2Q(x̄ , ȳ)) as well!

• This leads us to introduce

A(x , y) := C (x , y)− 1
3
(
Q(x , y)− x̄2Q(x̄ , y)− ȳ2Q(x , ȳ)

)
,

which satisfies

(1− t(x + x̄ + y + ȳ))A(x , y) = (2 + x̄2 + ȳ2)/3− tȳA−(x̄)− tx̄A−(ȳ),

with
A−(x̄) =

∑
i<0,n≥0

a(i , 0; n)x i tn.



Where the series A(x , y) comes from

• In particular, C (x , y) and Q(x , y) have the same orbit sum:

xyQ(x , y)− x̄yQ(x̄ , y) + x̄ ȳQ(x̄ , ȳ)− xȳQ(x , ȳ) =
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The algebraic kernel method for A(x , y)?

The equation reads (with K (x , y) = 1− t(x + x̄ + y + ȳ)):

K (x , y)A(x , y) = (2 + x̄2 + ȳ2)/3− tȳA−(x̄)− tx̄A−(ȳ)

The orbit sum vanishes:

xyA(x , y)− x̄yA(x̄ , y) + x̄ ȳA(x̄ , ȳ)− xȳA(x , ȳ) = 0

and this does not characterize A.



The ordinary kernel method for A(x , y)?

The equation reads (with K (x , y) = 1− t(x + x̄ + y + ȳ)):

K (x , y)A(x , y) = (2 + x̄2 + ȳ2)/3− tȳA−(x̄)− tx̄A−(ȳ)

But none of the roots Y of K (x ,Y ) can be legally substituted for y in
A(x , y) (due to positive and negative powers of y).



Back to series with polynomial coefficients in x and y

• The equation (with K (x , y) = 1− t(x + x̄ + y + ȳ)):

K (x , y)A(x , y) = (2 + x̄2 + ȳ2)/3− tȳA−(x̄)− tx̄A−(ȳ)

• Split A(x , y) into three parts:

A(x , y) = P(x , y) + x̄M(x̄ , y) + ȳM(ȳ , x)

• Then the equation for A implies

P(x , y) = x̄ (M(x , y)−M(0, y)) + ȳ (M(y , x)−M(0, x)) ,

and

(1− t(x + x̄ + y + ȳ)) (2M(x, y) − M(0, y)) =

2x/3− 2tȳM(x, 0) + t(x − x̄)M(0, y) + tȳM(y , 0).

This looks (remotely) like a quadrant problem. Two main differences:
M(y , 0) is a new ingredient
the r.h.s. cannot be decoupled into F (x) + G (y)
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Some pages later: a final ingredient

Let ∆(x) := (1− t(x + x̄))2 − 4t2,

S(x) = txM(0, x), S1 = [x ]S(x) = tM(0, 0)

and
P0 := [x0] (∆(x)S(x)S(x̄)) .

Then

∆(x)
(
S(x)3 + (2x + x̄)S(x)2 + x(x + x̄)S(x)

)
= t2(x − x̄)(1 + S1)2

+
(
2t2S1

2 + 2t
(
tx2 + tx̄2 − x − x̄ + t

)
S1 − P0 + t2(x2 + x̄2)

)
(S(x) + x) .

A polynomial equation with one catalytic variable x , solvable using
[mbm-Jehanne 06]. The solution is (invariably) algebraic.
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Results (square lattice, starting point (0, 0))

• Let Q(x , y) ≡ Q(x , y ; t) be the generating function of square lattice
walks starting from (0, 0) and confined to the first quadrant:

Q(x , y) =
∑

i ,j ,n≥0

(i + 1)(j + 1)

(n + 1)(n + 2)

(
n + 2
n−i−j

2

)(
n + 2

n+i−j+2
2

)
x iy j tn

Theorem [mbm 15(a)]
The generating function C (x , y ; t) ≡ C (x , y) counting walks that avoid
the negative quadrant is

A(x , y) +
1
3
(
Q(x , y)− x̄2Q(x̄ , y)− ȳ2Q(x , ȳ)

)
where x̄ = 1/x , ȳ = 1/y and A(x , y) is algebraic. This series satisfies

(1− t(x + x̄ + y + ȳ))A(x , y) = (2 + x̄2 + ȳ2)/3− tȳA−(x̄)− tx̄A−(ȳ),

where A−(x) is a series in t with coefficients in Q[x ], algebraic of
degree 24.



More results

Walks on the diagonal square lattice avoiding the negative cone
Walks on the square lattice starting at (−1, 0) (entirely algebraic!)
Walks on the diagonal square lattice starting at (−2, 0)
The solution of Gessel’s model in a 135◦ cone then comes for free
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Perspectives: classification

Walks with small steps confined to the positive quadrant:

models: 79

|G |<∞: 23

OS6=0: 19

D-finite

OS=0: 3 + 1

algebraic

|G |=∞: 56

Not D-finite

Conjecture: the generating function of walks starting and ending at (0, 0)
and avoiding the negative quadrant is algebraic for the four models for
which Q(x , y) (the quadrant GF) is algebraic:
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