The expected number of inversions

 after n adjacent transpositionsMireille Bousquet-Mélou
CNRS, LaBRI, Bordeaux, France

ArXiv 0909:0103

A Markov chain

- Consider the symmetric group \mathfrak{S}_{d+1} on the elements $\{0,1, \ldots, d\}$.
- Start from the identity permutation $\pi^{(0)}=012 \cdots d$.
- Apply an adjacent transposition, taken uniformly at random (probability $1 / d$ for each).
- Repeat.

Example: $d=2$

A Markov chain

- Consider the symmetric group \mathfrak{S}_{d+1} on the elements $\{0,1, \ldots, d\}$.
- Start from the identity permutation $\pi^{(0)}=012 \cdots d$.
- Apply an adjacent transposition, taken uniformly at random (probability $1 / d$ for each).
- Repeat.

Example: $d=2$

A Markov chain

- Consider the symmetric group \mathfrak{S}_{d+1} on the elements $\{0,1, \ldots, d\}$.
- Start from the identity permutation $\pi^{(0)}=012 \cdots d$.
- Apply an adjacent transposition, taken uniformly at random (probability $1 / d$ for each).
- Repeat.

Example: $d=2$

A Markov chain

- Consider the symmetric group \mathfrak{S}_{d+1} on the elements $\{0,1, \ldots, d\}$.
- Start from the identity permutation $\pi^{(0)}=012 \cdots d$.
- Apply an adjacent transposition, taken uniformly at random (probability $1 / d$ for each).
- Repeat.

Example: $d=2$

A Markov chain

- Consider the symmetric group \mathfrak{S}_{d+1} on the elements $\{0,1, \ldots, d\}$.
- Start from the identity permutation $\pi^{(0)}=012 \cdots d$.
- Apply an adjacent transposition, taken uniformly at random (probability $1 / d$ for each).
- Repeat.

Example: $d=2$

A Markov chain

- Consider the symmetric group \mathfrak{S}_{d+1} on the elements $\{0,1, \ldots, d\}$.
- Start from the identity permutation $\pi^{(0)}=012 \cdots d$.
- Apply an adjacent transposition, taken uniformly at random (probability $1 / d$ for each).
- Repeat.

Example: $d=2$

Periodicity

This chain, $\pi^{(0)}, \pi^{(1)}, \pi^{(2)}, \ldots$ is periodic of period 2 : it takes an even number of steps to return to a point.

Aperiodic variants

This chain, $\pi^{(0)}, \pi^{(1)}, \pi^{(2)}, \ldots$ is periodic of period 2 : it takes an even number of steps to return to a point.

- Either: do nothing with probability $1 /(d+1)$, and otherwise apply an adjacent transposition chosen uniformly

Aperiodic variants

This chain, $\pi^{(0)}, \pi^{(1)}, \pi^{(2)}, \ldots$ is periodic of period 2 : it takes an even number of steps to return to a point.

- Either: do nothing with probability $1 /(d+1)$, and otherwise apply an adjacent transposition chosen uniformly
- Or: consider the chains $\left(\pi^{(2 n)}\right)_{n}$ and $\left(\pi^{(2 n+1)}\right)_{n}$

Aperiodic variants

This chain, $\pi^{(0)}, \pi^{(1)}, \pi^{(2)}, \ldots$ is periodic of period 2 : it takes an even number of steps to return to a point.

- Either: do nothing with probability $1 /(d+1)$, and otherwise apply an adjacent transposition chosen uniformly
- Or: consider the chains $\left(\pi^{(2 n)}\right)_{n}$ and $\left(\pi^{(2 n+1)}\right)_{n}$

These three chains are aperiodic, irreducible and symmetric, and thus converge to the uniform distribution on their respective state spaces.

Motivations

- $1980 \rightarrow$ 2010: Random walks in finite groups (Aldous, Diaconis, Letac, Saloff-Coste, Wilson...)

Tools: coupling techniques, representation theory...

Motivations

- $1980 \rightarrow$ 2010: Random walks in finite groups (Aldous, Diaconis, Letac, Saloff-Coste, Wilson...)

Tools: coupling techniques, representation theory...

- More recently: Computational biology (N. Beresticky, Durrett, Eriksen, Hultman, H. Eriksson, K. Eriksson, Sjöstrand...)

A transposition: a gene mutation

What do we ask? What do we expect?

- Mixing time: How much time does it take to "reach" the uniform distribution?

The total variation distance between the distribution at time n and the uniform distribution on \mathfrak{S}_{d+1} :

$$
d=3
$$

$$
d=4
$$

d large

What do we ask? What do we expect?

- Mixing time: How much time does it take to "reach" the uniform distribution?

The total variation distance between the distribution at time n and the uniform distribution on \mathfrak{S}_{d+1} :

$$
d=3
$$

$$
d=4
$$

[Aldous 83, Diaconis \& Saloff-Coste 93, Wilson 04]

What do we ask? What do we expect?

- Focus on observables, for instance the inversion number $\mathcal{I}_{d, n}=\operatorname{inv}\left(\pi^{(n)}\right)$. The expected value of the inversion number, $\mathrm{I}_{d, n}:=\mathbb{E}\left(\mathcal{I}_{d, n}\right)$:

$$
d=4
$$

\Longrightarrow Estimate the number of transpositions (mutations) that have occurred, and hence the evolutionary distance between species.

Of particular interest: what happens before mixing.

What do we ask? What do we expect?

Let $Q=\left(Q_{\sigma, \tau}\right)$ be the transition matrix of the chain:

$$
Q=\left(\begin{array}{cccccc}
0 & 1 / 2 & 1 / 2 & 0 & 0 & 0 \\
1 / 2 & 0 & 0 & 0 & 1 / 2 & 0 \\
1 / 2 & 0 & 0 & 1 / 2 & 0 & 0 \\
0 & 0 & 1 / 2 & 0 & 0 & 1 / 2 \\
0 & 0 & 0 & 1 / 2 & 1 / 2 & 0
\end{array}\right)
$$

What do we ask? What do we expect?

Let $Q=\left(Q_{\sigma, \tau}\right)$ be the transition matrix of the chain:

$$
Q=\left(\begin{array}{cccccc}
0 & 1 / 2 & 1 / 2 & 0 & 0 & 0 \\
1 / 2 & 0 & 0 & 0 & 1 / 2 & 0 \\
1 / 2 & 0 & 0 & 1 / 2 & 0 & 0 \\
0 & 0 & 1 / 2 & 0 & 0 & 1 / 2 \\
0 & 0 & 0 & 1 / 2 & 1 / 2 & 0
\end{array}\right)
$$

- For all $\sigma \in \mathfrak{S}_{d+1}$, let

$$
G_{\sigma}(t):=\sum_{n \geq 0} \mathbb{P}\left(\pi^{(n)}=\sigma\right) t^{n}
$$

What do we ask? What do we expect?

Let $Q=\left(Q_{\sigma, \tau}\right)$ be the transition matrix of the chain:

$$
Q=\left(\begin{array}{cccccc}
0 & 1 / 2 & 1 / 2 & 0 & 0 & 0 \\
1 / 2 & 0 & 0 & 0 & 1 / 2 & 0 \\
1 / 2 & 0 & 0 & 1 / 2 & 0 & 0 \\
0 & 0 & 1 / 2 & 0 & 0 & 1 / 2 \\
0 & 0 & 0 & 1 / 2 & 1 / 2 & 0
\end{array}\right)
$$

- For all $\sigma \in \mathfrak{S}_{d+1}$,

$$
G_{\sigma}(t):=\sum_{n \geq 0} \mathbb{P}\left(\pi^{(n)}=\sigma\right) t^{n}=\sum_{n \geq 0} Q_{\mathrm{id}, \sigma}^{n} t^{n}
$$

What do we ask? What do we expect?

Let $Q=\left(Q_{\sigma, \tau}\right)$ be the transition matrix of the chain:

$$
Q=\left(\begin{array}{cccccc}
0 & 1 / 2 & 1 / 2 & 0 & 0 & 0 \\
1 / 2 & 0 & 0 & 0 & 1 / 2 & 0 \\
1 / 2 & 0 & 0 & 1 / 2 & 0 & 0 \\
0 & 0 & 1 / 2 & 0 & 0 & 1 / 2 \\
0 & 0 & 0 & 1 / 2 & 1 / 2 & 0
\end{array}\right)
$$

- For all $\sigma \in \mathfrak{S}_{d+1}$,

$$
G_{\sigma}(t):=\sum_{n \geq 0} \mathbb{P}\left(\pi^{(n)}=\sigma\right) t^{n}=\sum_{n \geq 0} Q_{\mathrm{id}, \sigma}^{n} t^{n}=\left((1-t Q)^{-1}\right)_{\mathrm{id}, \sigma}
$$

is a rational series in t.

What do we ask? What do we expect?

Let $Q=\left(Q_{\sigma, \tau}\right)$ be the transition matrix of the chain:

$$
Q=\left(\begin{array}{cccccc}
0 & 1 / 2 & 1 / 2 & 0 & 0 & 0 \\
1 / 2 & 0 & 0 & 0 & 1 / 2 & 0 \\
1 / 2 & 0 & 0 & 1 / 2 & 0 & 0 \\
0 & 0 & 1 / 2 & 0 & 0 & 1 / 2 \\
0 & 0 & 0 & 1 / 2 & 1 / 2 & 0
\end{array}\right)
$$

- For all $\sigma \in \mathfrak{S}_{d+1}$,

$$
G_{\sigma}(t):=\sum_{n \geq 0} \mathbb{P}\left(\pi^{(n)}=\sigma\right) t^{n}=\sum_{n \geq 0} Q_{\mathrm{id}, \sigma}^{n} t^{n}=\left((1-t Q)^{-1}\right)_{\mathrm{id}, \sigma}
$$

is a rational series in t.

- The GF of the expected inversion number

$$
\sum_{n \geq 0} \mathrm{I}_{d, n} t^{n}=\sum_{n \geq 0}\left(\sum_{\sigma \in \mathfrak{S}_{d+1}} \operatorname{inv}(\sigma) \mathbb{P}\left(\pi^{(n)}=\sigma\right)\right) t^{n}=\sum_{\sigma \in \mathfrak{S}_{d+1}} \operatorname{inv}(\sigma) G_{\sigma}(t)
$$

is rational as well.

A formula for the expected inversion number

Theorem: The expected number of inversions after n adjacent transpositions in \mathfrak{S}_{d+1} is

$$
\mathrm{I}_{d, n}=\frac{d(d+1)}{4}-\frac{1}{8(d+1)^{2}} \sum_{k, j=0}^{d} \frac{\left(c_{j}+c_{k}\right)^{2}}{s_{j}^{2} s_{k}^{2}} x_{j k}^{n}
$$

where

$$
c_{k}=\cos \alpha_{k}, \quad s_{k}=\sin \alpha_{k}, \quad \alpha_{k}=\frac{(2 k+1) \pi}{2 d+2}
$$

and

$$
x_{j k}=1-\frac{4}{d}\left(1-c_{j} c_{k}\right) .
$$

Remarks

- The series $\sum_{n} I_{d, n} t^{n}$ is rational.
- For d large enough $(d \geq 8), \mathrm{I}_{d, n}$ increases, as n grows, to $\frac{d(d+1)}{4}$, which is the average inversion number of a random permutation in \mathfrak{S}_{d+1}.

Another formula for the expected inversion number [Eriksen 05]

$$
\mathrm{I}_{d, n}=\sum_{r=1}^{n} \frac{1}{d^{r}}\binom{n}{r} \sum_{s=1}^{r}\binom{r-1}{s-1}(-4)^{r-s} g_{s, d} h_{s, d}
$$

with

$$
g_{s, d}=\sum_{\ell=0}^{d} \sum_{k \geq 0}(-1)^{k}(p-2 \ell)\binom{2\lceil s / 2\rceil-1}{\lceil s / 2\rceil+\ell+k(d+1)}
$$

and

$$
h_{s, d}=\sum_{j \in \mathbb{Z}}(-1)^{j}\binom{2\lfloor s / 2\rfloor}{\lfloor s / 2\rfloor+j(d+1)}
$$

Based on [Eriksson \& Eriksson \& Sjöstrand 00]

Beresticky \& Durrett 08: "it is far from obvious how to extract useful asymptotic from this formula".

Combinatorialists could not throw in the sponge!

A formula for the expected inversion number

Theorem: The expected number of inversions after n adjacent transpositions in \mathfrak{S}_{d+1} is

$$
\mathrm{I}_{d, n}=\frac{d(d+1)}{4}-\frac{1}{8(d+1)^{2}} \sum_{k, j=0}^{d} \frac{\left(c_{j}+c_{k}\right)^{2}}{s_{j}^{2} s_{k}^{2}} x_{j k}^{n}
$$

where

$$
c_{k}=\cos \alpha_{k}, \quad s_{k}=\sin \alpha_{k}, \quad \alpha_{k}=\frac{(2 k+1) \pi}{2 d+2}
$$

and

$$
x_{j k}=1-\frac{4}{d}\left(1-c_{j} c_{k}\right) .
$$

Remark: For d large enough $(d \geq 8), \mathrm{I}_{d, n}$ increases, as n grows, to $\frac{d(d+1)}{4}$, which is the average inversion number of a random permutation in \mathfrak{S}_{d+1}.

The expected inversion number: asymptotics

Three regimes, as d and n tend to ∞

- When n is "small", each step of the chain increases the inversion number with high probability. For example,

$$
\operatorname{inv}\left(\pi^{(1)}\right)=1, \quad \mathbb{P}\left(\operatorname{inv}\left(\pi^{(2)}\right)=2\right)=1-\frac{1}{d}, \quad \mathbb{P}\left(\operatorname{inv}\left(\pi^{(n)}\right)=n\right)=1-O\left(\frac{1}{d}\right)
$$

The expected inversion number: asymptotics

Three regimes, as d and n tend to ∞

- When n is "small", each step of the chain increases the inversion number with high probability. For example, $\operatorname{inv}\left(\pi^{(1)}\right)=1, \quad \mathbb{P}\left(\operatorname{inv}\left(\pi^{(2)}\right)=2\right)=1-\frac{1}{d}, \quad \mathbb{P}\left(\operatorname{inv}\left(\pi^{(n)}\right)=n\right)=1-O\left(\frac{1}{d}\right)$.
- When n is "large", the expected inversion number must approach its limit value $d(d+1) / 4 \sim d^{2} / 4$.

The expected inversion number: asymptotics

Three regimes, as d and n tend to ∞

- When n is "small", each step of the chain increases the inversion number with high probability. For example, $\operatorname{inv}\left(\pi^{(1)}\right)=1, \quad \mathbb{P}\left(\operatorname{inv}\left(\pi^{(2)}\right)=2\right)=1-\frac{1}{d}, \quad \mathbb{P}\left(\operatorname{inv}\left(\pi^{(n)}\right)=n\right)=1-O\left(\frac{1}{d}\right)$.
- When n is "large", the expected inversion number must approach its limit value $d(d+1) / 4 \sim d^{2} / 4$.
- An intermediate regime?

Small times: linear and before

- Sub-linear regime. If $n=o(d)$,

$$
\frac{I_{d, n}}{n}=1+O(n / d)
$$

Small times: linear and before

- Sub-linear regime. If $n=o(d)$,

$$
\frac{\mathrm{I}_{d, n}}{n}=1+O(n / d)
$$

- Linear regime. If $n \sim \kappa d$,

$$
\frac{\mathrm{I}_{d, n}}{n}=f(\kappa)+O(1 / d)
$$

where

$$
\begin{aligned}
f(\kappa) & =\frac{1}{2 \pi \kappa} \int_{0}^{\infty} \frac{1-\exp \left(-8 \kappa t^{2} /\left(1+t^{2}\right)\right)}{t^{2}\left(1+t^{2}\right)} d t \\
& =\sum_{j \geq 0}(-1)^{j} \frac{(2 j)!}{j!(j+1)!^{2}}(2 \kappa)^{j} .
\end{aligned}
$$

The function $f(\kappa)$ decreases from $f(0)=1$ to $f(\infty)=0$.

Large times: cubic and beyond

- Super-cubic regime. If $n \gg d^{3}$,

$$
\frac{I_{d, n}}{d^{2}} \rightarrow \frac{1}{4} .
$$

Large times: cubic and beyond

- Super-cubic regime. If $n \gg d^{3}$,

$$
\frac{\mathrm{I}_{d, n}}{d^{2}} \rightarrow \frac{1}{4} .
$$

- Cubic regime. If $n \sim \kappa d^{3}$,

$$
\frac{\mathrm{I}_{d, n}}{d^{2}} \sim g(\kappa)
$$

where

$$
g(\kappa)=\frac{1}{4}-\frac{16}{\pi^{4}}\left(\sum_{j \geq 0} \frac{e^{-\kappa \pi^{2}(2 j+1)^{2} / 2}}{(2 j+1)^{2}}\right)^{2}
$$

The function $g(\kappa)$ increases from $g(0)=0$ to $g(\infty)=1 / 4$.

Around the mixing time (super-cubic regime)

Assume $n \sim \kappa d^{3} \log d$.

- If $\kappa<1 / \pi^{2}$, there exists $\gamma>0$ such that

$$
\mathrm{I}_{d, n} \leq \frac{d(d+1)}{4}-\Theta\left(d^{1+\gamma}\right)
$$

- If $\kappa>1 / \pi^{2}$, there exists $\gamma>0$ such that

$$
\mathrm{I}_{d, n}=\frac{d(d+1)}{4}-O\left(d^{1-\gamma}\right)
$$

- For the critical value $\kappa=1 / \pi^{2}$, the following refined estimate holds: if $n \sim 1 / \pi^{2} d^{3} \log d+\alpha d^{3}+o\left(d^{3}\right)$, then

$$
\mathrm{I}_{d, n}=\frac{d(d+1)}{4}-\frac{16 d}{\pi^{4}} e^{-\alpha \pi^{2}}(1+o(1))
$$

The intermediate regime

- If $d \ll n \ll d^{3}$,

$$
\frac{\mathrm{I}_{d, n}}{\sqrt{d n}} \rightarrow \sqrt{\frac{2}{\pi}} .
$$

Remark. For a related continuous time chain, the normalized inversion number $\mathcal{I}_{d, n} / \sqrt{d n}$ converges in probability to $\sqrt{2 / \pi}$ [Beresticky \& Durrett 08]

A formula for the expected inversion number

Theorem: The expected number of inversions after n adjacent transpositions in \mathfrak{S}_{d+1} is

$$
I_{d, n}=\frac{d(d+1)}{4}-\frac{1}{8(d+1)^{2}} \sum_{k, j=0}^{d} \frac{\left(c_{j}+c_{k}\right)^{2}}{s_{j}^{2} s_{k}^{2}} x_{j k}^{n}
$$

where

$$
c_{k}=\cos \alpha_{k}, \quad s_{k}=\sin \alpha_{k}, \quad \alpha_{k}=\frac{(2 k+1) \pi}{2 d+2}
$$

and

$$
x_{j k}=1-\frac{4}{d}\left(1-c_{j} c_{k}\right) .
$$

Where are the inversions? [Eriksson et al. 00]

For $i \leq j$, let $p_{i, j}^{(n)}$ be the probability that there is an inversion at time n in the positions i and $j+1$:

$$
p_{i, j}^{(n)}=\mathbb{P}\left(\pi_{i}^{(n)}>\pi_{j+1}^{(n)}\right) .
$$

- The expected number of inversions at time n is

$$
\mathrm{I}_{d, n}=\sum_{0 \leq i \leq j<d} p_{i, j}^{(n)}
$$

Where are the inversions? [Eriksson et al. 00]

For $i \leq j$, let $p_{i, j}^{(n)}$ be the probability that there is an inversion at time n in the positions i and $j+1$:

$$
p_{i, j}^{(n)}=\mathbb{P}\left(\pi_{i}^{(n)}>\pi_{j+1}^{(n)}\right) .
$$

- The numbers $p_{i, j}^{(n)}$ can be described recursively by examining where were the values $\pi_{i}^{(n)}$ and $\pi_{j+1}^{(n)}$ at time $n-1$.

Where are the inversions? [Eriksson et al. 00]

For $i \leq j$, let $p_{i, j}^{(n)}$ be the probability that there is an inversion at time n in the positions i and $j+1$:

$$
p_{i, j}^{(n)}=\mathbb{P}\left(\pi_{i}^{(n)}>\pi_{j+1}^{(n)}\right) .
$$

- The numbers $p_{i, j}^{(n)}$ can be described recursively by examining where were the values $\pi_{i}^{(n)}$ and $\pi_{j+1}^{(n)}$ at time $n-1$. For instance:
$-i=j$ and the nth transposition has switched the i th and $i+1$ st values:

$$
\left(1-p_{i, j}^{(n-1)}\right) \frac{1}{d}
$$

$-0 \neq i=j \neq d$ and the nth transposition has not changed the values at positions i and $i+1$,

$$
p_{i, j}^{(n-1)}\left(1-\frac{3}{d}\right) .
$$

- etc.

A recursion for the inversion probabilities

Lemma. The inversion probabilities $p_{i, j}^{(n)}$ are characterized by:

$$
p_{i, j}^{(0)}=0 \quad \text { for } \quad 0 \leq i \leq j<d
$$

and for $n \geq 0$,

$$
p_{i, j}^{(n+1)}=p_{i, j}^{(n)}+\frac{1}{d} \sum_{(k, \ell) \leftrightarrow(i, j)}\left(p_{k, \ell}^{(n)}-p_{i, j}^{(n)}\right)+\frac{\delta_{i, j}}{d}\left(1-2 p_{i, j}^{(n)}\right)
$$

where $\delta_{i, j}=1$ if $i=j$ and 0 otherwise, and the neighbour relations \leftrightarrow are those of the following graph:

$\rightsquigarrow A$ (weighted) walk in a triangle.

A functional equation for the GF of the inversion probabilities Let $P(t ; u, v)$ be the generating function of the numbers $p_{i, j}^{(n)}$:

$$
P(t ; u, v) \equiv P(u, v):=\sum_{n \geq 0} t^{n} \sum_{0 \leq i \leq j<d} p_{i, j}^{(n)} u^{i} v^{j}
$$

A functional equation for the GF of the inversion probabilities

Let $P(t ; u, v)$ be the generating function of the numbers $p_{i, j}^{(n)}$:

$$
P(t ; u, v) \equiv P(u, v):=\sum_{n \geq 0} t^{n} \sum_{0 \leq i \leq j<d} p_{i, j}^{(n)} u^{i} v^{j}
$$

The above recursion translates as

$$
\begin{aligned}
& \left(1-t+\frac{t}{d}(4-u-\bar{u}-v-\bar{v})\right) P(u, v)= \\
& \quad \frac{t}{d}\left(\frac{1-u^{d} v^{d}}{(1-u v)(1-t)}-(\bar{u}-1) P_{\ell}(v)-(v-1) v^{d-1} P_{t}(u)-(u+\bar{v}) P_{\delta}(u v)\right)
\end{aligned}
$$

where $\bar{u}=1 / u, \bar{v}=1 / v$, and the series P_{ℓ}, P_{t} and P_{δ} describe the numbers $p_{i, j}^{(n)}$ on the boundaries of the graph:

Back to the inversion number

We are interested in

$$
\mathrm{I}_{d}(t)=\sum_{n \geq 0} \mathrm{I}_{d, n} t^{n}=P(t ; 1,1)
$$

which, according to the functional equation, may be rewritten

$$
\begin{gathered}
\mathrm{I}_{d}(t)=\frac{t}{(1-t)^{2}}-\frac{2 t P_{\delta}(1)}{d(1-t)} . \\
\triangleleft \triangleleft \diamond \triangleright \triangleright \\
P(t ; u, v) \equiv P(u, v):=\sum_{n \geq 0} t^{n} \sum_{0 \leq i \leq j<d} p_{i, j}^{(n)} u^{i} v^{j} . \\
\left(1-t+\frac{t}{d}(4-u-\bar{u}-v-\bar{v})\right) P(u, v)= \\
\frac{t}{d}\left(\frac{1-u^{d} v^{d}}{(1-u v)(1-t)}-(\bar{u}-1) P_{\ell}(v)-(v-1) v^{d-1} P_{t}(u)-(u+\bar{v}) P_{\delta}(u v)\right),
\end{gathered}
$$

$$
\begin{aligned}
& \left(1-t+\frac{t}{d}(4-u-\bar{u}-v-\bar{v})\right) P(u, v)= \\
& \quad \frac{t}{d}\left(\frac{1-u^{d} v^{d}}{(1-u v)(1-t)}-(\bar{u}-1) P_{\ell}(v)-(v-1) v^{d-1} P_{t}(u)-(u+\bar{v}) P_{\delta}(u v)\right)
\end{aligned}
$$

What a beautiful equation!

$$
\begin{aligned}
& \left(1-t+\frac{t}{d}(4-u-\bar{u}-v-\bar{v})\right) P(u, v)= \\
& \quad \frac{t}{d}\left(\frac{1-u^{d} v^{d}}{(1-u v)(1-t)}-(\bar{u}-1) P_{\ell}(v)-(v-1) v^{d-1} P_{t}(u)-(u+\bar{v}) P_{\delta}(u v)\right)
\end{aligned}
$$

Analogies with:

- Walks with steps ± 1 in a strip of height d :

$$
(1-t(u+\bar{u})) P(u)=1-t \bar{u} P_{0}-t u^{d+1} P_{d}
$$

- Walks in the quarter plane

$$
\begin{aligned}
& (1-t(u+\bar{u}+v+\bar{v})) P(u, v)= \\
& 1-t \bar{u} P(0, v)-t \bar{v} P(u, 0)
\end{aligned}
$$

- and others...

The ingredients of the solution

$$
\begin{aligned}
& \left(1-t+\frac{t}{d}(4-u-\bar{u}-v-\bar{v})\right) P(u, v)= \\
& \quad \frac{t}{d}\left(\frac{1-u^{d} v^{d}}{(1-u v)(1-t)}-(\bar{u}-1) P_{\ell}(v)-(v-1) v^{d-1} P_{t}(u)-(u+\bar{v}) P_{\delta}(u v)\right)
\end{aligned}
$$

- Cancel the kernel $\left(1-t+\frac{t}{d}(4-u-\bar{u}-v-\bar{v})\right)$ by coupling u and v

The ingredients of the solution

$$
\begin{aligned}
& \left(1-t+\frac{t}{d}(4-u-\bar{u}-v-\bar{v})\right) P(u, v)= \\
& \quad \frac{t}{d}\left(\frac{1-u^{d} v^{d}}{(1-u v)(1-t)}-(\bar{u}-1) P_{\ell}(v)-(v-1) v^{d-1} P_{t}(u)-(u+\bar{v}) P_{\delta}(u v)\right)
\end{aligned}
$$

- Cancel the kernel $\left(1-t+\frac{t}{d}(4-u-\bar{u}-v-\bar{v})\right)$ by coupling u and v
- Exploit the symmetries of this kernel, which is invariant by $(u, v) \mapsto(\bar{u}, v)$ $(u, v) \mapsto(u, \bar{v}),(u, v) \mapsto(\bar{u}, \bar{v})$ (the reflection principle)

The ingredients of the solution

$$
\begin{aligned}
& \left(1-t+\frac{t}{d}(4-u-\bar{u}-v-\bar{v})\right) P(u, v)= \\
& \quad \frac{t}{d}\left(\frac{1-u^{d} v^{d}}{(1-u v)(1-t)}-(\bar{u}-1) P_{\ell}(v)-(v-1) v^{d-1} P_{t}(u)-(u+\bar{v}) P_{\delta}(u v)\right)
\end{aligned}
$$

- Cancel the kernel $\left(1-t+\frac{t}{d}(4-u-\bar{u}-v-\bar{v})\right)$ by coupling u and v
- Exploit the symmetries of this kernel, which is invariant by $(u, v) \mapsto(\bar{u}, v)$ $(u, v) \mapsto(u, \bar{v}),(u, v) \mapsto(\bar{u}, \bar{v})$ (the reflection principle)
- Plus one more coupling between u and v.

The ingredients of the solution

$$
\begin{aligned}
& \left(1-t+\frac{t}{d}(4-u-\bar{u}-v-\bar{v})\right) P(u, v)= \\
& \quad \frac{t}{d}\left(\frac{1-u^{d} v^{d}}{(1-u v)(1-t)}-(\bar{u}-1) P_{\ell}(v)-(v-1) v^{d-1} P_{t}(u)-(u+\bar{v}) P_{\delta}(u v)\right)
\end{aligned}
$$

- Cancel the kernel $\left(1-t+\frac{t}{d}(4-u-\bar{u}-v-\bar{v})\right)$ by coupling u and v
- Exploit the symmetries of this kernel, which is invariant by $(u, v) \mapsto(\bar{u}, v)$ $(u, v) \mapsto(u, \bar{v}),(u, v) \mapsto(\bar{u}, \bar{v})$ (the reflection principle)
- Plus one more coupling between u and v.

One obtains an explicit expression of $P_{\delta}(q)$ at every $q \neq-1$ such that $q^{d+1}=-1$, and this is enough to reconstruct the whole polynomial $P_{\delta}(u)$ (and in particular, $P_{\delta}(1)$) by interpolation.

The final result

The generating function $I_{d}(t)=\sum_{n \geq 0} I_{d, n} t^{n}$ is

$$
\mathrm{I}_{d}(t)=\frac{d(d+1)}{4(1-t)}-\frac{1}{8(d+1)^{2}} \sum_{k, j=0}^{d} \frac{\left(c_{j}+c_{k}\right)^{2}}{s_{j}^{2} s_{k}^{2}} \frac{1}{1-t x_{j k}}
$$

with

$$
c_{k}=\cos \alpha_{k}, \quad s_{k}=\sin \alpha_{k}, \quad \alpha_{k}=\frac{(2 k+1) \pi}{2 d+2}
$$

and

$$
x_{j k}=1-\frac{4}{d}\left(1-c_{j} c_{k}\right) .
$$

Perspectives

- Other generators (ex: all transpositions [Sjöstrand 10], transpositions ($0, i$), block transpositions...)

Perspectives

- Other generators (ex: all transpositions [Sjöstrand 10], transpositions (0, i), block transpositions...)
- Other statistics: inversion number \mapsto measure of the "distance" between the identity and a permutation (ex: [Eriksen \& Hultman 04], expected transposition distance after n transpositions)

Perspectives

- Other generators (ex: all transpositions [Sjöstrand 10], transpositions (0, i), block transpositions...)
- Other statistics: inversion number \mapsto measure of the "distance" between the identity and a permutation (ex: [Eriksen \& Hultman 04], expected transposition distance after n transpositions)
- Other groups: mostly, finite irreducible Coxeter groups, with the length as the distance statistics ([Troili 02]: the case of $I_{2}(d)$). When the generators are all reflections, see [Sjöstrand 10]!

