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A complete binary tree

n internal vertices, called nodes (size n)

n + 1 external vertices, called leaves



An (incomplete) binary tree

n nodes (size n)



A plane tree

Each node has a (possibly empty) ordered sequence of children

n edges, n + 1 nodes (size n)



What is the shape of a (large) random binary tree?



The (horizontal) profile of a binary tree
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A binary tree of height 4 (or 5...)



The horizontal profile of a plane tree
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A plane tree of height 3.



NEW! The vertical profile of a binary tree
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A binary tree of right width 3, and vertical profile [2,2; 4,2,1,1].



Why study the vertical profile of trees?



Why study the vertical profile of trees?

Wait and see!



Limit results on the shape of trees: general approach

• Enumerative combinatorics (decompositions of trees, recurrence rela-

tions, generating functions...)

• Singularity analysis [Flajolet-Odlyzko 90]: extract from the generating

functions the asymptotic behaviour of their coefficients



Decomposition and enumeration of binary trees

Let an be the number of binary trees with n nodes (internal vertices):














a0 = 1

an =
n−1
∑

m=0

am an−m−1

Let A(t) :=
∑

n>0

antn be the associated generating function:

A(t) = 1 + tA(t)2.

=

A(t) =

+

m

+ tA(t)2

n − m − 1

1



Decomposition and enumeration of plane trees

Let a∗n be the number of plane trees with n edges (n + 1 vertices):














a∗0 = 1

a∗n =
n−1
∑

m=0

a∗m a∗n−m−1

Let A∗(t) :=
∑

n>0

a∗ntn be the associated generating function:

A∗(t) = 1 + tA∗(t)2.

= +

m n − m − 1

= +A∗(t) tA∗(t)21



The Catalan numbers

There are as many binary trees with n nodes as plane trees with n edges:

an = a∗n

The associated generating function is

A(t) = A∗(t) =
∑

n
antn

It satisfies

A(t) = 1 + tA(t)2 ⇒ A(t) =
1 −

√
1 − 4t

2t
=

∑

n>0

1

n + 1

(2n

n

)

tn.

Hence

an = a∗n =
1

n + 1

(2n

n

)

is the nth Catalan number.



Part 1. Height and width of binary trees

???

???



Counting trees of bounded height

Let H6j(t) ≡ H6j be the generating function of binary trees of height at

most j:

H6j =
∑

n>0

hn,6jt
n

+=H6j = 1 + tH2
6j−1

H60 = 1

Let H∗
6j(t) ≡ H∗

6j be the generating function of plane trees of height at

most j, where t counts edges.

+=

H∗
60 = 1

H∗
6j = 1 + tH∗

6j−1H
∗
6j



Counting trees of bounded (right) width

Let W6j(t) ≡ W6j be the generating function of binary trees of right width

at most j.

= +

6 j − 1

6 j

6 j + 1

6 j

W6−1 = 1

W6j = 1 + tW6j+1W6j−1For j > 0,



Trees of bounded height or bounded width: functional equations

H∗
60 = 1

Bounded heightFamily of trees Bounded (right) width

H∗
6j = 1 + tH∗

6j−1H
∗
6j

H6j = 1 + tH2
6j−1

H60 = 1 W6−1 = 1

W6j = 1 + tW6j+1W6j−1

(j > 0)



Generating functions for trees of bounded height/width

Proposition: The generating function of plane trees of height 6 j is:

H∗
6j = A

1 − Qj+1

1 − Qj+2

where A counts plane trees and Q = A − 1 [de Bruijn, Knuth, Rice 72].



Generating functions for trees of bounded height/width

Proposition: The generating function of plane trees of height 6 j is:

H∗
6j = A

1 − Qj+1

1 − Qj+2

where A counts plane trees and Q = A − 1 [de Bruijn, Knuth, Rice 72].

⊳ ⊳ ⋄ ⊲ ⊲

Proposition [mbm 06]: The generating function of binary trees of right

width 6 j is:

W6j = A
(1 − Zj+2)(1 − Zj+7)

(1 − Zj+4)(1 − Zj+5)
,

where A counts binary trees and Z ≡ Z(t) is the unique series in t such that

Z = t

(

1 + Z2
)2

1 − Z + Z2
and Z(0) = 0.

But. . . w h y ?



Limit results on the shape of trees: general approach

• Enumerative combinatorics: Using a recursive decomposition of trees,

write equations for the relevant generating functions and solve them...

• Use the results (or the technique) of singularity analysis [Flajolet-Odlyzko

90] to extract from these series the asymptotic behaviour of their coefficients

– Results: “If B(t) =
∑

n bntn behaves like this in the neighborhood of its

dominant singularity ts, then its coefficients bn behave asymptotically like

that.”

– Technique: Cauchy’s formula

bn =
1

2iπ

∫

Cn

B(t)
dt

tn+1

for a carefully chosen contour Cn.



The average height of binary trees: experimental approach

Consider the average height of plane trees of size n:

E(H∗
n) :=

1

an

∑

|τ |=n

h(τ) =
1

an

∑

j>0

j (h∗
n,6j − h∗

n,6j−1).
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Convergence in law of the height: experimental approach

The number of trees of size n and height at most j is h∗
n,6j. For x > 0,

consider

Fn(x) := P

(

H∗
n√
n

6 x

)

=
1

an
h∗

n,6x
√

n,

the proportion of trees of size n having height at most x
√

n. It is the

probability that a random tree of size n has height at most x
√

n.

Graph of Fn(x) :
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Limit results for the height of trees

Convergence in law: For all x > 0,

P

(

H∗
n√
n

6 x

)

→ F(x),

where

0

i
HF(x) = − 1

i
√

π

∫

H
coth(x

√
−z)

√
−ze−zdz

=
+∞
∑

k=−∞
e−k2x2

(1 − 2k2x2)

−1

Convergence of the moments: Let H∗
n be the (random) height of a plane

tree with n edges. As n → ∞,

E(H∗
n)√
n

→
√

π, E





(

H∗
n√
n

)k


→ k(k − 1)Γ(k/2)ζ(k) for k > 2.

[Flajolet-Odlyzko 82], [Brown-Schubert 84]

+ similar results for binary trees



Limit results for the right width of binary trees [mbm 06]

Convergence of the moments: Let Wn be the (random) right width of a

binary tree with n nodes. Then, as n → ∞,

E(Wn)

n1/4
→ 3

√
π√

2Γ(3/4)
, E





(

Wn

n1/4

)2


 → 6
√

π,

E





(

Wn

n1/4

)k


 =
24

√
πk!ζ(k − 1)√

2kΓ((k − 2)/4)
for k > 3.

Convergence in law:

P

(

Wn

n1/4
> x

)

→ G(x)

G(x) =
3

i
√

π

∫

H

√−ze−z

sinh2(x(−z1/4/
√

2))
dz

0

i

−1

H



Height and width of binary trees

β n1/4

α
√

n



Part 2. What about the profiles?
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Gallery of (horizontal and vertical) profiles
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Horizontal profiles of random binary trees with 1000 nodes.
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Vertical profiles of random binary trees with 1000 nodes.



The average (horizontal and vertical) profiles

Average horizontal profile of plane trees of size 10, 20, 30, 40, 50:
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One new ingredient: bivariate generating functions

Before: Given j, how many plane trees of size n have height at most j?

⇒ series H∗
6j(t) =

∑

n
hn,6j tn

Now: Given j, how many plane trees of size n have exactly k nodes at height

j?

⇒ series P ∗
j (t, u) =

∑

n,k

pn,k,j tnuk



The number of nodes at height j (plane trees)

Let P ∗
j ≡ P ∗

j (t, u) be the generating function of plane trees, counted by edges

(variable t) and by the number of nodes at height j (variable u):

+=

P ∗
0 = uA(t)

P ∗
j = 1 + tP ∗

j−1P
∗
j

Proposition [???]:

P ∗
j = A

1 − MQj

1 − MQj+1

where A counts plane trees, Q = A − 1 and

M =
A − u − tuA2

u + A(1 − u) + tuA2(1 − A)
.



The number of nodes at abscissa j (binary trees)

Let Vj ≡ Vj(t, u) be the generating function of binary trees, counted by nodes

(t) and by the number of nodes at abscissa j (variable u).

+=

V0 = 1 + utV 2
1

Vj = 1 + tVj+1Vj−1For j > 1,
j j

Proposition [mbm 06]: the series Vj are algebraic. Moreover,

Vj = A
(1 + MZj)(1 + MZj+5)

(1 + MZj+2)(1 + MZj+3)

where A counts binary trees,

Z = t

(

1 + Z2
)2

1 − Z + Z2
,

and M ≡ M(t, u) is the unique power series in t such that

M = (u − 1)
Z(1 + MZ)2(1 + MZ2)(1 + MZ6)

(1 + Z)2(1 + Z + Z2)(1 − Z)3(1 − M2Z5)
.



The horizontal profile

A tree of size n has, on average, height O(
√

n). How many nodes are there

at a given (horizontal) level?

???



The horizontal profile

A tree of size n has, on average, height O(
√

n). How many nodes are there

at a given (horizontal) level?

About
√

n.



The horizontal profile

A tree of size n has, on average, height O(
√

n). How many nodes are there

at a given (horizontal) level?

About
√

n.

Let X∗
n(j) be the number of nodes located at height j in a random plane

tree with n edges.

We study the quantity

X∗
n(⌊λ

√
n⌋)√

n
.



The vertical profile

A binary tree of size n has, on average, width O(n1/4). How many nodes

are there on a given (vertical) layer?

About n3/4.

Let Yn(j) be the number of nodes located at abscissa j in a random binary

tree with n nodes.

We study the quantity

Yn(⌊λn1/4⌋)
n3/4

.



The horizontal profile of plane trees

• The sequence
X∗

n(⌊λ
√

n⌋)√
n

converges in law for each λ (and as a process

[Drmota-Gittenberger 97] )

• The first moment:
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E
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X∗
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√
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)

→ 2λe−λ2
.

On average, there are about 2λe−λ2√
n nodes at height

⌊λ√n⌋ in a plane tree having n edges.

In other words, the height of a random node in a random tree, once nor-

malized by
√

n, follows a law of density 2λe−λ2
.



The vertical profile of binary trees

Let Yn(j) be the (random) number of nodes at abscissa j in a binary tree

having n nodes.

• The sequence
Yn(⌊λn1/4⌋)

n3/4 converges in law to a random variable Y(λ) de-

scribed explicitly by its Laplace transform for every λ (and as a process

[mbm-Janson 06])

• Moreover,
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x

E

(

Yn(⌊λn1/4⌋)
n3/4

)

→ 1√
2π

∑

m>0

(−
√

2|λ|)m

m!
cos

(m + 1)π

4
Γ

(

m + 3

4

)

.

This gives the average number of nodes at abscissa

⌊λn1/4⌋ in a random binary tree having n nodes.

[mbm 06]



An example: nodes at abscissa 0

• The random variable

Yn(0)

n3/4
,

which gives the (normalized) number of nodes at abscissa 0, converges in

law to a variable Y(0) such that

E
(

Y (0)k
)

=

(√
2

3

)k
Γ(1 + 3k/4)

Γ(1 + k/2)
.

Hence (...) Y (0) =
√

2

3
√

T2/3

, where T2/3 follows a unilateral stable law of

parameter 2/3.

E(e
−aT2/3) = e−a2/3

for a > 0.

Merci Alain Rouault !



An example: nodes at abscissa 0

• The random variable

Yn(0)

n3/4
,

which gives the (normalized) number of nodes at abscissa 0, converges in

law to a variable Y(0) such that

E
(

Y (0)k
)

=

(√
2

3

)k
Γ(1 + 3k/4)

Γ(1 + k/2)
.

Hence (...) Y (0) =
√

2

3
√

T2/3

, where T2/3 follows a unilateral stable law of

parameter 2/3.

E(e
−aT2/3) = e−a2/3

for a > 0.

Merci Alain Rouault !

• The number of nodes lying at a positive abscissa, normalized by n, con-

verges to U(0,1) [Aldous].



Part 3. Why study the vertical profile?

• Binary trees (drawn in a canonical way) form a family of embedded trees.

There are many other families!
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• The same questions can be asked for any class of embedded trees:

- what is the largest label? (width)

- How many nodes have label j? (profile)



Why study embedded trees?

• They have interesting combinatorial properties (mysterious algebraic se-

ries)



Why study embedded trees?

• They have interesting combinatorial properties (mysterious algebraic se-

ries)

The GF of embedded plane trees with increments ±1 having largest label at

most j is

Tj = T
(1 − Zj+1)(1 − Zj+5)

(1 − Zj+2)(1 − Zj+4)
,

where T = 1 + 2tT2 and

Z = t
(1 + Z)4

1 + Z2
.



Why study embedded trees?

• They have interesting combinatorial properties (mysterious algebraic se-

ries)

• Embedded trees with nonnegative labels are related bijectively to planar

maps [Cori-Vauquelin 81], [Chassaing-Schaeffer 04], [Del Lungo, Del Ris-

toro, Penaud 00], [Bouttier-Di Francesco-Guitter 03]



Why study embedded trees?

• They have interesting combinatorial properties (mysterious algebraic se-

ries)

• Embedded trees with nonnegative labels are related bijectively to planar

maps [Cori-Vauquelin 81], [Chassaing-Schaeffer 04], [Del Lungo, Del Ris-

toro, Penaud 00], [Bouttier-Di Francesco-Guitter 03]

• They are related to ISE (the Integrated SuperBrownian Excursion)

[Aldous 93], [Borgs et al. 99]



The Integrated SuperBrownian Excursion

The ISE is a (random) probability distribution on R
d that occurs (almost)

everywhere. At least, as soon as a branching structure (tree) is combined

with an embedding of the nodes in the space. The ISE describes how the

space is occupied by the nodes [Aldous 93], [Marckert-Mokkadem 03].
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Embedded trees and ISE

• Let Tn denote a random embedded tree with n nodes. Let µn be the

occupation measure of Tn:

µn =
∑

v∈Tn

δ(ℓ(v) ),

where ℓ(v) denotes the label (position) of the node v, and δ(x) is the Dirac

measure at x.
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Embedded trees and ISE

• Let Tn denote a random embedded tree with n nodes. Let µn be the

occupation measure of Tn:

µn =
1

n

∑

v∈Tn

δ(ℓ(v) ),

where ℓ(v) denotes the label (position) of the node v, and δ(x) is the Dirac

measure at x. Then µn is a probability distribution (total weight 1).

-3 -2 -1 0 1 2 3

Histogram of µn

0

0 01

-2-2

3 -3

2

-1



Embedded trees and ISE

• Let Tn denote a random embedded tree with n nodes. Let µn be the

occupation measure of Tn:

µn =
1

n

∑

v∈Tn

δ(ℓ(v)n−1/4),

where ℓ(v) denotes the label (position) of the node v, and δ(x) is the Dirac

measure at x. Then µn is a probability distribution (total weight 1).

It is random since it depends on the random tree Tn.
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Embedded trees and ISE

• Let Tn denote a random embedded tree with n nodes. Let µn be the

occupation measure of Tn:

µn =
1

n

∑

v∈Tn

δ(ℓ(v)n−1/4),

where ℓ(v) denotes the label (position) of the node v, and δ(x) is the Dirac

measure at x.

• Thm. As n grows, µn → µise, where µise is the ISE.

[Aldous 93, Borgs et al. 99, Janson-Marckert 04]

This holds for “many” families of random embedded trees!
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Another occurrence of ISE: Properly embedded trees

In dimension d > 8, the occupation measure of properly embedded trees

converges also to the d-dimensional ISE.

[Derbez-Slade 98]



Main objective: study ISE (in 1D) via embedded trees
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• Largest label → law of the maximum of the support of the ISE

• Number of nodes at abscissa j = λn1/4 → law of the density of the ISE at

a fixed point λ

• Number of nodes at abscissa 6 j = λn1/4 → law of the distribution function

of the ISE at a fixed point λ



A beautiful slide for Wjcch.

• Let Mi be the ith moment of the ISE (Mi is a random variable!)

Mi = lim
n

1

n

∑

v∈Tn

(

ℓ(v)n−1/4
)i



A beautiful slide for Wjcch.

• Let Mi be the ith moment of the ISE (Mi is a random variable!)

Mi = lim
n

1

n

∑

v∈Tn

(

ℓ(v)n−1/4
)i

• Then E

(

M2k
1

)

= 0 and E

(

M2k
1

)

=
ak Γ(1/2)

2k/2 Γ((5k − 1)/2)
, where a0 = −2 and

for k > 0,

4 ak =
k−1
∑

i=1

(2k

2i

)

aiak−i + k(2k − 1)(5k − 4)(5k − 6)ak−1



A beautiful slide for Wjcch.

• Let Mi be the ith moment of the ISE (Mi is a random variable!)

Mi = lim
n

1

n

∑

v∈Tn

(

ℓ(v)n−1/4
)i

• Then E

(

M2k
1

)

= 0 and E

(

M2k
1

)

=
ak Γ(1/2)

2k/2 Γ((5k − 1)/2)
, where a0 = −2 and

for k > 0,

4 ak =
k−1
∑

i=1

(2k

2i

)

aiak−i + k(2k − 1)(5k − 4)(5k − 6)ak−1

• Also,

E(M2k
1 M ℓ

2) =
ak,ℓ Γ(1/2)

2(k+ℓ)/2 Γ((5k + 3ℓ − 1)/2)
,

where a0,0 = −2 and the ak,ℓ are determined by induction on k + ℓ:

ak,ℓ =
1

4

∑

(0,0)<(i,j)<(k,ℓ)

(2k

2i

)(ℓ

j

)

ai,jak−i,ℓ−j + 2ℓ(ℓ − 1)ak+1,ℓ−2

+
1

4
k(2k − 1)(5k +3ℓ− 4)(5k +3ℓ− 6)ak−1,ℓ +

1

2
(4k +1)ℓ(5k +3ℓ− 4)ak,ℓ−1.



That’s it!



The Laplace transform of Y (λ)

Let λ > 0. The sequence Yn(⌊λn1/4⌋) converges in distribution to a non-

negative random variable Y (λ) whose Laplace transform is given, for |a| <

4/
√

3, by

E

(

eaY (λ)
)

= L(λ, a)

where

L(λ, a) = 1 +
48

i
√
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A(x) ≡ A is the unique solution of

A =
x
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1 − A

satisfying A(0) = 0, and the integral is taken over

Γ = {1 − te−iπ/4, t ∈ (∞,0]} ∪ {1 + te−iπ/4, t ∈ [0,∞)}.



Did you say “ISE”?


