Invariants

for three-quadrant walks:

the Kreweras trilogy

Mireille Bousquet-Mélou, CNRS, Université de Bordeaux, France

Counting walks in (rational) cones

Take a starting point p_{0} in \mathbb{Z}^{2}, a (finite) step set $\mathcal{S} \subset \mathbb{Z}^{2}$ and a cone \mathcal{C}.

Questions

- What is the number $c(n)$ of n-step walks starting at p_{0}, taking their steps in \mathcal{S} and contained in \mathcal{C} ?
- For $(i, j) \in \mathcal{C}$, what is the number $c_{i, j}(n)$ of such walks that end at (i, j) ?

Counting walks in (rational) cones

Take a starting point p_{0} in \mathbb{Z}^{2}, a (finite) step set $\mathcal{S} \subset \mathbb{Z}^{2}$ and a cone \mathcal{C}.

Questions

- What is the number $c(n)$ of n-step walks starting at p_{0}, taking their steps in \mathcal{S} and contained in \mathcal{C} ?
- For $(i, j) \in \mathcal{C}$, what is the number $c_{i, j}(n)$ of such walks that end at (i, j) ?
- Generating function:

$$
\begin{aligned}
C(x, y ; t) & =\sum_{i, j, n} c_{i, j}(n) x^{i} y^{j} t^{n} \\
& =\sum_{w \text { walk }} x^{i(w)} y^{j(w)} t^{|w|}
\end{aligned}
$$

What is the value/nature of this series?

A hierarchy of formal power series

- Rational series

$$
A(t)=\frac{P(t)}{Q(t)}
$$

- Algebraic series

$$
P(t, A(t))=0
$$

- Differentially finite series (D-finite)

$$
\sum_{i=0}^{d} P_{i}(t) A^{(i)}(t)=0
$$

- D-algebraic series

$$
P\left(t, A(t), A^{\prime}(t), \ldots, A^{(d)}(t)\right)=0
$$

A hierarchy of formal power series

- Rational series

$$
A(t)=\frac{P(t)}{Q(t)}
$$

- Algebraic series

$$
P(t, A(t))=0
$$

- Differentially finite series (D-finite)

$$
\sum_{i=0}^{d} P_{i}(t) A^{(i)}(t)=0
$$

- D-algebraic series

$$
P\left(t, A(t), A^{\prime}(t), \ldots, A^{(d)}(t)\right)=0
$$

Multi-variate series: one DE per variable

Normalizing the cone: 4 cases

- The full space: rational series

$$
C(x, y ; t)=\frac{1}{1-t S(x, y)}=\sum_{n \geq 0} t^{n} S(x, y)^{n}
$$

where $S(x, y)$ is the step polynomial:

$$
S(x, y)=\sum_{(i, j) \in \mathcal{S}} x^{i} y^{j}
$$

Normalizing the cone: 4 cases

- The full space: rational series
- A half-space: algebraic series
[Gessel 80]; [mbm-Petkovšek 00], [Duchon 00], [Banderier \& Flajolet 02]...

Normalizing the cone: 4 cases

- The full space: rational series
- A half-space: algebraic series
[Gessel 80]; [mbm-Petkovšek 00], [Duchon 00], [Banderier \& Flajolet 02]...
- A convex cone \rightarrow walks in the non-negative quadrant: $Q(x, y ; t)$

Normalizing the cone: 4 cases

- The full space: rational series
- A half-space: algebraic series [Gessel 80]; [mbm-Petkovšek 00], [Duchon 00], [Banderier \& Flajolet 02]...
- A convex cone \rightarrow walks in the non-negative quadrant: $Q(x, y ; t)$
- A non-convex cone \rightarrow walks avoiding the negative quadrant: $C(x, y ; t)$

Walks with small steps

- $\mathcal{S} \subset\{\overline{1}, 0,1\}^{2} \backslash\{(0,0)\} \Rightarrow 2^{8}=256$ step sets (or: models)

Walks with small steps

- $\mathcal{S} \subset\{\overline{1}, 0,1\}^{2} \backslash\{(0,0)\} \Rightarrow 2^{8}=256$ step sets (or: models)
- However, some models are equivalent to a half-space problem (hence algebraic) and/or to another model (diagonal symmetry).

Walks with small steps

- $\mathcal{S} \subset\{\overline{1}, 0,1\}^{2} \backslash\{(0,0)\} \Rightarrow 2^{8}=256$ step sets (or: models)
- However, some models are equivalent to a half-space problem (hence algebraic) and/or to another model (diagonal symmetry).
- In the quadrant, one is left with 79 interesting distinct models [mbm-Mishna 09].

Walks with small steps

- $\mathcal{S} \subset\{\overline{1}, 0,1\}^{2} \backslash\{(0,0)\} \Rightarrow 2^{8}=256$ step sets (or: models)
- However, some models are equivalent to a half-space problem (hence algebraic) and/or to another model (diagonal symmetry).
- In the quadrant, one is left with 79 interesting distinct models [mbm-Mishna 09].
- In the three-quadrant cone, one is left with only 74 interesting distinct models: the 5 "singular" models become trivial.

Singular models

『® 区R® Nonsinguar

 $\mathbb{E} \boxtimes \boxtimes$

Classification of quadrant walks with small steps

The 4 algebraic models:

Kreweras

Reverse Kreweras

Double
Kreweras

Gessel

Outline

I. Kreweras' walks in the quadrant

- Functional equation
- A solution via invariants [Bernardi, mbm, Raschel 17(a)]
II. Kreweras' walks in three quadrants
- Functional equation
- A solution via invariants

$$
\triangleleft \triangleleft \diamond \triangleright \triangleright
$$

Invariants: a method introduced by W. Tutte to count properly coloured planar triangulations (1973-1984)

Kreweras' walks in the quadrant

- Generating function:

$$
Q(x, y) \equiv Q(x, y ; t)=\sum_{i, j, n \geq 0} q_{i, j}(n) x^{i} y^{j} t^{n}
$$

where $q_{i, j}(n)$ is the number of walks of length n from $(0,0)$ to (i, j) in the quadrant.

$(i, j)=(4,3)$

Kreweras' walks in the quadrant

- Generating function:

$$
Q(x, y) \equiv Q(x, y ; t)=\sum_{i, j, n \geq 0} q_{i, j}(n) x^{i} y^{j} t^{n}
$$

where $q_{i, j}(n)$ is the number of walks of length n from $(0,0)$ to (i, j) in the quadrant.

- Functional equation (with $\bar{x}=1 / x, \bar{y}=1 / y$):

$$
Q(x, y)=1+t(x y+\bar{x}+\bar{y}) Q(x, y)-t \bar{x} Q(0, y)-t \bar{y} Q(x, 0) .
$$

Kreweras' walks in the quadrant

- Generating function:

$$
Q(x, y) \equiv Q(x, y ; t)=\sum_{i, j, n \geq 0} q_{i, j}(n) x^{i} y^{j} t^{n}
$$

where $q_{i, j}(n)$ is the number of walks of length n from $(0,0)$ to (i, j) in the quadrant.

- Functional equation (with $\bar{x}=1 / x, \bar{y}=1 / y$):

$$
Q(x, y)=1+t(x y+\bar{x}+\bar{y}) Q(x, y)-t \bar{x} Q(0, y)-t \bar{y} Q(x, 0) .
$$

Equivalently,

$$
x y(1-t(x y+\bar{x}+\bar{y})) Q(x, y)=x y-t y Q(0, y)-t x Q(x, 0)
$$

where

$$
K(x, y):=x y(1-t(x y+\bar{x}+\bar{y}))
$$

is the kernel (a polynomial in t, x, y). Two catalytic variables: x and y.

What are invariants?

A pair of series $(I(x), J(y))$ in t with coefficients in $\mathbb{Q}(x)$ and $\mathbb{Q}(y)$ (respectively) is a pair of invariants if $I(x)-J(y)$ is divisible by $K(x, y)$.

- Isn't any series divisible by $K(x, y)$? After all,

$$
\frac{1}{K(x, y)}=\frac{1}{x y(1-t(x y+\bar{x}+\bar{y}))}=\bar{x} \bar{y} \sum_{n \geq 0} t^{n}(x y+\bar{x}+\bar{y})^{n}
$$

is well-defined...

What are invariants?

A pair of series $(I(x), J(y))$ in t with coefficients in $\mathbb{Q}(x)$ and $\mathbb{Q}(y)$ (respectively) is a pair of invariants if $I(x)-J(y)$ is divisible by $K(x, y)$.

- Isn't any series divisible by $K(x, y)$? After all,

$$
\frac{1}{K(x, y)}=\frac{1}{x y(1-t(x y+\bar{x}+\bar{y}))}=\bar{x} \bar{y} \sum_{n \geq 0} t^{n}(x y+\bar{x}+\bar{y})^{n}
$$

is well-defined...

- We want more: the coefficients (of $t^{n}, n \geq 0$) in the ratio

$$
H(x, y)=\frac{I(x)-J(y)}{K(x, y)},
$$

which are rational functions of the form $p(x, y) /\left(d(x) d^{\prime}(y)\right)$, must have poles of bounded order at $x=0$ and $y=0$.
Equivalently, there exists i, j such that the coefficients of $x^{i} y^{j} H(x, y)$ have no pole at $x=0$ nor $y=0$.

Do such pairs exist?

- Trivial invariants: take $I(x)=J(y) \in \mathbb{Q}((t))$

Do such pairs exist?

- Trivial invariants: take $I(x)=J(y) \in \mathbb{Q}((t))$
- Basic rational invariants: let

$$
I_{0}(x)=\bar{x}^{2}-\bar{x} / t-x, \quad J_{0}(y)=I_{0}(y) .
$$

Then

$$
K(x, y) \cdot \frac{x-y}{x^{2} y^{2}} \cdot \frac{1}{t}=I_{0}(x)-J_{0}(y)
$$

and the series $H_{0}(x, y)=(x-y) /\left(t x^{2} y^{2}\right)$ has poles of bounded order at $x=0$ and $y=0$.

Do such pairs exist?

- Trivial invariants: take $I(x)=J(y) \in \mathbb{Q}((t))$
- Basic rational invariants: let

$$
I_{0}(x)=\bar{x}^{2}-\bar{x} / t-x, \quad J_{0}(y)=I_{0}(y)
$$

Then

$$
K(x, y) \cdot \frac{x-y}{x^{2} y^{2}} \cdot \frac{1}{t}=I_{0}(x)-J_{0}(y)
$$

and the series $H_{0}(x, y)=(x-y) /\left(t x^{2} y^{2}\right)$ has poles of bounded order at $x=0$ and $y=0$.

New invariants from old ones
The componentwise sum (resp. product) of two pairs of invariants $\left(I_{0}(x), J_{0}(y)\right),\left(I_{1}(x), J_{1}(y)\right)$ is another pair of invariants.

$$
\left(I_{0}(x)+I_{1}(x), J_{0}(y)+J_{1}(y)\right), \quad\left(I_{0}(x) I_{1}(x), J_{0}(y) J_{1}(y)\right)
$$

What are invariants good for?

Functional equation:

$$
K(x, y) Q(x, y)=x y-t y Q(0, y)-t x Q(x, 0)
$$

What are invariants good for?

Functional equation:

$$
K(x, y) Q(x, y)=x y-t y Q(0, y)-t x Q(x, 0)
$$

1/ Build a new pair of invariants:

$$
\begin{aligned}
K(x, y) H_{1}(x, y) & =F(x)+G(y)-t y Q(0, y)-t x Q(x, 0) \\
& =I_{1}(x)-J_{1}(y)
\end{aligned}
$$

with

$$
I_{1}(x)=F(x)-t x Q(x, 0), \quad J_{1}(y)=-G(y)+t y Q(0, y)
$$

What are invariants good for?

Functional equation:

$$
K(x, y) Q(x, y)=x y-t y Q(0, y)-t x Q(x, 0)
$$

1/ Build a new pair of invariants:

$$
\begin{aligned}
K(x, y) H_{1}(x, y) & =F(x)+G(y)-t y Q(0, y)-t x Q(x, 0) \\
& =I_{1}(x)-J_{1}(y)
\end{aligned}
$$

with

$$
I_{1}(x)=F(x)-t x Q(x, 0), \quad J_{1}(y)=-G(y)+t y Q(0, y)
$$

2/ Relate this pair to the basic rational invariants $\left(I_{0}(x), J_{0}(y)\right)$ using:

The invariant lemma

If $K(x, y) H(x, y)=I(x)-J(y)$ and the coefficients of $H(x, y)$ (in $t)$
have no pole at $x=0$ nor at $y=0$, then

$$
H(x, y)=0 \quad \text { and } \quad I(x)=J(y) \in \mathbb{Q}((t)) .
$$

Step 1: decoupling

Functional equation:

$$
K(x, y) Q(x, y)=x y-t y Q(0, y)-t x Q(x, 0)
$$

1/ Build a new pair of invariants:

$$
\begin{aligned}
K(x, y) H_{1}(x, y) & =F(x)+G(y)-t y Q(0, y)-t x Q(x, 0) \\
& =I_{1}(x)-J_{1}(y)
\end{aligned}
$$

Step 1: decoupling

Functional equation:

$$
K(x, y) Q(x, y)=x y-t y Q(0, y)-t x Q(x, 0)
$$

1/ Build a new pair of invariants:

$$
\begin{aligned}
K(x, y) H_{1}(x, y) & =F(x)+G(y)-t y Q(0, y)-t x Q(x, 0) \\
& =I_{1}(x)-J_{1}(y)
\end{aligned}
$$

Easy! The term $x y$ decouples modulo $K(x, y)$:

$$
-\frac{1}{t x y} K(x, y)=x y+\bar{x}+\bar{y}-1 / t
$$

So we have a new pair of invariants:

$$
I_{1}(x)=t x Q(x, 0)+\bar{x}-1 /(2 t), \quad J_{1}(y)=-I_{1}(y)
$$

Step 2: relate $\left(I_{1}, J_{1}\right)$ to the basic invariants $\left(I_{0}, J_{0}\right)$

We have two pairs of invariants:

$$
\begin{array}{ll}
I_{0}(x)=\bar{x}^{2}-\bar{x} / t-x, & J_{0}(y)=I_{0}(y) \\
I_{1}(x)=\bar{x}-1 /(2 t)+t x Q(x, 0), & J_{1}(y)=-I_{1}(y)
\end{array}
$$

The series $I_{1}(x)$ has valuation -1 in x, while $I_{0}(x)$ has valuation -2 .

Step 2: relate $\left(I_{1}, J_{1}\right)$ to the basic invariants $\left(I_{0}, J_{0}\right)$

We have two pairs of invariants:

$$
\begin{array}{ll}
I_{0}(x)=\bar{x}^{2}-\bar{x} / t-x, & J_{0}(y)=I_{0}(y) \\
I_{1}(x)=\bar{x}-1 /(2 t)+t x Q(x, 0), & J_{1}(y)=-I_{1}(y)
\end{array}
$$

The series $I_{1}(x)$ has valuation -1 in x, while $I_{0}(x)$ has valuation -2 .
Observation: $I_{1}(x)^{2}-I_{0}(x)$ has no pole! Define

$$
I(x):=I_{1}(x)^{2}-I_{0}(x) \quad J(y):=J_{1}(y)^{2}-J_{0}(x)
$$

Then $(I(x), J(y))$ is a pair of invariants,

Step 2: relate $\left(I_{1}, J_{1}\right)$ to the basic invariants $\left(I_{0}, J_{0}\right)$

We have two pairs of invariants:

$$
\begin{array}{ll}
I_{0}(x)=\bar{x}^{2}-\bar{x} / t-x, & J_{0}(y)=I_{0}(y) \\
I_{1}(x)=\bar{x}-1 /(2 t)+t x Q(x, 0), & J_{1}(y)=-I_{1}(y)
\end{array}
$$

The series $I_{1}(x)$ has valuation -1 in x, while $I_{0}(x)$ has valuation -2 .
Observation: $I_{1}(x)^{2}-I_{0}(x)$ has no pole! Define

$$
I(x):=I_{1}(x)^{2}-I_{0}(x) \quad J(y):=J_{1}(y)^{2}-J_{0}(x)
$$

Then $(I(x), J(y))$ is a pair of invariants,

$$
-K(x, y) H(x, y)=I(x)-J(y)
$$

where

$$
H(x, y)=\frac{x-y}{t x^{2} y^{2}}+\left(Q(x, y)+\frac{1}{x y t}\right)\left(I_{1}(x)+J_{1}(y)\right)
$$

has no pole at $x=0$ nor $y=0$.

Applying the invariant lemma

Hence

$$
I(x)=I_{1}(x)^{2}-I_{0}(x)=(t x Q(x, 0)-1 /(2 t))^{2}+2 t Q(x, 0)+x
$$

is a series of $\mathbb{Q}((t))$, equal to its value at $x=0$:

Applying the invariant lemma

Hence

$$
I(x)=I_{1}(x)^{2}-I_{0}(x)=(t x Q(x, 0)-1 /(2 t))^{2}+2 t Q(x, 0)+x
$$

is a series of $\mathbb{Q}((t))$, equal to its value at $x=0$:

$$
(t x Q(x, 0)-1 /(2 t))^{2}+2 t Q(x, 0)+x=1 /(2 t)^{2}+2 t Q(0,0)
$$

We have obtained an equation in one catalytic variable

Applying the invariant lemma

Hence

$$
I(x)=I_{1}(x)^{2}-I_{0}(x)=(t x Q(x, 0)-1 /(2 t))^{2}+2 t Q(x, 0)+x
$$

is a series of $\mathbb{Q}((t))$, equal to its value at $x=0$:

$$
(t x Q(x, 0)-1 /(2 t))^{2}+2 t Q(x, 0)+x=1 /(2 t)^{2}+2 t Q(0,0) .
$$

We have obtained an equation in one catalytic variable \Rightarrow systematic solution (via Brown's quadratic method, or [mbm-Jehanne 06])

Applying the invariant lemma

Hence

$$
I(x)=I_{1}(x)^{2}-I_{0}(x)=(t x Q(x, 0)-1 /(2 t))^{2}+2 t Q(x, 0)+x
$$

is a series of $\mathbb{Q}((t))$, equal to its value at $x=0$:

$$
(t x Q(x, 0)-1 /(2 t))^{2}+2 t Q(x, 0)+x=1 /(2 t)^{2}+2 t Q(0,0)
$$

We have obtained an equation in one catalytic variable \Rightarrow systematic solution (via Brown's quadratic method, or [mbm-Jehanne 06])

GF of Kreweras' walks in the quadrant
Let $Z \equiv Z(t)$ be the only series in t such that $Z=t\left(2+Z^{3}\right)$. Then

$$
Q(x, 0)=\frac{1}{t x}\left(\frac{1}{2 t}-\frac{1}{x}-\left(\frac{1}{z}-\frac{1}{x}\right) \sqrt{1-x z^{2}}\right) .
$$

[Kreweras 65], [Gessel 86], [mbm 05]...

Other quadrant models with small steps

Two ingredients:

- A pair $\left(I_{0}(x), J_{0}(y)\right)$ of rational invariants $\Rightarrow 23$ models with a finite group
- A decoupling identity of the form

$$
x y=F(x)+G(y)+K(x, y) H(x, y)
$$

$\Rightarrow 4$ of the 23 models
The use of invariants solves these four models, proving algebraicity.

[Bernardi, mbm, Raschel 17(a)]

Reverse Kreweras walks

- Basic rational invariants

$$
\mathscr{K}(x, y) \frac{x-y}{t x y}=\mathscr{J}_{0}(x)-\mathscr{J}_{0}(y)
$$

with

$$
\mathscr{I}_{0}(x)=\bar{x}+x / t-x^{2}, \quad \mathscr{J}_{0}(y)=\mathscr{I}_{0}(y) .
$$

Reverse Kreweras walks

- Basic rational invariants

$$
\mathscr{K}(x, y) \frac{x-y}{t x y}=\mathscr{J}_{0}(x)-\mathscr{J}_{0}(y)
$$

with

$$
\mathscr{I}_{0}(x)=\bar{x}+x / t-x^{2}, \quad \mathscr{L}_{0}(y)=\mathscr{I}_{0}(y) .
$$

- Invariants related to $\mathscr{Q}(x, y)$:

$$
-\frac{1}{t y} \mathscr{K}(x, y)(1+t y \mathscr{Q}(x, y))=\mathscr{I}_{1}(x)-\mathscr{I}_{1}(y)
$$

with

$$
\mathscr{J}_{1}(x)=t \mathscr{Q}(x, 0)-x / t+x^{2}, \quad \mathscr{J}_{1}(y)=-t \mathscr{Q}(0, y)-\bar{y}+t \mathscr{Q}(0,0)
$$

Reverse Kreweras walks

- Basic rational invariants

$$
\mathscr{K}(x, y) \frac{x-y}{t x y}=\mathscr{J}_{0}(x)-\mathscr{J}_{0}(y)
$$

with

$$
\mathscr{I}_{0}(x)=\bar{x}+x / t-x^{2}, \quad \mathscr{J}_{0}(y)=\mathscr{I}_{0}(y) .
$$

- Invariants related to $\mathscr{Q}(x, y)$:

$$
-\frac{1}{t y} \mathscr{K}(x, y)(1+t y \mathscr{Q}(x, y))=\mathscr{I}_{1}(x)-\mathscr{I}_{1}(y)
$$

with

$$
\mathscr{J}_{1}(x)=t \mathscr{Q}(x, 0)-x / t+x^{2}, \quad \mathscr{J}_{1}(y)=-t \mathscr{Q}(0, y)-\bar{y}+t \mathscr{Q}(0,0)
$$

GF of reverse Kreweras walks [Mishna 09, mbm-Mishna 10]

$$
\begin{aligned}
\mathscr{Q}(x, 0)=\frac{Z\left(4-z^{3}\right)}{16 t} & -\frac{t-x^{2}+t x^{3}}{2 x t^{2}} \\
& -\frac{\left(2 x^{2}-x z^{2}-Z\right) \sqrt{1-x Z\left(Z^{3}+4\right) / 4+x^{2} Z^{2} / 4}}{2 t x Z} .
\end{aligned}
$$

II. Kreweras' walks in three quadrants

$$
C(x, y) \equiv C(x, y ; t)=\sum_{i, j, n \geq 0} c_{i, j}(n) x^{i} y^{j} t^{n}
$$

where $c_{i, j}(n)$ is the number of walks of length n from $(0,0)$ to (i, j) avoiding the negative quadrant.

First functional equation

Functional equation (with $\bar{x}=1 / x, \bar{y}=1 / y$):

$$
C(x, y)=1+t(x y+\bar{x}+\bar{y}) C(x, y)-t \bar{x} C_{-}(\bar{y})-t \bar{y} C_{-}(\bar{x}),
$$

where

$$
C_{-}(\bar{x})=\sum_{i<0, n \geq 0} c_{-i, 0}(n) x^{i} t^{n}
$$

counts walks ending on the negative x-axis.

First functional equation

Functional equation (with $\bar{x}=1 / x, \bar{y}=1 / y$):

$$
C(x, y)=1+t(x y+\bar{x}+\bar{y}) C(x, y)-t \bar{x} C_{-}(\bar{y})-t \bar{y} C_{-}(\bar{x})
$$

where

$$
C_{-}(\bar{x})=\sum_{i<0, n \geq 0} c_{-i, 0}(n) x^{i} t^{n}
$$

counts walks ending on the negative x-axis.
Equivalently,

$$
x y(1-t(x y+\bar{x}+\bar{y})) C(x, y)=x y-t y C_{-}(\bar{y})-t x C_{-}(\bar{x}) .
$$

- The coefficients of $C(x, y)$ have poles of arbitrarily large order at $x=0$ and $y=0$.
- It suffices to determine $C_{-}(\bar{x})$, the GF of walks ending on the negative x-axis.

Alternative: Split the cone in two convex cones

- À la Raschel-Trotignon (2019):

$$
C(x, y)=\bar{x} U(\bar{x}, x y)+D(x y)+\bar{y} U(\bar{y}, x y),
$$

where $U(x, y) \in \mathbb{Q}[x, y][[t]]$ and $D(x) \in \mathbb{Q}[x][[t]]$.

Alternative: Split the cone in two convex cones

- À la Raschel-Trotignon (2019):

$$
C(x, y)=\bar{x} U(\bar{x}, x y)+D(x y)+\bar{y} U(\bar{y}, x y),
$$

where $U(x, y) \in \mathbb{Q}[x, y][[t]]$ and $D(x) \in \mathbb{Q}[x][[t]]$.

- Step-by-step construction:

$$
\begin{aligned}
\bar{x} U(\bar{x}, x y)= & t(x y+\bar{x}+\bar{y}) \bar{x} U(\bar{x}, x y) \\
& +t \bar{x} D(x y) \\
-t \bar{y}(\bar{x} U(\bar{x}, 0) & +\bar{x} U(0, x y)-\bar{x} U(0,0)) .
\end{aligned}
$$

$$
\bar{x} U(\bar{x}, 0)
$$

Alternative: Split the cone in two convex cones

- À la Raschel-Trotignon (2019):

$$
C(x, y)=\bar{x} U(\bar{x}, x y)+D(x y)+\bar{y} U(\bar{y}, x y),
$$

where $U(x, y) \in \mathbb{Q}[x, y][[t]]$ and $D(x) \in \mathbb{Q}[x][[t]]$.

- Step-by-step construction:

$$
\begin{aligned}
\bar{x} \cup(\bar{x}, x y)= & t(x y+\bar{x}+\bar{y}) \bar{x} \cup(\bar{x}, x y) \\
& +t \bar{x} D(x y) \\
-t \bar{y}(\bar{x} \cup(\bar{x}, 0) & +\bar{x} \cup(0, x y)-\bar{x} \cup(0,0)) .
\end{aligned}
$$

Analogously, $\bar{x} U(\bar{x}, 0)$

$$
D(x y)=1+t x y D(x y)+2 t \bar{y}(\bar{x} \cup(0, x y)-\bar{x} \cup(0,0)) .
$$

Split the cone in two convex cones

- Two equations:

$$
\begin{aligned}
\bar{x}(1-t(x y+\bar{x}+\bar{y})) \cup(\bar{x}, x y)= & -t \bar{y} \bar{x} U(\bar{x}, 0)+t \bar{x} D(x y) \\
& -t \bar{y} \bar{x} \cup(0, x y)+t \bar{y} \bar{x} \cup(0,0) \\
(1-t x y) D(x y)= & 1+2 t \bar{y} \bar{x} U(0, x y)-2 t \bar{y} \bar{x} \cup(0,0) .
\end{aligned}
$$

Split the cone in two convex cones

- Two equations:

$$
\begin{aligned}
\bar{x}(1-t(x y+\bar{x}+\bar{y})) \cup(\bar{x}, x y)= & -t \bar{y} \bar{x} U(\bar{x}, 0)+t \bar{x} D(x y) \\
& \quad-t \bar{y} \bar{x} U(0, x y)+t \bar{y} \bar{x} \cup(0,0) \\
(1-t x y) D(x y)=1 & +2 t \bar{y} \bar{x} U(0, x y)-2 t \bar{y} \bar{x} \cup(0,0) .
\end{aligned}
$$

- Straightening: $(\bar{x}, x y) \mapsto(x, y)$

$$
\begin{aligned}
x(1-t(y+x+\bar{x} \bar{y})) \cup(x, y)= & -t \bar{y} U(x, 0)+t x D(y) \\
& \quad-t \bar{y} \cup(0, y)+t \bar{y} \cup(0,0), \\
(1-t y) D(y)= & 1+2 t \bar{y} \cup(0, y)-2 t \bar{y} \cup(0,0) .
\end{aligned}
$$

Split the cone in two convex cones

- Two equations:

$$
\begin{aligned}
\bar{x}(1-t(x y+\bar{x}+\bar{y})) \cup(\bar{x}, x y)= & -t \bar{y} \bar{x} \cup(\bar{x}, 0)+t \bar{x} D(x y) \\
& -t \bar{y} \bar{x} \cup(0, x y)+t \bar{y} \bar{x} \cup(0,0), \\
(1-t x y) D(x y)=1+ & 2 t \bar{y} \bar{x} U(0, x y)-2 t \bar{y} \bar{x} \cup(0,0) .
\end{aligned}
$$

- Straightening: $(\bar{x}, x y) \mapsto(x, y)$

$$
\begin{aligned}
x(1-t(y+x+\bar{x} \bar{y})) \cup(x, y)= & -t \bar{y} U(x, 0)+t x D(y) \\
& \quad-t \bar{y} \cup(0, y)+t \bar{y} \cup(0,0), \\
(1-t y) D(y)= & 1+2 t \bar{y} \cup(0, y)-2 t \bar{y} \cup(0,0) .
\end{aligned}
$$

- Linear combination:

$$
2 \mathscr{K}(x, y) U(x, y)=y+(t y+2 t x-1) y D(y)-2 t U(x, 0),
$$

where now $\mathscr{K}(x, y)=x y(1-t(x+y+\bar{x} \bar{y}))$ is the kernel of reverse Kreweras' walks.

We want to construct \mathscr{K}-invariants...

$$
2 \mathscr{K}(x, y) \cup(x, y)=y+(t y+2 t x-1) y D(y)-2 t U(x, 0)
$$

Two new difficulties:

- one needs to "decouple" y, in some sense,
- the term $(t y+2 t x-1)$ depends on $x($ and $y)$.

We want to construct \mathscr{K}-invariants...

$$
2 \mathscr{K}(x, y) \cup(x, y)=y+(t y+2 t x-1) y D(y)-2 t U(x, 0)
$$

Two new difficulties:

- one needs to "decouple" y, in some sense,
- the term $(t y+2 t x-1)$ depends on $x($ and $y)$.

Two good news:

- Decoupling:

$$
y=(t y+2 t x-1) G(y)-F(x)
$$

with $G(y)=1 / t$ and $F(x)=2 x-1 / t$.

We want to construct \mathscr{K}-invariants...

$$
2 \mathscr{K}(x, y) \cup(x, y)=y+(t y+2 t x-1) y D(y)-2 t U(x, 0)
$$

Two new difficulties:

- one needs to "decouple" y, in some sense,
- the term $(t y+2 t x-1)$ depends on $x($ and $y)$.

Two good news:

- Decoupling:

$$
y=(t y+2 t x-1) G(y)-F(x)
$$

with $G(y)=1 / t$ and $F(x)=2 x-1 / t$.

- The square of $(t y+2 t x-1)$ is a function of $y(m o d u l o ~ \mathscr{K}(x, y))$:

$$
(t y+2 t x-1)^{2}=\Delta(y)-4 t \bar{y} \mathscr{K}(x, y)
$$

where $\Delta(y)=(1-t y)^{2}-4 t \bar{y}$.

A new pair of \mathscr{K}-invariants

$$
2 \mathscr{K}(x, y) U(x, y)=y+(t y+2 t x-1) y D(y)-2 t U(x, 0)
$$

- Decoupling: since $y=(t y+2 t x-1) / t-2 x+1 / t$,

$$
2 \mathscr{K}(x, y) \cup(x, y)=(t y+2 t x-1)(y D(y)+1 / t)-(2 t U(x, 0)+2 x-1 / t)
$$

A new pair of \mathscr{K}-invariants

$$
2 \mathscr{K}(x, y) \cup(x, y)=y+(t y+2 t x-1) y D(y)-2 t U(x, 0)
$$

- Decoupling: since $y=(t y+2 t x-1) / t-2 x+1 / t$,

$$
2 \mathscr{K}(x, y) \cup(x, y)=(t y+2 t x-1)(y D(y)+1 / t)-(2 t U(x, 0)+2 x-1 / t)
$$

- Since $(t y+2 t x-1)^{2}=\Delta(y)-4 t \bar{y} \mathscr{K}(x, y)$, multiply out by

$$
(t y+2 t x-1)(y D(y)+1 / t)+(2 t U(x, 0)+2 x-1 / t)
$$

A new pair of \mathscr{K}-invariants

$$
2 \mathscr{K}(x, y) \cup(x, y)=y+(t y+2 t x-1) y D(y)-2 t U(x, 0)
$$

- Decoupling: since $y=(t y+2 t x-1) / t-2 x+1 / t$,

$$
2 \mathscr{K}(x, y) \cup(x, y)=(t y+2 t x-1)(y D(y)+1 / t)-(2 t U(x, 0)+2 x-1 / t)
$$

- Since $(t y+2 t x-1)^{2}=\Delta(y)-4 t \bar{y} \mathscr{K}(x, y)$, multiply out by

$$
(t y+2 t x-1)(y D(y)+1 / t)+(2 t U(x, 0)+2 x-1 / t)
$$

- We have found a new pair of \mathscr{K}-invariants:

$$
\mathscr{I}_{2}(x)=\left(2 t U(x, 0)+2 x-\frac{1}{t}\right)^{2}, \quad \mathscr{J}_{2}(y)=\Delta(y)\left(y D(y)+\frac{1}{t}\right)^{2}
$$

with $\Delta(y)=(1-t y)^{2}-4 t \bar{y}$.

Two known pairs of \mathscr{K}-invariants (from Part I)

- Recall:

$$
\begin{array}{ll}
\mathscr{I}_{0}(x)=\bar{x}+x / t-x^{2}, & \mathscr{J}_{0}(x)=\mathscr{J}_{0}(y) \\
\mathscr{I}_{1}(x)=t \mathscr{Q}(x, 0)-x / t+x^{2}, & \mathscr{J}_{1}(y)=-\bar{y}-t \mathscr{Q}(0, y)+t \mathscr{Q}(0,0) .
\end{array}
$$

Two known pairs of \mathscr{K}-invariants (from Part I)

- Recall:

$$
\begin{array}{ll}
\mathscr{I}_{0}(x)=\bar{x}+x / t-x^{2}, & \mathscr{J}_{0}(x)=\mathscr{I}_{0}(y) \\
\mathscr{I}_{1}(x)=t \mathscr{Q}(x, 0)-x / t+x^{2}, & \mathscr{J}_{1}(y)=-\bar{y}-t \mathscr{Q}(0, y)+t \mathscr{Q}(0,0) .
\end{array}
$$

- We have just found another pair:

$$
\begin{aligned}
& \mathscr{I}_{2}(x)=\left(2 t U(x, 0)+2 x-\frac{1}{t}\right)^{2}=\mathcal{O}\left(x^{0}\right) \\
& \mathscr{J}_{2}(y)=\Delta(y)\left(y D(y)+\frac{1}{t}\right)^{2}=-4 \bar{y}+\mathcal{O}\left(y^{0}\right)
\end{aligned}
$$

Two known pairs of \mathscr{K}-invariants (from Part I)

- Recall:

$$
\begin{array}{ll}
\mathscr{I}_{0}(x)=\bar{x}+x / t-x^{2}, & \mathscr{J}_{0}(x)=\mathscr{I}_{0}(y) \\
\mathscr{I}_{1}(x)=t \mathscr{Q}(x, 0)-x / t+x^{2}, & \mathscr{J}_{1}(y)=-\bar{y}-t \mathscr{Q}(0, y)+t \mathscr{Q}(0,0) .
\end{array}
$$

- We have just found another pair:

$$
\begin{aligned}
& \mathscr{I}_{2}(x)=\left(2 t U(x, 0)+2 x-\frac{1}{t}\right)^{2}=\mathcal{O}\left(x^{0}\right) \\
& \mathscr{J}_{2}(y)=\Delta(y)\left(y D(y)+\frac{1}{t}\right)^{2}=-4 \bar{y}+\mathcal{O}\left(y^{0}\right)
\end{aligned}
$$

Two known pairs of \mathscr{K}-invariants (from Part I)

- Recall:

$$
\begin{array}{ll}
\mathscr{I}_{0}(x)=\bar{x}+x / t-x^{2}, & \mathscr{J}_{0}(x)=\mathscr{I}_{0}(y) \\
\mathscr{I}_{1}(x)=t \mathscr{Q}(x, 0)-x / t+x^{2}, & \mathscr{J}_{1}(y)=-\bar{y}-t \mathscr{Q}(0, y)+t \mathscr{Q}(0,0) .
\end{array}
$$

- We have just found another pair:

$$
\begin{aligned}
& \mathscr{I}_{2}(x)=\left(2 t U(x, 0)+2 x-\frac{1}{t}\right)^{2}=\mathcal{O}\left(x^{0}\right) \\
& \mathscr{J}_{2}(y)=\Delta(y)\left(y D(y)+\frac{1}{t}\right)^{2}=-4 \bar{y}+\mathcal{O}\left(y^{0}\right)
\end{aligned}
$$

- Define

$$
\mathscr{I}(x)=\mathscr{I}_{2}(x)-4 \mathscr{I}_{1}(x), \quad \mathscr{J}(y)=\mathscr{J}_{2}(y)-4 \mathscr{J}_{1}(y)
$$

Then $(\mathscr{J}(x), \mathscr{J}(y))$ is a pair of invariants with no pole at 0 .

Two known pairs of \mathscr{K}-invariants (from Part I)

- Recall:

$$
\begin{array}{ll}
\mathscr{I}_{0}(x)=\bar{x}+x / t-x^{2}, & \mathscr{J}_{0}(x)=\mathscr{I}_{0}(y) \\
\mathscr{I}_{1}(x)=t \mathscr{Q}(x, 0)-x / t+x^{2}, & \mathscr{J}_{1}(y)=-\bar{y}-t \mathscr{Q}(0, y)+t \mathscr{Q}(0,0) .
\end{array}
$$

- We have just found another pair:

$$
\begin{aligned}
& \mathscr{I}_{2}(x)=\left(2 t U(x, 0)+2 x-\frac{1}{t}\right)^{2}=\mathcal{O}\left(x^{0}\right) \\
& \mathscr{J}_{2}(y)=\Delta(y)\left(y D(y)+\frac{1}{t}\right)^{2}=-4 \bar{y}+\mathcal{O}\left(y^{0}\right)
\end{aligned}
$$

- Define

$$
\mathscr{I}(x)=\mathscr{I}_{2}(x)-4 \mathscr{I}_{1}(x), \quad \mathscr{J}(y)=\mathscr{F}_{2}(y)-4 \mathscr{J}_{1}(y) .
$$

Then $(\mathscr{I}(x), \mathscr{J}(y))$ is a pair of invariants with no pole at 0 . Moreover,

$$
\mathscr{K}(x, y) \mathscr{H}(x, y)=\mathscr{J}(x)-\mathscr{J}(y)
$$

where $\mathscr{H}(x, y)$ has no pole at 0 either

Two known pairs of \mathscr{K}-invariants (from Part I)

- Recall:

$$
\begin{array}{ll}
\mathscr{I}_{0}(x)=\bar{x}+x / t-x^{2}, & \mathscr{J}_{0}(x)=\mathscr{I}_{0}(y) \\
\mathscr{I}_{1}(x)=t \mathscr{Q}(x, 0)-x / t+x^{2}, & \mathscr{J}_{1}(y)=-\bar{y}-t \mathscr{Q}(0, y)+t \mathscr{Q}(0,0) .
\end{array}
$$

- We have just found another pair:

$$
\begin{aligned}
& \mathscr{I}_{2}(x)=\left(2 t U(x, 0)+2 x-\frac{1}{t}\right)^{2}=\mathcal{O}\left(x^{0}\right) \\
& \mathscr{J}_{2}(y)=\Delta(y)\left(y D(y)+\frac{1}{t}\right)^{2}=-4 \bar{y}+\mathcal{O}\left(y^{0}\right)
\end{aligned}
$$

- Define

$$
\mathscr{I}(x)=\mathscr{I}_{2}(x)-4 \mathscr{I}_{1}(x), \quad \mathscr{J}(y)=\mathscr{F}_{2}(y)-4 \mathscr{J}_{1}(y) .
$$

Then $(\mathscr{I}(x), \mathscr{J}(y))$ is a pair of invariants with no pole at 0 . Moreover,

$$
\mathscr{K}(x, y) \mathscr{H}(x, y)=\mathscr{J}(x)-\mathscr{J}(y)
$$

where $\mathscr{H}(x, y)$ has no pole at 0 either $\Rightarrow \mathscr{J}(x)$ and $\mathscr{J}(y)$ are trivial.

Trivial invariants for reverse Kreweras' steps

Conclusion:

$$
\begin{aligned}
& \mathscr{I}_{2}(x)=\left(2 t U(x, 0)+2 x-\frac{1}{t}\right)^{2}=4\left(t \mathscr{Q}(x, 0)-x / t+x^{2}\right)+c s t \\
& \mathscr{J}_{2}(y)=\Delta(y)\left(y D(y)+\frac{1}{t}\right)^{2}=4(-\bar{y}-t \mathscr{Q}(0, y)+t \mathscr{Q}(0,0))+c s t
\end{aligned}
$$

with $\Delta(y)=(1-t y)^{2}-4 t \bar{y}$.

The constant can be determined by specializing y to the unique root of $\Delta(y)$ that is a power series in t.

The GF of Kreweras walks in three quadrants [mbm]

- Walks ending on the negative x-axis: series $U(x, 0)$, with

$$
\begin{aligned}
\frac{1}{2}\left(2 t U(x, 0)+2 x-\frac{1}{t}\right)^{2}= & \frac{\left(1-z^{3}\right)^{3 / 2}}{Z^{2}}+(1-x Z)^{2}\left(\frac{1}{z^{2}}-\frac{1}{x}\right) \\
& +\left(\bar{x}+Z-\frac{2 x}{z}\right) \sqrt{1-Z \frac{4+Z^{3}}{4} x+\frac{z^{2}}{4} x^{2}}
\end{aligned}
$$

- Walks ending on the diagonal: series $D(x)$, with

$$
\begin{aligned}
\frac{\Delta(x)}{2}\left(x D(x)+\frac{1}{t}\right)^{2}= & \frac{\left(1-z^{3}\right)^{3 / 2}}{z^{2}}+(1-x z)^{2}\left(\frac{1}{z^{2}}-\frac{1}{x}\right) \\
& -\left(\bar{x}+z-\frac{2 x}{z}\right) \sqrt{1-z \frac{4+z^{3}}{4} x+\frac{z^{2}}{4} x^{2}}
\end{aligned}
$$

where $\Delta(x)=(1-t x)^{2}-4 t \bar{x}$ and $Z=t\left(2+z^{3}\right)$.

The GF of Kreweras walks in three quadrants [mbm]

- Walks ending on the negative x-axis: series $U(x, 0)$, with

$$
\begin{aligned}
\frac{1}{2}\left(2 t U(x, 0)+2 x-\frac{1}{t}\right)^{2}= & \frac{\left(1-z^{3}\right)^{3 / 2}}{Z^{2}}+(1-x Z)^{2}\left(\frac{1}{z^{2}}-\frac{1}{x}\right) \\
& +\left(\bar{x}+Z-\frac{2 x}{z}\right) \sqrt{1-Z \frac{4+Z^{3}}{4} x+\frac{z^{2}}{4} x^{2}}
\end{aligned}
$$

- Walks ending on the diagonal: series $D(x)$, with

$$
\begin{aligned}
\frac{\Delta(x)}{2}\left(x D(x)+\frac{1}{t}\right)^{2}= & \frac{\left(1-z^{3}\right)^{3 / 2}}{Z^{2}}+(1-x z)^{2}\left(\frac{1}{z^{2}}-\frac{1}{x}\right) \\
& -\left(\bar{x}+Z-\frac{2 x}{z}\right) \sqrt{1-z \frac{4+z^{3}}{4} x+\frac{z^{2}}{4} x^{2}}
\end{aligned}
$$

where $\Delta(x)=(1-t x)^{2}-4 t \bar{x}$ and $Z=t\left(2+z^{3}\right)$.

- All walks in three quadrants:

$$
x y(1-t(\bar{x}+\bar{y}+x y)) C(x, y)=x y-t U(\bar{x}, 0)-t U(\bar{y}, 0)
$$

(Algebraicity of excursions proved by [Elvey Price, FPSAC 20])

Asymptotics and harmonic function

- Number of n-step walks ending at (i, j) in the three quadrant plane:

$$
c_{i, j}(n) \sim-\frac{H_{i, j}}{\Gamma(-3 / 4)} 3^{n} n^{-7 / 4} \quad(\text { for } n+i+j \equiv 0 \quad \bmod 3)
$$

Asymptotics and harmonic function

- Number of n-step walks ending at (i, j) in the three quadrant plane:

$$
c_{i, j}(n) \sim-\frac{H_{i, j}}{\Gamma(-3 / 4)} 3^{n} n^{-7 / 4} \quad(\text { for } n+i+j \equiv 0 \quad \bmod 3)
$$

- The generating function

$$
\mathscr{H}(x, y):=\sum_{j \geq 0, i \leq j} H_{i, j} x^{j-i} y^{j},
$$

is algebraic of degree 16 , given by

$$
\left(1+x y^{2}+x^{2} y-3 x y\right) \mathscr{H}(x, y)=\mathscr{H}_{-}(x)+\frac{1}{2}\left(2+x y^{2}-3 x y\right) \mathscr{H}_{d}(y)
$$

where

$$
\mathscr{H}_{-}(x):=\sum_{i>0} H_{-i, 0} x^{i}
$$

$$
\mathscr{H}_{d}(y):=\sum_{i \geq 0} H_{i, i} y^{i}
$$

Asymptotics and harmonic function

- Number of n-step walks ending at (i, j) in the three quadrant plane:

$$
c_{i, j}(n) \sim-\frac{H_{i, j}}{\Gamma(-3 / 4)} 3^{n} n^{-7 / 4} \quad(\text { for } n+i+j \equiv 0 \quad \bmod 3)
$$

- The generating function

$$
\mathscr{H}(x, y):=\sum_{j \geq 0, i \leq j} H_{i, j} x^{j-i} y^{j},
$$

is algebraic of degree 16 , given by

$$
\left(1+x y^{2}+x^{2} y-3 x y\right) \mathscr{H}(x, y)=\mathscr{H}_{-}(x)+\frac{1}{2}\left(2+x y^{2}-3 x y\right) \mathscr{H}_{d}(y)
$$

where

$$
\begin{gathered}
\mathscr{H}_{-}(x):=\sum_{i>0} H_{-i, 0} x^{i}=\frac{9 x}{2} \sqrt{\frac{1+2 x}{1-x} \sqrt{\frac{4-x}{1-x}}+2,} \\
\mathscr{H}_{d}(y):=\sum_{i \geq 0} H_{i, i} y^{i}=\frac{9}{(1-y) \sqrt{y(4-y)}} \sqrt{\frac{1+2 y}{1-y} \sqrt{\frac{4-y}{1-y}}-2 .}
\end{gathered}
$$

Asymptotics and harmonic function

- Number of n-step walks ending at (i, j) in the three quadrant plane:

$$
c_{i, j}(n) \sim-\frac{H_{i, j}}{\Gamma(-3 / 4)} 3^{n} n^{-7 / 4} \quad(\text { for } n+i+j \equiv 0 \quad \bmod 3)
$$

- The generating function

$$
\mathscr{H}(x, y):=\sum_{j \geq 0, i \leq j} H_{i, j} x^{j-i} y^{j},
$$

is algebraic of degree 16 , given by

$$
\left(1+x y^{2}+x^{2} y-3 x y\right) \mathscr{H}(x, y)=\mathscr{H}_{-}(x)+\frac{1}{2}\left(2+x y^{2}-3 x y\right) \mathscr{H}_{d}(y)
$$

where

$$
\begin{gathered}
\mathscr{H}_{-}(x):=\sum_{i>0} H_{-i, 0} x^{i}=\frac{9 x}{2} \sqrt{\frac{1+2 x}{1-x} \sqrt{\frac{4-x}{1-x}}+2}, \\
\mathscr{H}_{d}(y):=\sum_{i \geq 0} H_{i, i} y^{i}=\frac{9}{(1-y) \sqrt{y(4-y)}} \sqrt{\frac{1+2 y}{1-y} \sqrt{\frac{4-y}{1-y}}-2 .}
\end{gathered}
$$

Other three-quadrant models with small steps

Two new ingredients:

- x / y-symmetry of the step set (for the functional equation)
- A decoupling identity of the form

$$
y=p(x, y) G(y)+F(x)+K(x, y) H(x, y)
$$

$$
\triangleleft \triangleleft \diamond \triangleright \triangleright
$$

The use of invariants solves these 3 models, proving algebraicity:

Reverse
Kreweras Kreweras

D-finite: [Raschel-Trotignon 19]

Other three-quadrant models with small steps

Two new ingredients:

- x / y-symmetry of the step set (for the functional equation)
- A decoupling identity of the form

$$
\begin{gathered}
y=p(x, y) G(y)+F(x)+K(x, y) H(x, y) \\
\triangleleft \triangleleft \diamond \triangleright \triangleright
\end{gathered}
$$

The use of invariants solves these 3 models, proving algebraicity:

Reverse Kreweras

Double
Kreweras

Gessel
TO DO

What's next?

- Gessel's step set (algebraicity of excursions [Budd 20])

What's next?

- Gessel's step set (algebraicity of excursions [Budd 20]) \square
- [Beyond finite groups] Another x / y-symmetric model with an infinite group but a "weak" invariant
(D-algebraic [Dreyfus-Trotignon 20(a)])

What's next?

- Gessel's step set (algebraicity of excursions [Budd 20]) \square
- [Beyond finite groups] Another x / y-symmetric model with an infinite group but a "weak" invariant
(D-algebraic [Dreyfus-Trotignon 20(a)])

- [Beyond purely algebraic solutions] Revisit some solved D-finite cases, e.g. NSEW walks, where the crux is to prove the algebraicity of the series $A(x, y)$ defined by:

$$
\begin{aligned}
x y(1-t(x+\bar{x}+y+\bar{y})) A(x, y)=\frac{1}{3}(2 x y+\bar{x} y & +x \bar{y}) \\
& -t x A_{-}(\bar{x})-t y A_{-}(\bar{y}) .
\end{aligned}
$$

[mbm 16], [mbm-Wallner 21]

Partial classification of three quadrant walks

+ results for excursions [Budd 20, Elvey Price 20]

$$
\triangleleft \triangleleft \diamond \triangleright \triangleright
$$

algebraic [mbm]
DF transc. [mbm 16, Raschel-Trotignon 19, mbm-Wallner 21]
Non-D-finite [Mustapha 19]
D-alg./not D-alg [Dreyfus-Trotignon 20(a)]

