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|. In the beginning was...

The Art of Computer Programming




Sorting permutations through a stack [Knuth 1968|

Output from stack Input to staclk
llll!E::i:I::lllll?}'.‘,';. st L[ e L

0
%
o

Stack

llll!lll!llllll!‘:l'
R



651432




I
651432
y

Operation sequence: w =/



51432

Operation sequence: w = [/



1432

Operation sequence: w = /110



432

|O\Ul-l>

Operation sequence: w = 110/



Operation sequence: w = [1101]

|O\Ul-l>u)

32



Operation sequence: w = [/11O/110



123456 _9

R

|O\UI-I>UJ

Operation sequence: w = [/1011100000



231







31







1 277 0




1 277 0

Property: If 0 = 010, is sortable, then so are all its sub-permutations
Ty - 0j, with i1 < -+ < iy



Characterization: o is sortable iff it does not contain a sub-sequence
oiojoy of shape 231 (that is, with oy < 0; < 0})




Characterization: o is sortable iff it does not contain a sub-sequence
oiojoy of shape 231 (that is, with o) < 0; < 0;) i.e. iff it avoids the
pattern 231




Characterization: o is sortable iff it does not contain a sub-sequence
oiojoy of shape 231 (that is, with o) < 0; < 0;) i.e. iff it avoids the
pattern 231

Decidability: in linear time (all operations are forced)




Characterization: o is sortable iff it does not contain a sub-sequence
oiojoy of shape 231 (that is, with o) < 0; < 0;) i.e. iff it avoids the
pattern 231

Decidability: in linear time (all operations are forced)

Enumeration?




Lemma: If o is sorted by an operation sequence w € {/, O}*, then w,
applied to the identity, produces o—1 (which is said to be realizable).

w
12 .- n — 0102--:0p

w
0, 0y 0, «— 12 ...n



Lemma: If o is sorted by an operation sequence w € {/, O}*, then w,
applied to the identity, produces o~ (which is said to be realizable).

Consequence: it is equivalent to count
@ sortable permutations

o realizable permutations



Two equivalent viewpoints: sort, or produce

Lemma: If o is sorted by an operation sequence w € {/, O}*, then w,
applied to the identity, produces o~ (which is said to be realizable).

Consequence: it is equivalent to count
@ sortable permutations
@ realizable permutations

@ operation sequences on {/, O}*



Two equivalent viewpoints: sort, or produce

Lemma: If o is sorted by an operation sequence w € {/, O}*, then w,
applied to the identity, produces o~ (which is said to be realizable).

Consequence: it is equivalent to count
@ sortable permutations

@ realizable permutations

@ operation sequences on {/, O}*

I 1 O O 1 0O

@ discrete excursions

\j



Two equivalent viewpoints: sort, or produce

Lemma: If o is sorted by an operation sequence w € {/, O}*, then w,
applied to the identity, produces o~ (which is said to be realizable).

Consequence: it is equivalent to count

sortable permutations

realizable permutations

operation sequences on {/, O}*

I 1 O O 1 O

°
°
@ discrete excursions
°

arch systems PaN A\

\j



Two equivalent viewpoints: sort, or produce

Lemma: If o is sorted by an operation sequence w € {/, O}*, then w,
applied to the identity, produces o~ (which is said to be realizable).

Consequence: it is equivalent to count

sortable permutations

realizable permutations

operation sequences on {/, O}*

I 1 O O 1 O

°
°
@ discrete excursions
°

arch systems PaN A\

\j

= Enumeration by Catalan numbers:




@ More machines



o More machines
N
<’

N
a stack a queue a double-ended queue




Networks of machines [Even & ltai, Pratt, Tarjan =~ 1970]

@ More machines

This track closed on mput-restricted deque

E:!I:IIIIIIIIIIIIII',"

Qutput Deque

IR ononnc s RN S AANE R AR

l‘._"!.ll--_
onzeanaxdININEa A OREEZENRSCH]

This track closed on output-restricted deque



@ More machines

@ Networks of machines



@ More machines
o Networks of machines
> m queues in series?

—
- -\ :
N

= Permutations with no descending sub-sequence of length m + 1




@ More machines
@ Networks of machines

> m queues in series?
» m stacks in series? in parallel?

‘/H\
N




Il. Two stacks



In parallel:
o Characterization: infinitely many forbidden patterns [Pratt 73]
@ Decidability: in polynomial time [Even & Itai 71]
@ Enumeration [Albert-MBM 2013]

‘/ﬂk
]



In parallel:
e Characterization: infinitely many forbidden patterns [Pratt 73]
@ Decidability: in polynomial time [Even & Itai 71]
e Enumeration [Albert-MBM 2013]

In series:
o Characterization: infinitely many forbidden patterns [Murphy 02]
e Decidability: in polynomial time [Pierrot-Rossin 13]

o Enumeration: 777



@ Operation sequences on {/1, h, O1, Oz}

/1 /2 /1 /1 O]_ O]_ O]_ /1 02 01 /2 /1 /2 02 02 O]_



@ Operation sequences on {/1, h, O1, Oz}: several may produce the
same permutation!

hh h h O 00 O h O O0 b h h Oy O O



Permutations produced by two parallel stacks

@ Operation sequences on {/1, h, O1, O»}: several may produce the
same permutation!

@ Define a set of canonical operation sequences, exactly one for each
realizable permutation

/1 /2 /1 /1 01 01 01 /1 Og 01 /2 /1 /2 02 02 01



Permutations produced by two parallel stacks

@ Operation sequences on {/1, h, O1, O»}: several may produce the
same permutation!

@ Define a set of canonical operation sequences, exactly one for each
realizable permutation




Permutations produced by two parallel stacks

@ Operation sequences on {/1, h, O1, O»}: several may produce the
same permutation!

@ Define a set of canonical operation sequences, exactly one for each
realizable permutation




Permutations produced by two parallel stacks

@ Operation sequences on {/1, h, O1, O»}: several may produce the
same permutation!

@ Define a set of canonical operation sequences, exactly one for each
realizable permutation

/1 /2 /1 /1 01 01 01 02 /1 01 /2 /1 I2 02 02 01

@ 10O, = Oy and /Oy = Oy = Eager outputs: no /1O, nor L0y



Permutations produced by two parallel stacks

@ Operation sequences on {/1, h, O1, O»}: several may produce the
same permutation!

@ Define a set of canonical operation sequences, exactly one for each
realizable permutation

/1 /2 /1 /1 01 01 01 02 /2 02 /2 /1 I2 02 02 01

@ 10O, = Oy and /Oy = Oy = Eager outputs: no /1O, nor L0y



Permutations produced by two parallel stacks

@ Operation sequences on {/1, h, O1, O»}: several may produce the
same permutation!

@ Define a set of canonical operation sequences, exactly one for each
realizable permutation

/1 /2 /1 /1 01 01 01 02 /2 02 /2 /1 /1 01 02 01

@ 10O, = Oy and /Oy = Oy = Eager outputs: no /1O, nor L0y



Permutations produced by two parallel stacks

@ Operation sequences on {/1, h, O1, O»}: several may produce the
same permutation!

@ Define a set of canonical operation sequences, exactly one for each
realizable permutation

/1 /2 /1 /1 01 01 01 02 /2 02 /1 /1 /2 02 02 01

@ 10O, = Oy and /Oy = Oy = Eager outputs: no /1O, nor L0y



Permutations produced by two parallel stacks

@ Operation sequences on {/1, h, O1, O»}: several may produce the
same permutation!

@ Define a set of canonical operation sequences, exactly one for each
realizable permutation

/1 /2 /1 /1 01 01 01 02 /2 02 /1 /2 /2 02 01 02

@ 10O, = Oy and /Oy = Oy = Eager outputs: no /1O, nor L0y



Permutations produced by two parallel stacks

@ Operation sequences on {/1, lr, O1, Oz}: several may produce the
same permutation!

@ Define a set of canonical operation sequences, exactly one for each
realizable permutation

connected component

/1 /2 /1 /1 Ol Ol 01 02 /2 02 /1 /2 /2 02 Ol 02

@ 10, = Oy and L0y, = O = Eager outputs: no 1O, nor L0y



Permutations produced by two parallel stacks

@ Operation sequences on {/1, lr, O1, Oz}: several may produce the
same permutation!

@ Define a set of canonical operation sequences, exactly one for each
realizable permutation

connected component

/1 /2 /1 /1 Ol Ol 01 02 /2 02 /1 /2 /2 02 Ol 02

@ 10, = Oy and L0y, = O = Eager outputs: no 1O, nor L0y

@ In each connected component, the first move is /.



The permutations that can be produced with two parallel stacks are in
bijection with operation sequences such that

there is no factor /;O> nor /Oy

the first letter (arch) in each connected component is /; (red).




e Let Q(a, u) be the generating function of arch systems counted by the
number of arches (u) and the number of /; O, and /O; factors (a):

Q(a,u) = 1+ 2u + (8 +2a)u® + (44 + 24a + 22°)u” + O(u*).



[...] Enumeration

e Let Q(a, u) be the generating function of arch systems counted by the
number of arches (u) and the number of /; O, and /O factors (a):

Q(a,u) = 1+ 2u + (8 + 2a)u® + (44 + 24a + 22%)u> + O(u*).
e, —aa S e
S



[...] Enumeration

e Let Q(a, u) be the generating function of arch systems counted by the
number of arches (u) and the number of /; O, and /O factors (a):

Q(a,u) = 1+ 2u+ (8 +2a)u® + (44 + 24a + 23°)u® + O(u*).

e Then the generating function of permutations produced with two stacks
is

S(t) =14 t+2t% + 613 4 23t* + 10315 + O(t%) = 1-50)



[...] Enumeration

e Let Q(a, u) be the generating function of arch systems counted by the
number of arches (u) and the number of /1O, and hO; factors (a):

Q(a,u) = 1+ 2u + (8 +2a)u® + (44 + 24a + 23°)u® + O(u*).

e Then the generating function of permutations produced with two stacks
is

1
S(6) =1+ £+ 26+ 66+ 23t +1036° + O(t°) = 1o,

with S® = S*(t) the unique solution of

. t 1+ 50
Q<_5 ’(1+5-)2> T 1-8*




I1l. Arch systems, operation sequences

and quarter plane walks



e A one-colour operation sequence is a walk from 0 to 0 on the half-line N

\j

I I O O 1 0O



e A one-colour operation sequence is a walk from 0 to 0 on the half-line N

e A bi-coloured operation sequence is a walk from (0, 0) to (0,0) (also
called loop) in the quadrant N?

l

I 1 O O1 0O

)

—

h

h

I

\j

I

h

0

O

Oy

O

0



e A one-colour operation sequence is a walk from 0 to 0 on the half-line N

\j

I 1 O O1 0O

e A bi-coloured operation sequence is a walk from (0, 0) to (0,0) (also
called loop) in the quadrant N?

j L h b b L, O O O O O,
Jh corner

|

\J



e A one-colour operation sequence is a walk from 0 to 0 on the half-line N

\j

I 1 O O1 0O

o A bi-coloured operation sequence is a walk from (0, 0) to (0,0) (also
called loop) in the quadrant N?

j L h b b L, O O O O O,
Jh corner

&
&

4

o Can we determine

Q(a, U) = Z U‘W|/2 aCOrners(W) ?

w loop



Consider all quarter plane walks (starting from (0, 0))

e Generating function Q(a, u; x,y) = Q(x, y), where u counts steps, a
corners, and x, y the coordinates of the endpoint:

Qa,u;x,y) = 1+ (x +y)u+ (2+xy +x* + y?)u?
+ ((a+4)0c+ )+ 33y + 307+ + %) 0 + O(u?).



Consider all quarter plane walks (starting from (0, 0))

e Generating function Q(a, u; x,y) = Q(x, y), where u counts steps, a
corners, and x, y the coordinates of the endpoint:

Qa,u;x,y) = 1+ (x +y)u+ (2+xy +x* + y?)u?
+ ((a+4)0c+ )+ 33y + 307+ + %) 0 + O(u?).

e Recursive construction



Functional equation for quadrant walks

e Generating function Q(a, u; x,y) = Q(x, y) of all quadrant walks:

(1—u(x+X+y+7) - uv?(a—1)(xy +y%))Qx,y) =
1— up(l+ ux(a—1))9(x,0) — ux(1+ uy(a—1))9(0,y)
withx =1/xand y =1/y.

e Loops in the quadrant:

Q(a, u) = Q(a, Vu;0,0)

= Compute the first coefficients of Q(a, u)... and discover and test
conjectures



o All walks in the quadrant: Q(a, u; x,y) = Q(x, y) with
(1—ulx+X+y+7) = v*(a—1)(xy +y%))Qx,y) =
1—uy(1+ ux(a—1))9(x,0) — ux(1 + uy(a—1))9(0,y)
@ Loops in the quadrant:
Q(a, u) = Q(a,v/u;0,0)
@ Sortable permutations:

1
1—5°(t)

. t _1+5°
Q(_S ’(1+5-)2> T1-Se

S(t) =

with




@ What it the asymptotic behaviour of the number s, of sortable
permutations of length n?

sn = [t"]S(¢)



@ What it the asymptotic behaviour of the number s, of sortable
permutations of length n?

sn = [t"]S(¢)

@ What is the nature of the generating function S(t)7 is it algebraic,
D-finite, D-algebraic?



@ What it the asymptotic behaviour of the number s, of sortable
permutations of length n?

sn = [t"]S(¢)

e What is the nature of the generating function S(t)? is it algebraic,
D-finite, D-algebraic?
@ What is the nature of the generating function Q(a, u)?



Asymptotics: the main source of difficulty

e Generating function of quarter plane loops:

Q(a, u) _ Z u\w|/2 acorners(w) e N[a][[u]]

w loop
e Characterization of S(t) = 1/(1 — S°*(t)):
. t _1+5°
¢ <_5 ’(1+5°)2) T 1S

= To find the first positive singularity t. of S® (that is, its radius) we
must explore the singularities of Q(a, u) when a < 0.




The generating function of quarter plane loops is (a + 1)-positive :

Q(a,u) = Z u"pn(a+1)

n>0

with p,(b) € N[b].

Refinement
e One can count separately vertical and horizontal steps:

Qa.s.t)= Y s'tpij(a+1)

ij>0

e True up to n = 200.



Let pg(a) be the radius of convergence of u+— Q(a, u) (a non-increasing
function of a > —1).

pa(a) o

\

r0.04

r0.0z

—03 025 02 015 01 005 o

a



Let pg(a) be the radius of convergence of u+— Q(a, u) (a non-increasing
function of a > —1).

pa(a) o

\

. ¢ B 1+5. Fo.0¢
Q<_5 ’(1+5-)2) 1o

r0.04

r0.0z

—03 025 02 015 01 005 o

a



Let pg(a) be the radius of convergence of u+— Q(a, u) (a non-increasing
function of a > —1).

pa(a) o

. ¢ B 1+5. Fo.0¢
Q<_5 ’(1+5-)2) 1o

(—5'(t)a m) oo

-03 -025 -02 -0.15 -01  -0.05 0

a



For a > —1, the radius of Q(a,") is

1
 C ifax-1/2,
Crvarme a2V

if ae[-1,-1/2]

o In particular: pg(1) =1/16 and po(—1) =1/8

o Allows us to estimate t. ~ 0.12, so that 5,1/" —8.2...



Q

The series Q5(a, u) := %9(a, u) is convergent at u = pq(a) for a > —1/3.

u




The series @4(a, u) := 92(a, u) is convergent at u = pg(a) for a > —1/3.

u

e Expected:

an(a) = [u"]Q(a, u) ~ po(a)"n"®)

with v(a) < =2 for a > —1/3.



2Q

The series Q5(a, u) := 29(a, u) is convergent at u = pg(a) for a > —1/3.

ou

e Expected:

an(3) = [1]Q(a. u) ~ po(a) "M

with v(a) < =2 for a > —1/3. 24
" a

The curves n?(1 — gn—1(a)qn+1(2)/qn(a)?), for n = 40, 60, 80 and 100.



IV. What we know about Q(a, v)

[

a

|
|
L L L L

|
L
|
|

<

|
L
|
|

|
|
|
|
N
|
|
— 4
|
1

N

|
|
Ll _1__

L L - b --L__L__L__L_-_p-——-L__}F--

Z U| wl/2 acorners(w)

w loop

Q(a, u)



A functional equation for Q(a, u; x,y) = Q(x, y)

The generating function Q(a, u; x, y) = Q(x, y) of all quadrant walks,
counted by the length (u), the number of corners (a) and the coordinates
of the endpoint (x, y) satisfies:

(1 —u(x+x+y+y)—u*(a—1)(xy +yx)Qx,y) =
1—uy(l4 ux(a—1))9O(x,0) — ux(1+ uy(a—1))Q(0,y)

Alas... Q(a, u; x,y) is not (a+ 1)-positive.



When a = 1

e It's simple!
2i +2j L
Qu)= > ( 0 )C,-C,-u'+f
i,j>0
e Refinement with the number of — steps (variable s) and 1 steps
(variable t):
2i +2j .
Q(L,s,t) = Z ( N )c,qs'tf.
ij>0
e Asymptotic behaviour:

[u"Q(1,u) ~16"n~3

so that Conjectures 2 (radius) and 3 (growth of the coefficients) hold.



e Not so simple! But still very nice...
i+J i+j
Q(—1,u) = Z ( ,, )C,-cju i
i,j>0
e Refinement with the number of — steps (variable s) and 1 steps
(variable t):
i+j i
Q(—1,s,t) = Z ( I, )c,qs'tf.
ij>0
e Asymptotic behaviour:
[b"]Q(—1,u) ~8"n3

so that Conjecture 2 (radius) holds.



e Count all NSEW walks by the number of corners and the length:

1
W(a,u) = 1—4u—2(a—1)u?

This series has radius 1

24++2+2a



A lower bound on the radius of Q(a,-) for a > 0

e Count all NSEW walks by the number of corners and the length:

1
W(a,u) = 1—4u—2(a—1)u?

This series has radius 1

24++2+2a

e For a > 0, Q(a, u) is dominated (coefficient by coefficient) by
W(a, /u), and thus has radius at least

1

(242 +2a)?

Conjecture 2: quarter plane loops have the same exponential growth as
general walks.



V. More evidence: The case of unconfined loops
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The generating function of general plane loops is (a + 1)-positive :

W(a,u) =) u"wa(a+1)

n>0

with w,(b) € N[b].

Refinement
e One can count separately vertical and horizontal steps:

Wi(a,s,t) Zstfw,d(a+1)
i,j>0



e The series W(a, s, t) that counts general loops satisfies

20+ 2)\ (2i\ (2)\ : ;
0= (52) ) )
ij>0 J

=5 (7))

and



e The series W(a, s, t) that counts general loops satisfies

21 24\ (2i\ [2)\ : ;
W(l,s, t) = E < I;_I. J)(/.I)(.J)s’tf
ij>0 J

=5 (7))

e Combinatorial explanation when a = —17

and



For a > —1, the radius of W(a, ") is

L s ~1/2,

(24 V2 +2a)?

ifae[-1,-1/2].




For a > —1,

wp(a) := [u"]W(a, u) ~ pw(a) "n?

except when a = —1/2 where the exponent is —3/4.




@ Their generating function is the constant term in a rational series:

1
—s(x+X) =ty +y) —st(a—1)(xy +Xy)

W(a, s 1) = 6]



@ Their generating function is the constant term in a rational series:

1
—s(x+x)—tly+y)—st(a—1)(xy +xy)

W(a, s 1) = 6]

@ Let v be a vertical 1D loop of length 2j. The generating function of
loops that project vertically on v only depends on j.



What makes unconfined loops easier?

@ Their generating function is the constant term in a rational series:

1
s(x+x)—tly+y)—st(a—1)(xy+xy)

W(a,s?, t?) = [x°°] -

@ Let v be a vertical 1D loop of length 2j. The generating function of
loops that project vertically on v only depends on j.

= W(a,s,t)=> <2j> ' Wi(a, s)

j=0



What makes unconfined loops easier?

@ Their generating function is the constant term in a rational series:

1
s(x+x)—tly+y)—st(a—1)(xy+xy)

W(a,s?, ) = [y —

@ Let v be a vertical 1D loop of length 2j. The generating function of
loops that project vertically on v only depends on j.

= W(a,s,t) = J; <2j> ' Wi(a, s)

It suffices to prove the (a + 1)-positivity of

> tHW(a,s),

j=0

which is an algebraic (quartic, in fact biquadratic) series.



Generating function of general loops:

W(a s t)=> (211) tWi(a, s)

j=0



Generating function of general loops:

W(a s t)=> (QJJ) tWi(a, s)

j=0

The generating function of half-plane loops is

2

j)thj(a.s).

It is also (a + 1)-positive, and H(a, u) has the same radius of W(a, u).




Generating function of general loops:

W(a s t)=> (QJJ) tWi(a, s)

j=0

The generating function of half-plane loops is

2

j)thj(a.s).

It is also (a + 1)-positive, and H(a, u) has the same radius of W(a, u).

Remark: the exponent is —2, except at a = —1/2 where it is —7/4.



Final remarks

Prove the conjectures!

Combinatorial proofs for the (a + 1)-positivity, for the values at
a=—1..

Nature of the series S(t) and Q(a, u)
More detailed asymptotics of [t"]S(t) (sub-exponential terms?)

@ Other sorting machines: the deque (double-ended queue), 3 parallel
stacks...





