Permutations sortable by two stacks in parallel and quarter plane walks

Mireille Bousquet-Mélou, CNRS, LaBRI, Bordeaux joint work with Michael Albert, Dunedin, New Zealand

I. In the beginning was...
I. In the beginning was...

The Art of Computer Programming [Knuth, 1968]

Sorting permutations through a stack [Knuth 1968]

Sorting permutations through a stack [Knuth 1968]

651432

Sorting permutations through a stack [Knuth 1968]

Operation sequence: $w=I$

Sorting permutations through a stack [Knuth 1968]

Operation sequence: $w=/ /$

Sorting permutations through a stack [Knuth 1968]

Operation sequence: $w=\| / / O$

Sorting permutations through a stack [Knuth 1968]

Operation sequence: $w=\| / I O \mid$

Sorting permutations through a stack [Knuth 1968]

Operation sequence: $w=/ / / O / /$

Sorting permutations through a stack [Knuth 1968]

2

Operation sequence: $w=\|/ / O\| / l O$

Sorting permutations through a stack [Knuth 1968]

Operation sequence: $w=\| / / 0 / / / 00000$

Sorting permutations through a stack [Knuth 1968]

231

Sorting permutations through a stack [Knuth 1968]

Property: If $\sigma=\sigma_{1} \cdots \sigma_{n}$ is sortable, then so are all its sub-permutations $\sigma_{i_{1}} \cdots \sigma_{i_{k}}$ with $i_{1}<\cdots<i_{k}$

Sorting permutations through a stack [Knuth 1968]

Three main results

- Characterization: σ is sortable iff it does not contain a sub-sequence $\sigma_{i} \sigma_{j} \sigma_{k}$ of shape 231 (that is, with $\sigma_{k}<\sigma_{i}<\sigma_{j}$)

Sorting permutations through a stack [Knuth 1968]

Three main results

- Characterization: σ is sortable iff it does not contain a sub-sequence $\sigma_{i} \sigma_{j} \sigma_{k}$ of shape 231 (that is, with $\sigma_{k}<\sigma_{i}<\sigma_{j}$) i.e. iff it avoids the pattern 231

Sorting permutations through a stack [Knuth 1968]

Three main results

- Characterization: σ is sortable iff it does not contain a sub-sequence $\sigma_{i} \sigma_{j} \sigma_{k}$ of shape 231 (that is, with $\sigma_{k}<\sigma_{i}<\sigma_{j}$) i.e. iff it avoids the pattern 231
- Decidability: in linear time (all operations are forced)

Sorting permutations through a stack [Knuth 1968]

Three main results

- Characterization: σ is sortable iff it does not contain a sub-sequence $\sigma_{i} \sigma_{j} \sigma_{k}$ of shape 231 (that is, with $\sigma_{k}<\sigma_{i}<\sigma_{j}$) i.e. iff it avoids the pattern 231
- Decidability: in linear time (all operations are forced)
- Enumeration?

Two equivalent viewpoints: sort, or produce

Lemma: If σ is sorted by an operation sequence $w \in\{I, O\}^{*}$, then w, applied to the identity, produces σ^{-1} (which is said to be realizable).

$$
\begin{array}{ccc}
12 \cdots n & \stackrel{w}{\longleftarrow} & \sigma_{1} \sigma_{2} \cdots \sigma_{n} \\
\sigma_{1}^{-1} \sigma_{2}^{-1} \cdots \sigma_{n}^{-1} & \stackrel{w}{\longleftarrow} & 12 \cdots n
\end{array}
$$

Two equivalent viewpoints: sort, or produce

Lemma: If σ is sorted by an operation sequence $w \in\{I, O\}^{*}$, then w, applied to the identity, produces σ^{-1} (which is said to be realizable).

Consequence: it is equivalent to count

- sortable permutations
- realizable permutations
- operation sequences on $\{1, O\}^{*}$
- discrete excursions
e arch systems

Two equivalent viewpoints: sort, or produce

Lemma: If σ is sorted by an operation sequence $w \in\{I, O\}^{*}$, then w, applied to the identity, produces σ^{-1} (which is said to be realizable).

Consequence: it is equivalent to count

- sortable permutations
- realizable permutations
- operation sequences on $\{I, O\}^{*}$
- discrete excursions
- arch systems

Two equivalent viewpoints: sort, or produce

Lemma: If σ is sorted by an operation sequence $w \in\{I, O\}^{*}$, then w, applied to the identity, produces σ^{-1} (which is said to be realizable).

Consequence: it is equivalent to count

- sortable permutations
- realizable permutations
- operation sequences on $\{I, O\}^{*}$
- discrete excursions

$I \quad I \quad O \quad O \quad I \quad O$
- arch systems

Two equivalent viewpoints: sort, or produce

Lemma: If σ is sorted by an operation sequence $w \in\{I, O\}^{*}$, then w, applied to the identity, produces σ^{-1} (which is said to be realizable).

Consequence: it is equivalent to count

- sortable permutations
- realizable permutations
- operation sequences on $\{I, O\}^{*}$
- discrete excursions
- arch systems

$\begin{array}{llllll}I & I & O & O & I & O\end{array}$

Two equivalent viewpoints: sort, or produce

Lemma: If σ is sorted by an operation sequence $w \in\{I, O\}^{*}$, then w, applied to the identity, produces σ^{-1} (which is said to be realizable).

Consequence: it is equivalent to count

- sortable permutations
- realizable permutations
- operation sequences on $\{I, O\}^{*}$
- discrete excursions
- arch systems

$\begin{array}{llllll}I & I & O & O & I & O\end{array}$

\Rightarrow Enumeration by Catalan numbers:

$$
C_{n}:=\frac{1}{n+1}\binom{2 n}{n}
$$

Networks of machines [Even \& Itai, Pratt, Tarjan \simeq 1970]

- More machines

Networks of machines [Even \& Itai, Pratt, Tarjan \simeq 1970]

- More machines

Networks of machines [Even \& Itai, Pratt, Tarjan \simeq 1970]

- More machines

Networks of machines [Even \& Itai, Pratt, Tarjan $\simeq 1970$]

- More machines
- Networks of machines

Networks of machines [Even \& Itai, Pratt, Tarjan \simeq 1970]

- More machines
- Networks of machines
- m queues in series?

\Rightarrow Permutations with no descending sub-sequence of length $m+1$

Networks of machines [Even \& Itai, Pratt, Tarjan \simeq 1970]

- More machines
- Networks of machines
- m queues in series?
- m stacks in series? in parallel?

II. Two stacks

Two stacks

In parallel:

- Characterization: infinitely many forbidden patterns [Pratt 73]
- Decidability: in polynomial time [Even \& Itai 71]
- Enumeration [Albert-MBM 2013]

Two stacks

In parallel:

- Characterization: infinitely many forbidden patterns [Pratt 73]
- Decidability: in polynomial time [Even \& Itai 71]
- Enumeration [Albert-MBM 2013]

In series:

- Characterization: infinitely many forbidden patterns [Murphy 02]
- Decidability: in polynomial time [Pierrot-Rossin 13]
- Enumeration: ???

Permutations produced by two parallel stacks

- Operation sequences on $\left\{I_{1}, I_{2}, O_{1}, O_{2}\right\}$

$\begin{array}{lllllllllllllllll}I_{1} & I_{2} & I_{1} & I_{1} & O_{1} & O_{1} & O_{1} & I_{1} & O_{2} & O_{1} & I_{2} & I_{1} & I_{2} & O_{2} & O_{2} & O_{1}\end{array}$

Permutations produced by two parallel stacks

- Operation sequences on $\left\{I_{1}, I_{2}, O_{1}, O_{2}\right\}$: several may produce the same permutation!

$\begin{array}{llllllllllllllll}I_{1} & I_{2} & I_{1} & I_{1} & O_{1} & O_{1} & O_{1} & I_{1} & O_{2} & O_{1} & I_{2} & I_{1} & I_{2} & O_{2} & O_{2} & O_{1}\end{array}$

Permutations produced by two parallel stacks

- Operation sequences on $\left\{I_{1}, I_{2}, O_{1}, O_{2}\right\}$: several may produce the same permutation!
- Define a set of canonical operation sequences, exactly one for each realizable permutation

$\begin{array}{lllllllllllllllll}I_{1} & I_{2} & I_{1} & I_{1} & O_{1} & O_{1} & O_{1} & I_{1} & O_{2} & O_{1} & I_{2} & I_{1} & I_{2} & O_{2} & O_{2} & O_{1}\end{array}$

Permutations produced by two parallel stacks

- Operation sequences on $\left\{I_{1}, I_{2}, O_{1}, O_{2}\right\}$: several may produce the same permutation!
- Define a set of canonical operation sequences, exactly one for each realizable permutation

$\begin{array}{lllllllllllllllll}I_{1} & I_{2} & I_{1} & I_{1} & O_{1} & O_{1} & O_{1} & I_{1} & O_{2} & O_{1} & I_{2} & I_{1} & I_{2} & O_{2} & O_{2} & O_{1}\end{array}$

Permutations produced by two parallel stacks

- Operation sequences on $\left\{I_{1}, I_{2}, O_{1}, O_{2}\right\}$: several may produce the same permutation!
- Define a set of canonical operation sequences, exactly one for each realizable permutation

$\begin{array}{lllllllllllllllll}I_{1} & I_{2} & I_{1} & I_{1} & O_{1} & O_{1} & O_{1} & O_{2} & I_{1} & O_{1} & I_{2} & I_{1} & I_{2} & O_{2} & O_{2} & O_{1}\end{array}$

Permutations produced by two parallel stacks

- Operation sequences on $\left\{I_{1}, I_{2}, O_{1}, O_{2}\right\}$: several may produce the same permutation!
- Define a set of canonical operation sequences, exactly one for each realizable permutation

$\begin{array}{llllllllllllllll}I_{1} & I_{2} & I_{1} & I_{1} & O_{1} & O_{1} & O_{1} & O_{2} & I_{1} & O_{1} & I_{2} & I_{1} & I_{2} & O_{2} & O_{2} & O_{1}\end{array}$
- $I_{1} O_{2} \equiv O_{2} I_{1}$ and $I_{2} O_{1} \equiv O_{1} I_{2} \Rightarrow$ Eager outputs: no $I_{1} O_{2}$ nor $I_{2} O_{1}$

Permutations produced by two parallel stacks

- Operation sequences on $\left\{I_{1}, I_{2}, O_{1}, O_{2}\right\}$: several may produce the same permutation!
- Define a set of canonical operation sequences, exactly one for each realizable permutation

$\begin{array}{lllllllllllllllll}I_{1} & I_{2} & I_{1} & I_{1} & O_{1} & O_{1} & O_{1} & O_{2} & I_{2} & O_{2} & I_{2} & I_{1} & I_{2} & O_{2} & O_{2} & O_{1}\end{array}$
- $I_{1} O_{2} \equiv O_{2} I_{1}$ and $I_{2} O_{1} \equiv O_{1} I_{2} \Rightarrow$ Eager outputs: no $I_{1} O_{2}$ nor $I_{2} O_{1}$

Permutations produced by two parallel stacks

- Operation sequences on $\left\{I_{1}, I_{2}, O_{1}, O_{2}\right\}$: several may produce the same permutation!
- Define a set of canonical operation sequences, exactly one for each realizable permutation

$\begin{array}{lllllllllllllllll}I_{1} & I_{2} & I_{1} & I_{1} & O_{1} & O_{1} & O_{1} & O_{2} & I_{2} & O_{2} & I_{2} & I_{1} & I_{1} & O_{1} & O_{2} & O_{1}\end{array}$
- $I_{1} O_{2} \equiv O_{2} I_{1}$ and $I_{2} O_{1} \equiv O_{1} I_{2} \Rightarrow$ Eager outputs: no $I_{1} O_{2}$ nor $I_{2} O_{1}$

Permutations produced by two parallel stacks

- Operation sequences on $\left\{I_{1}, I_{2}, O_{1}, O_{2}\right\}$: several may produce the same permutation!
- Define a set of canonical operation sequences, exactly one for each realizable permutation

$\begin{array}{llllllllllllllll}I_{1} & I_{2} & I_{1} & I_{1} & O_{1} & O_{1} & O_{1} & O_{2} & I_{2} & O_{2} & I_{1} & I_{1} & I_{2} & O_{2} & O_{2} & O_{1}\end{array}$
- $I_{1} O_{2} \equiv O_{2} I_{1}$ and $I_{2} O_{1} \equiv O_{1} I_{2} \Rightarrow$ Eager outputs: no $I_{1} O_{2}$ nor $I_{2} O_{1}$

Permutations produced by two parallel stacks

- Operation sequences on $\left\{I_{1}, I_{2}, O_{1}, O_{2}\right\}$: several may produce the same permutation!
- Define a set of canonical operation sequences, exactly one for each realizable permutation

$\begin{array}{llllllllllllllll}I_{1} & I_{2} & I_{1} & I_{1} & O_{1} & O_{1} & O_{1} & O_{2} & I_{2} & O_{2} & I_{1} & I_{2} & I_{2} & O_{2} & O_{1} & O_{2}\end{array}$
- $I_{1} O_{2} \equiv O_{2} I_{1}$ and $I_{2} O_{1} \equiv O_{1} I_{2} \Rightarrow$ Eager outputs: no $I_{1} O_{2}$ nor $I_{2} O_{1}$

Permutations produced by two parallel stacks

- Operation sequences on $\left\{I_{1}, I_{2}, O_{1}, O_{2}\right\}$: several may produce the same permutation!
- Define a set of canonical operation sequences, exactly one for each realizable permutation

$\begin{array}{llllllllllllllll}I_{1} & I_{2} & I_{1} & I_{1} & O_{1} & O_{1} & O_{1} & O_{2} & I_{2} & O_{2} & I_{1} & I_{2} & I_{2} & O_{2} & O_{1} & O_{2}\end{array}$
- $I_{1} O_{2} \equiv O_{2} I_{1}$ and $I_{2} O_{1} \equiv O_{1} I_{2} \Rightarrow$ Eager outputs: no $I_{1} O_{2}$ nor $I_{2} O_{1}$

Permutations produced by two parallel stacks

- Operation sequences on $\left\{I_{1}, I_{2}, O_{1}, O_{2}\right\}$: several may produce the same permutation!
- Define a set of canonical operation sequences, exactly one for each realizable permutation

$\begin{array}{llllllllllllllll}I_{1} & I_{2} & I_{1} & I_{1} & O_{1} & O_{1} & O_{1} & O_{2} & I_{2} & O_{2} & I_{1} & I_{2} & I_{2} & O_{2} & O_{1} & O_{2}\end{array}$
- $I_{1} O_{2} \equiv O_{2} I_{1}$ and $I_{2} O_{1} \equiv O_{1} I_{2} \Rightarrow$ Eager outputs: no $I_{1} O_{2}$ nor $I_{2} O_{1}$
- In each connected component, the first move is I_{1}.

Canonical operation sequences

Proposition

The permutations that can be produced with two parallel stacks are in bijection with operation sequences such that

- there is no factor $I_{1} O_{2}$ nor $l_{2} O_{1}$
- the first letter (arch) in each connected component is I_{1} (red).

[...] Enumeration

- Let $Q(a, u)$ be the generating function of arch systems counted by the number of arches (u) and the number of $I_{1} O_{2}$ and $I_{2} O_{1}$ factors (a):

$$
Q(a, u)=1+2 u+(8+2 a) u^{2}+\left(44+24 a+2 a^{2}\right) u^{3}+O\left(u^{4}\right) .
$$

[...] Enumeration

- Let $Q(a, u)$ be the generating function of arch systems counted by the number of arches (u) and the number of $I_{1} O_{2}$ and $I_{2} O_{1}$ factors (a):

$$
Q(a, u)=1+2 u+(8+2 a) u^{2}+\left(44+24 a+2 a^{2}\right) u^{3}+O\left(u^{4}\right) .
$$

[...] Enumeration

- Let $Q(a, u)$ be the generating function of arch systems counted by the number of arches (u) and the number of $I_{1} O_{2}$ and $I_{2} O_{1}$ factors (a):

$$
Q(a, u)=1+2 u+(8+2 a) u^{2}+\left(44+24 a+2 a^{2}\right) u^{3}+O\left(u^{4}\right)
$$

- Then the generating function of permutations produced with two stacks is

$$
S(t)=1+t+2 t^{2}+6 t^{3}+23 t^{4}+103 t^{5}+O\left(t^{6}\right)=\frac{1}{1-S_{\bullet}(t)}
$$

[...] Enumeration

- Let $Q(a, u)$ be the generating function of arch systems counted by the number of arches (u) and the number of $I_{1} O_{2}$ and $I_{2} O_{1}$ factors (a):

$$
Q(a, u)=1+2 u+(8+2 a) u^{2}+\left(44+24 a+2 a^{2}\right) u^{3}+O\left(u^{4}\right)
$$

- Then the generating function of permutations produced with two stacks is

$$
S(t)=1+t+2 t^{2}+6 t^{3}+23 t^{4}+103 t^{5}+O\left(t^{6}\right)=\frac{1}{1-S_{\bullet}(t)}
$$

with $S^{\bullet} \equiv S^{\bullet}(t)$ the unique solution of

$$
Q\left(-S^{\bullet}, \frac{t}{\left(1+S^{\bullet}\right)^{2}}\right)=\frac{1+S^{\bullet}}{1-S^{\bullet}}
$$

III. Arch systems, operation sequences and quarter plane walks

- A one-colour operation sequence is a walk from 0 to 0 on the half-line \mathbb{N}

- A one-colour operation sequence is a walk from 0 to 0 on the half-line \mathbb{N}

$$
\begin{array}{lllllll}
I & I & O & O & I & O
\end{array}
$$

- A bi-coloured operation sequence is a walk from $(0,0)$ to $(0,0)$ (also called loop) in the quadrant \mathbb{N}^{2}

$$
\begin{array}{llllllllll}
I_{1} & I_{1} & I_{2} & I_{2} & I_{1} & O_{2} & O_{1} & O_{1} & O_{1} & O_{2}
\end{array}
$$

- A one-colour operation sequence is a walk from 0 to 0 on the half-line \mathbb{N}

$$
\begin{array}{lllllll}
I & I & O & O & I & O
\end{array}
$$

- A bi-coloured operation sequence is a walk from $(0,0)$ to $(0,0)$ (also called loop) in the quadrant \mathbb{N}^{2}

$$
\begin{array}{llllllllll}
I_{1} & I_{1} & I_{2} & I_{2} & I_{1} & O_{2} & O_{1} & O_{1} & O_{1} & O_{2}
\end{array}
$$

- A one-colour operation sequence is a walk from 0 to 0 on the half-line \mathbb{N}

$$
\begin{array}{lllllll}
I & I & O & O & I & O
\end{array}
$$

- A bi-coloured operation sequence is a walk from $(0,0)$ to $(0,0)$ (also called loop) in the quadrant \mathbb{N}^{2}

$$
\begin{array}{llllllllll}
I_{1} & I_{1} & I_{2} & I_{2} & I_{1} & O_{2} & O_{1} & O_{1} & O_{1} & O_{2}
\end{array}
$$

corner

- Can we determine

$$
Q(a, u)=\sum_{w \text { loop }} u^{|w| / 2} a^{\text {corners }(w)} \quad ?
$$

Consider all quarter plane walks (starting from $(0,0)$)

- Generating function $\mathcal{Q}(a, u ; x, y) \equiv \mathcal{Q}(x, y)$, where u counts steps, a corners, and x, y the coordinates of the endpoint:

$$
\begin{aligned}
\mathcal{Q}(a, u ; x, y) & =1+(x+y) u+\left(2+x y+x^{2}+y^{2}\right) u^{2} \\
& +\left((a+4)(x+y)+3 x^{2} y+3 x y^{2}+x^{3}+y^{3}\right) u^{3}+O\left(u^{4}\right)
\end{aligned}
$$

Consider all quarter plane walks (starting from $(0,0)$)

- Generating function $\mathcal{Q}(a, u ; x, y) \equiv \mathcal{Q}(x, y)$, where u counts steps, a corners, and x, y the coordinates of the endpoint:

$$
\begin{aligned}
& \mathcal{Q}(a, u ; x, y)=1+(x+y) u+\left(2+x y+x^{2}+y^{2}\right) u^{2} \\
& \quad+\left((a+4)(x+y)+3 x^{2} y+3 x y^{2}+x^{3}+y^{3}\right) u^{3}+O\left(u^{4}\right)
\end{aligned}
$$

- Recursive construction

Functional equation for quadrant walks

- Generating function $\mathcal{Q}(a, u ; x, y) \equiv \mathcal{Q}(x, y)$ of all quadrant walks:

$$
\begin{aligned}
& \left(1-u(x+\bar{x}+y+\bar{y})-u^{2}(a-1)(x \bar{y}+y \bar{x})\right) \mathcal{Q}(x, y)= \\
& \quad 1-u \bar{y}(1+u x(a-1)) \mathcal{Q}(x, 0)-u \bar{x}(1+u y(a-1)) \mathcal{Q}(0, y)
\end{aligned}
$$

with $\bar{x}=1 / x$ and $\bar{y}=1 / y$.

- Loops in the quadrant:

$$
Q(a, u)=\mathcal{Q}(a, \sqrt{u} ; 0,0)
$$

\Rightarrow Compute the first coefficients of $Q(a, u) \ldots$ and discover and test conjectures

The enumeration problem is solved

- All walks in the quadrant: $\mathcal{Q}(a, u ; x, y) \equiv \mathcal{Q}(x, y)$ with

$$
\begin{aligned}
& \left(1-u(x+\bar{x}+y+\bar{y})-u^{2}(a-1)(x \bar{y}+y \bar{x})\right) \mathcal{Q}(x, y)= \\
& \quad 1-u \bar{y}(1+u x(a-1)) \mathcal{Q}(x, 0)-u \bar{x}(1+u y(a-1)) \mathcal{Q}(0, y)
\end{aligned}
$$

- Loops in the quadrant:

$$
Q(a, u)=\mathcal{Q}(a, \sqrt{u} ; 0,0)
$$

- Sortable permutations:

$$
S(t)=\frac{1}{1-S^{\bullet}(t)}
$$

with

$$
Q\left(-S^{\bullet}, \frac{t}{\left(1+S^{\bullet}\right)^{2}}\right)=\frac{1+S^{\bullet}}{1-S^{\bullet}}
$$

Did you say "solved"?

- What it the asymptotic behaviour of the number s_{n} of sortable permutations of length n ?

$$
s_{n}=\left[t^{n}\right] S(t)
$$

- What is the nature of the generating function $S(t)$? is it algebraic, D-finite, D-algebraic?
- What is the nature of the generating function $Q(a, u)$?

Did you say "solved"?

- What it the asymptotic behaviour of the number s_{n} of sortable permutations of length n ?

$$
s_{n}=\left[t^{n}\right] S(t)
$$

- What is the nature of the generating function $S(t)$? is it algebraic, D-finite, D-algebraic?
- What is the nature of the generating function $Q(a, u)$?

Did you say "solved'?

- What it the asymptotic behaviour of the number s_{n} of sortable permutations of length n ?

$$
s_{n}=\left[t^{n}\right] S(t)
$$

- What is the nature of the generating function $S(t)$? is it algebraic, D-finite, D-algebraic?
- What is the nature of the generating function $Q(a, u)$?

Asymptotics: the main source of difficulty

- Generating function of quarter plane loops:

$$
Q(a, u)=\sum_{w \text { loop }} u^{|w| / 2} a^{\operatorname{corners}(w)} \in \mathbb{N}[a][[u]]
$$

- Characterization of $S(t)=1 /\left(1-S^{\bullet}(t)\right)$:

$$
Q\left(-S^{\bullet}, \frac{t}{\left(1+S^{\bullet}\right)^{2}}\right)=\frac{1+S^{\bullet}}{1-S^{\bullet}}
$$

\Rightarrow To find the first positive singularity t_{c} of S^{\bullet} (that is, its radius) we must explore the singularities of $Q(a, u)$ when $a<0$.

Conjecture 1: $(a+1)$-Positivity

Conjecture

The generating function of quarter plane loops is ($a+1$)-positive :

$$
Q(a, u)=\sum_{n \geq 0} u^{n} p_{n}(a+1)
$$

with $p_{n}(b) \in \mathbb{N}[b]$.

Refinement

- One can count separately vertical and horizontal steps:

$$
Q(a, s, t)=\sum_{i, j \geq 0} s^{i} t^{j} p_{i, j}(a+1)
$$

- True up to $n=200$.

The general picture: what happens on $\left[0, t_{c}\right]$

Let $\rho_{Q}(a)$ be the radius of convergence of $u \mapsto Q(a, u)$ (a non-increasing function of $a \geq-1$).

The general picture: what happens on $\left[0, t_{c}\right]$

Let $\rho_{Q}(a)$ be the radius of convergence of $u \mapsto Q(a, u)$ (a non-increasing function of $a \geq-1$).

$$
Q\left(-S^{\bullet}, \frac{t}{\left(1+S^{\bullet}\right)^{2}}\right)=\frac{1+S^{\bullet}}{1-S^{\bullet}}
$$

The general picture: what happens on $\left[0, t_{c}\right]$

Let $\rho_{Q}(a)$ be the radius of convergence of $u \mapsto Q(a, u)$ (a non-increasing function of $a \geq-1$).

$$
Q\left(-S^{\bullet}, \frac{t}{\left(1+S^{\bullet}\right)^{2}}\right)=\frac{1+S^{\bullet}}{1-S^{\bullet}}
$$

Conjecture 2: The radius of convergence of $Q(a, \cdot)$

Conjecture

For $a \geq-1$, the radius of $Q(a, \cdot)$ is

$$
\rho_{Q}(a)= \begin{cases}\frac{1}{(2+\sqrt{2+2 a})^{2}} & \text { if } a \geq-1 / 2, \\ -\frac{a}{2(1-a)^{2}} & \text { if } a \in[-1,-1 / 2]\end{cases}
$$

- In particular: $\rho_{Q}(1)=1 / 16$ and $\rho_{Q}(-1)=1 / 8$
- Allows us to estimate $t_{c} \sim 0.12$, so that $s_{n}^{1 / n} \rightarrow 8.2 \ldots$

Conjecture 3: The growth of the coefficients of $Q(a, u)$

Conjecture
The series $Q_{2}^{\prime}(a, u):=\frac{\partial Q}{\partial u}(a, u)$ is convergent at $u=\rho_{Q}(a)$ for $a \geq-1 / 3$.

Conjecture 3: The growth of the coefficients of $Q(a, u)$

Conjecture
The series $Q_{2}^{\prime}(a, u):=\frac{\partial Q}{\partial u}(a, u)$ is convergent at $u=\rho_{Q}(a)$ for $a \geq-1 / 3$.

- Expected:

$$
\begin{aligned}
& q_{n}(a):=\left[u^{n}\right] Q(a, u) \sim \rho_{Q}(a)^{-n} n^{\gamma(a)} \\
& \text { with } \gamma(a)<-2 \text { for } a>-1 / 3 .
\end{aligned}
$$

Conjecture 3: The growth of the coefficients of $Q(a, u)$

Conjecture

The series $Q_{2}^{\prime}(a, u):=\frac{\partial Q}{\partial u}(a, u)$ is convergent at $u=\rho_{Q}(a)$ for $a \geq-1 / 3$.

- Expected:
$q_{n}(a):=\left[u^{n}\right] Q(a, u) \sim \rho_{Q}(a)^{-n} n^{\gamma(a)}$
with $\gamma(a)<-2$ for $a>-1 / 3$.

The curves $n^{2}\left(1-q_{n-1}(a) q_{n+1}(a) / q_{n}(a)^{2}\right)$, for $n=40,60,80$ and 100 .

IV. What we know about $Q(a, u)$

$$
Q(a, u)=\sum_{w \text { loop }} u^{|w| / 2} a^{\text {corners }(w)}
$$

A functional equation for $\mathcal{Q}(a, u ; x, y) \equiv \mathcal{Q}(x, y)$

The generating function $\mathcal{Q}(a, u ; x, y) \equiv \mathcal{Q}(x, y)$ of all quadrant walks, counted by the length (u), the number of corners (a) and the coordinates of the endpoint (x, y) satisfies:

$$
\begin{aligned}
& \left(1-u(x+\bar{x}+y+\bar{y})-u^{2}(a-1)(x \bar{y}+y \bar{x})\right) \mathcal{Q}(x, y)= \\
& \quad 1-u \bar{y}(1+u x(a-1)) \mathcal{Q}(x, 0)-u \bar{x}(1+u y(a-1)) \mathcal{Q}(0, y)
\end{aligned}
$$

Alas... $\mathcal{Q}(a, u ; x, y)$ is not $(a+1)$-positive.

When $a=1$

- It's simple!

$$
Q(1, u)=\sum_{i, j \geq 0}\binom{2 i+2 j}{2 i} C_{i} C_{j} u^{i+j}
$$

- Refinement with the number of \rightarrow steps (variable s) and \uparrow steps (variable t):

$$
Q(1, s, t)=\sum_{i, j \geq 0}\binom{2 i+2 j}{2 i} C_{i} C_{j} s^{i} t^{j}
$$

- Asymptotic behaviour:

$$
\left[u^{n}\right] Q(1, u) \sim 16^{n} n^{-3}
$$

so that Conjectures 2 (radius) and 3 (growth of the coefficients) hold.

When $a=-1$

- Not so simple! But still very nice...

$$
Q(-1, u)=\sum_{i, j \geq 0}\binom{i+j}{i} C_{i} C_{j} u^{i+j}
$$

- Refinement with the number of \rightarrow steps (variable s) and \uparrow steps (variable t):

$$
Q(-1, s, t)=\sum_{i, j \geq 0}\binom{i+j}{i} C_{i} C_{j} s^{i} t^{j}
$$

- Asymptotic behaviour:

$$
\left[u^{n}\right] Q(-1, u) \sim 8^{n} n^{-3}
$$

so that Conjecture 2 (radius) holds.

A lower bound on the radius of $Q(a, \cdot)$ for $a \geq 0$

- Count all NSEW walks by the number of corners and the length:

$$
\mathcal{W}(a, u)=\frac{1}{1-4 u-2(a-1) u^{2}}
$$

This series has radius

$$
\frac{1}{2+\sqrt{2+2 a}}
$$

A lower bound on the radius of $Q(a, \cdot)$ for $a \geq 0$

- Count all NSEW walks by the number of corners and the length:

$$
\mathcal{W}(a, u)=\frac{1}{1-4 u-2(a-1) u^{2}}
$$

This series has radius

$$
\frac{1}{2+\sqrt{2+2 a}}
$$

- For $a \geq 0, Q(a, u)$ is dominated (coefficient by coefficient) by $\mathcal{W}(a, \sqrt{u})$, and thus has radius at least

$$
\frac{1}{(2+\sqrt{2+2 a})^{2}} .
$$

Conjecture 2: quarter plane loops have the same exponential growth as general walks.

V. More evidence: The case of unconfined loops

$(a+1)$-Positivity

Proposition

The generating function of general plane loops is $(a+1)$-positive :

$$
W(a, u)=\sum_{n \geq 0} u^{n} w_{n}(a+1)
$$

with $w_{n}(b) \in \mathbb{N}[b]$.

Refinement

- One can count separately vertical and horizontal steps:

$$
W(a, s, t)=\sum_{i, j \geq 0} s^{i} t^{j} w_{i, j}(a+1)
$$

When $a=1$ or $a=-1$

- The series $W(a, s, t)$ that counts general loops satisfies

$$
W(1, s, t)=\sum_{i, j \geq 0}\binom{2 i+2 j}{2 i}\binom{2 i}{i}\binom{2 j}{j} s^{i} t^{j}
$$

and

$$
W(-1, s, t)=\sum_{i, j \geq 0}\binom{i+j}{i}\binom{2 i}{i}\binom{2 j}{j} s^{i} t^{j}
$$

When $a=1$ or $a=-1$

- The series $W(a, s, t)$ that counts general loops satisfies

$$
W(1, s, t)=\sum_{i, j \geq 0}\binom{2 i+2 j}{2 i}\binom{2 i}{i}\binom{2 j}{j} s^{i} t^{j}
$$

and

$$
W(-1, s, t)=\sum_{i, j \geq 0}\binom{i+j}{i}\binom{2 i}{i}\binom{2 j}{j} s^{i} t^{j}
$$

- Combinatorial explanation when $a=-1$?

The radius of convergence of $W(a, \cdot)$

Proposition

For $a \geq-1$, the radius of $W(a, \cdot)$ is

$$
\rho_{W}(a)= \begin{cases}\frac{1}{(2+\sqrt{2+2 a})^{2}} & \text { if } a \geq-1 / 2, \\ -\frac{a}{2(1-a)^{2}} & \text { if } a \in[-1,-1 / 2] .\end{cases}
$$

The exponent for general loops

Proposition

For $a \geq-1$,

$$
w_{n}(a):=\left[u^{n}\right] W(a, u) \sim \rho_{W}(a)^{-n} n^{-1}
$$

except when $a=-1 / 2$ where the exponent is $-3 / 4$.

What makes unconfined loops easier?

- Their generating function is the constant term in a rational series:

$$
W\left(a, s^{2}, t^{2}\right)=\left[x^{0} y^{0}\right] \frac{1}{1-s(x+\bar{x})-t(y+\bar{y})-s t(a-1)(x \bar{y}+\bar{x} y)}
$$

What makes unconfined loops easier?

- Their generating function is the constant term in a rational series:

$$
W\left(a, s^{2}, t^{2}\right)=\left[x^{0} y^{0}\right] \frac{1}{1-s(x+\bar{x})-t(y+\bar{y})-s t(a-1)(x \bar{y}+\bar{x} y)}
$$

- Let v be a vertical 1D loop of length $2 j$. The generating function of loops that project vertically on v only depends on j.

What makes unconfined loops easier?

- Their generating function is the constant term in a rational series:

$$
W\left(a, s^{2}, t^{2}\right)=\left[x^{0} y^{0}\right] \frac{1}{1-s(x+\bar{x})-t(y+\bar{y})-s t(a-1)(x \bar{y}+\bar{x} y)}
$$

- Let v be a vertical 1D loop of length $2 j$. The generating function of loops that project vertically on v only depends on j.

$$
\Rightarrow W(a, s, t)=\sum_{j \geq 0}\binom{2 j}{j} t^{j} W_{j}(a, s)
$$

What makes unconfined loops easier?

- Their generating function is the constant term in a rational series:

$$
W\left(a, s^{2}, t^{2}\right)=\left[x^{0} y^{0}\right] \frac{1}{1-s(x+\bar{x})-t(y+\bar{y})-s t(a-1)(x \bar{y}+\bar{x} y)}
$$

- Let v be a vertical 1D loop of length $2 j$. The generating function of loops that project vertically on v only depends on j.

$$
\Rightarrow W(a, s, t)=\sum_{j \geq 0}\binom{2 j}{j} t^{j} W_{j}(a, s)
$$

It suffices to prove the $(a+1)$-positivity of

$$
\sum_{j \geq 0} t^{j} W_{j}(a, s)
$$

which is an algebraic (quartic, in fact biquadratic) series.

Loops confined to the upper half-plane

Generating function of general loops:

$$
W(a, s, t)=\sum_{j \geq 0}\binom{2 j}{j} t^{j} W_{j}(a, s)
$$

Loops confined to the upper half-plane

Generating function of general loops:

$$
W(a, s, t)=\sum_{j \geq 0}\binom{2 j}{j} t^{j} W_{j}(a, s)
$$

Proposition

The generating function of half-plane loops is

$$
H(a, s, t)=\sum_{j \geq 0} \frac{1}{j+1}\binom{2 j}{j} t^{j} W_{j}(a, s) .
$$

It is also $(a+1)$-positive, and $H(a, u)$ has the same radius of $W(a, u)$.

Loops confined to the upper half-plane

Generating function of general loops:

$$
W(a, s, t)=\sum_{j \geq 0}\binom{2 j}{j} t^{j} W_{j}(a, s)
$$

Proposition

The generating function of half-plane loops is

$$
H(a, s, t)=\sum_{j \geq 0} \frac{1}{j+1}\binom{2 j}{j} t^{j} W_{j}(a, s) .
$$

It is also $(a+1)$-positive, and $H(a, u)$ has the same radius of $W(a, u)$.
Remark: the exponent is -2 , except at $a=-1 / 2$ where it is $-7 / 4$.

Final remarks

- Prove the conjectures!
- Combinatorial proofs for the $(a+1)$-positivity, for the values at $a=-1 \ldots$
- Nature of the series $S(t)$ and $Q(a, u)$
- More detailed asymptotics of $\left[t^{n}\right] S(t)$ (sub-exponential terms?)
- Other sorting machines: the deque (double-ended queue), 3 parallel stacks...

