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Three main results
Characterization: σ is sortable iff it does not contain a sub-sequence
σiσjσk of shape 231 (that is, with σk < σi < σj)
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Decidability: in linear time (all operations are forced)
Enumeration?
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Two equivalent viewpoints: sort, or produce

Lemma: If σ is sorted by an operation sequence w ∈ {I ,O}∗, then w ,
applied to the identity, produces σ−1 (which is said to be realizable).

1 2 · · · n w←− σ1σ2 · · ·σn

σ−1
1 σ−1

2 · · ·σ−1
n

w←− 1 2 · · · n

⇒ Enumeration by Catalan numbers:

Cn :=
1

n + 1

(
2n
n

)



Two equivalent viewpoints: sort, or produce

Lemma: If σ is sorted by an operation sequence w ∈ {I ,O}∗, then w ,
applied to the identity, produces σ−1 (which is said to be realizable).

Consequence: it is equivalent to count
sortable permutations
realizable permutations
operation sequences on {I ,O}∗

discrete excursions
arch systems

⇒ Enumeration by Catalan numbers:

Cn :=
1

n + 1

(
2n
n

)



Two equivalent viewpoints: sort, or produce

Lemma: If σ is sorted by an operation sequence w ∈ {I ,O}∗, then w ,
applied to the identity, produces σ−1 (which is said to be realizable).

Consequence: it is equivalent to count
sortable permutations
realizable permutations
operation sequences on {I ,O}∗

discrete excursions
arch systems

⇒ Enumeration by Catalan numbers:

Cn :=
1

n + 1

(
2n
n

)



Two equivalent viewpoints: sort, or produce

Lemma: If σ is sorted by an operation sequence w ∈ {I ,O}∗, then w ,
applied to the identity, produces σ−1 (which is said to be realizable).

Consequence: it is equivalent to count
sortable permutations
realizable permutations
operation sequences on {I ,O}∗

discrete excursions
arch systems

OI I O O I

⇒ Enumeration by Catalan numbers:

Cn :=
1

n + 1

(
2n
n

)



Two equivalent viewpoints: sort, or produce

Lemma: If σ is sorted by an operation sequence w ∈ {I ,O}∗, then w ,
applied to the identity, produces σ−1 (which is said to be realizable).

Consequence: it is equivalent to count
sortable permutations
realizable permutations
operation sequences on {I ,O}∗

discrete excursions
arch systems

OI I O O I

⇒ Enumeration by Catalan numbers:

Cn :=
1

n + 1

(
2n
n

)



Two equivalent viewpoints: sort, or produce

Lemma: If σ is sorted by an operation sequence w ∈ {I ,O}∗, then w ,
applied to the identity, produces σ−1 (which is said to be realizable).

Consequence: it is equivalent to count
sortable permutations
realizable permutations
operation sequences on {I ,O}∗

discrete excursions
arch systems

OI I O O I

⇒ Enumeration by Catalan numbers:

Cn :=
1

n + 1

(
2n
n

)



Networks of machines [Even & Itai, Pratt, Tarjan ' 1970]

More machines



Networks of machines [Even & Itai, Pratt, Tarjan ' 1970]

More machines

a stack a queue a double-ended queue



Networks of machines [Even & Itai, Pratt, Tarjan ' 1970]

More machines



Networks of machines [Even & Itai, Pratt, Tarjan ' 1970]

More machines
Networks of machines

I m queues in series?
I m stacks in series? in parallel?

⇒ Permutations with no descending sub-sequence of length m + 1



Networks of machines [Even & Itai, Pratt, Tarjan ' 1970]

More machines
Networks of machines

I m queues in series?

I m stacks in series? in parallel?

σ1 · · ·σn

⇒ Permutations with no descending sub-sequence of length m + 1



Networks of machines [Even & Itai, Pratt, Tarjan ' 1970]

More machines
Networks of machines

I m queues in series?
I m stacks in series? in parallel?

⇒ Permutations with no descending sub-sequence of length m + 1



II. Two stacks



Two stacks

In parallel:
Characterization: infinitely many forbidden patterns [Pratt 73]
Decidability: in polynomial time [Even & Itai 71]
Enumeration [Albert-MBM 2013]



Two stacks

In parallel:
Characterization: infinitely many forbidden patterns [Pratt 73]
Decidability: in polynomial time [Even & Itai 71]
Enumeration [Albert-MBM 2013]

In series:
Characterization: infinitely many forbidden patterns [Murphy 02]
Decidability: in polynomial time [Pierrot-Rossin 13]
Enumeration: ???



Permutations produced by two parallel stacks

Operation sequences on {I1, I2,O1,O2}

: several may produce the
same permutation!
Define a set of canonical operation sequences, exactly one for each
realizable permutation
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Canonical operation sequences

Proposition
The permutations that can be produced with two parallel stacks are in
bijection with operation sequences such that

there is no factor I1O2 nor I2O1

the first letter (arch) in each connected component is I1 (red).



[...] Enumeration

• Let Q(a, u) be the generating function of arch systems counted by the
number of arches (u) and the number of I1O2 and I2O1 factors (a):

Q(a, u) = 1 + 2u + (8 + 2a)u2 + (44 + 24a + 2a2)u3 + O(u4).
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with S• ≡ S•(t) the unique solution of

Q
(
−S•,
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(1 + S•)2

)
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.



III. Arch systems, operation sequences
and quarter plane walks



• A one-colour operation sequence is a walk from 0 to 0 on the half-line N
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• A bi-coloured operation sequence is a walk from (0, 0) to (0, 0) (also
called loop) in the quadrant N2

• Can we determine

Q(a, u) =
∑
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u|w |/2 acorners(w) ?
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Consider all quarter plane walks (starting from (0, 0))

• Generating function Q(a, u; x , y) ≡ Q(x , y), where u counts steps, a
corners, and x , y the coordinates of the endpoint:

Q(a, u; x , y) = 1 + (x + y)u + (2 + xy + x2 + y2)u2

+
(
(a + 4)(x + y) + 3x2y + 3xy2 + x3 + y3) u3 + O(u4).

• Recursive construction

a
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Functional equation for quadrant walks

• Generating function Q(a, u; x , y) ≡ Q(x , y) of all quadrant walks:

(1− u(x + x̄ + y + ȳ)− u2(a − 1)(xȳ + y x̄))Q(x , y) =

1− uȳ(1 + ux(a − 1))Q(x , 0)− ux̄(1 + uy(a − 1))Q(0, y)

with x̄ = 1/x and ȳ = 1/y .

• Loops in the quadrant:

Q(a, u) = Q(a,
√

u; 0, 0)

⇒ Compute the first coefficients of Q(a, u)... and discover and test
conjectures



The enumeration problem is solved

All walks in the quadrant: Q(a, u; x , y) ≡ Q(x , y) with

(1− u(x + x̄ + y + ȳ)− u2(a − 1)(xȳ + y x̄))Q(x , y) =

1− uȳ(1 + ux(a − 1))Q(x , 0)− ux̄(1 + uy(a − 1))Q(0, y)

Loops in the quadrant:

Q(a, u) = Q(a,
√

u; 0, 0)

Sortable permutations:

S(t) =
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.



Did you say “solved”?

What it the asymptotic behaviour of the number sn of sortable
permutations of length n?

sn = [tn]S(t)

What is the nature of the generating function S(t)? is it algebraic,
D-finite, D-algebraic?
What is the nature of the generating function Q(a, u)?



Did you say “solved”?

What it the asymptotic behaviour of the number sn of sortable
permutations of length n?

sn = [tn]S(t)

What is the nature of the generating function S(t)? is it algebraic,
D-finite, D-algebraic?
What is the nature of the generating function Q(a, u)?



Did you say “solved”?

What it the asymptotic behaviour of the number sn of sortable
permutations of length n?

sn = [tn]S(t)

What is the nature of the generating function S(t)? is it algebraic,
D-finite, D-algebraic?
What is the nature of the generating function Q(a, u)?



Asymptotics: the main source of difficulty

• Generating function of quarter plane loops:

Q(a, u) =
∑

w loop

u|w |/2 acorners(w) ∈ N[a][[u]]

• Characterization of S(t) = 1/(1− S•(t)):

Q
(
−S•,

t
(1 + S•)2

)
=

1 + S•

1− S•
.

⇒ To find the first positive singularity tc of S• (that is, its radius) we
must explore the singularities of Q(a, u) when a < 0.



Conjecture 1: (a + 1)-Positivity

Conjecture
The generating function of quarter plane loops is (a + 1)-positive :

Q(a, u) =
∑
n≥0

unpn(a + 1)

with pn(b) ∈ N[b].

Refinement
• One can count separately vertical and horizontal steps:

Q(a, s, t) =
∑
i ,j≥0

s i t jpi ,j(a + 1)

• True up to n = 200.



The general picture: what happens on [0, tc ]

Let ρQ(a) be the radius of convergence of u 7→ Q(a, u) (a non-increasing
function of a ≥ −1).

Q
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Conjecture 2: The radius of convergence of Q(a, ·)

Conjecture
For a ≥ −1, the radius of Q(a, ·) is

ρQ(a) =


1

(2 +
√
2 + 2a)2

if a ≥ −1/2,

− a
2(1− a)2 if a ∈ [−1,−1/2] 0.06

0.08

0.1

0.12

–1 –0.5 0 0.5 1 1.5 2

a

• In particular: ρQ(1) = 1/16 and ρQ(−1) = 1/8

• Allows us to estimate tc ∼ 0.12, so that s1/n
n → 8.2 . . .



Conjecture 3: The growth of the coefficients of Q(a, u)

Conjecture

The series Q ′2(a, u) := ∂Q
∂u (a, u) is convergent at u = ρQ(a) for a ≥ −1/3.

• Expected:

qn(a) := [un]Q(a, u) ∼ ρQ(a)−nnγ(a)

with γ(a) < −2 for a > −1/3.
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IV. What we know about Q(a, u)

a

a

a

Q(a, u) =
∑

w loop

u|w |/2 acorners(w)



A functional equation for Q(a, u; x , y) ≡ Q(x , y)

The generating function Q(a, u; x , y) ≡ Q(x , y) of all quadrant walks,
counted by the length (u), the number of corners (a) and the coordinates
of the endpoint (x , y) satisfies:

(1− u(x + x̄ + y + ȳ)− u2(a − 1)(xȳ + y x̄))Q(x , y) =

1− uȳ(1 + ux(a − 1))Q(x , 0)− ux̄(1 + uy(a − 1))Q(0, y)

Alas... Q(a, u; x , y) is not (a + 1)-positive.



When a = 1

• It’s simple!

Q(1, u) =
∑
i ,j≥0

(
2i + 2j

2i

)
CiCjui+j

• Refinement with the number of → steps (variable s) and ↑ steps
(variable t):

Q(1, s, t) =
∑
i ,j≥0

(
2i + 2j

2i

)
CiCjs i t j .

• Asymptotic behaviour:

[un]Q(1, u) ∼ 16nn−3

so that Conjectures 2 (radius) and 3 (growth of the coefficients) hold.



When a = −1

• Not so simple! But still very nice...

Q(−1, u) =
∑
i ,j≥0

(
i + j

i

)
CiCjui+j

• Refinement with the number of → steps (variable s) and ↑ steps
(variable t):

Q(−1, s, t) =
∑
i ,j≥0

(
i + j

i

)
CiCjs i t j .

• Asymptotic behaviour:

[un]Q(−1, u) ∼ 8nn−3

so that Conjecture 2 (radius) holds.



A lower bound on the radius of Q(a, ·) for a ≥ 0

• Count all NSEW walks by the number of corners and the length:

W(a, u) =
1

1− 4u − 2(a − 1)u2 .

This series has radius
1

2 +
√
2 + 2a

.

• For a ≥ 0, Q(a, u) is dominated (coefficient by coefficient) by
W(a,

√
u), and thus has radius at least

1
(2 +

√
2 + 2a)2

.

Conjecture 2: quarter plane loops have the same exponential growth as
general walks.
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V. More evidence: The case of unconfined loops

a

a

a



(a + 1)-Positivity

Proposition
The generating function of general plane loops is (a + 1)-positive :

W (a, u) =
∑
n≥0

unwn(a + 1)

with wn(b) ∈ N[b].

Refinement
• One can count separately vertical and horizontal steps:

W (a, s, t) =
∑
i ,j≥0

s i t jwi ,j(a + 1)



When a = 1 or a = −1

• The series W (a, s, t) that counts general loops satisfies

W (1, s, t) =
∑
i ,j≥0

(
2i + 2j

2i

)(
2i
i

)(
2j
j

)
s i t j

and

W (−1, s, t) =
∑
i ,j≥0

(
i + j

i

)(
2i
i

)(
2j
j

)
s i t j

• Combinatorial explanation when a = −1?
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The radius of convergence of W (a, ·)

Proposition
For a ≥ −1, the radius of W (a, ·) is

ρW (a) =


1

(2 +
√
2 + 2a)2

if a ≥ −1/2,

− a
2(1− a)2 if a ∈ [−1,−1/2].



The exponent for general loops

Proposition
For a ≥ −1,

wn(a) := [un]W (a, u) ∼ ρW (a)−nn−1

except when a = −1/2 where the exponent is −3/4.



What makes unconfined loops easier?

Their generating function is the constant term in a rational series:

W (a, s2, t2) = [x0y0]
1

1− s (x + x̄)− t(y + ȳ)− st (a − 1) (xȳ + x̄y)
.

Let v be a vertical 1D loop of length 2j . The generating function of
loops that project vertically on v only depends on j .

⇒W (a, s, t) =
∑
j≥0

(
2j
j

)
t jWj(a, s)

It suffices to prove the (a + 1)-positivity of∑
j≥0

t jWj(a, s),

which is an algebraic (quartic, in fact biquadratic) series.
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Loops confined to the upper half-plane

Generating function of general loops:

W (a, s, t) =
∑
j≥0

(
2j
j

)
t jWj(a, s)

Proposition
The generating function of half-plane loops is

H(a, s, t) =
∑
j≥0

1
j + 1

(
2j
j

)
t jWj(a, s).

It is also (a + 1)-positive, and H(a, u) has the same radius of W (a, u).

Remark: the exponent is −2, except at a = −1/2 where it is −7/4.
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Final remarks

Prove the conjectures!
Combinatorial proofs for the (a + 1)-positivity, for the values at
a = −1...
Nature of the series S(t) and Q(a, u)

More detailed asymptotics of [tn]S(t) (sub-exponential terms?)
Other sorting machines: the deque (double-ended queue), 3 parallel
stacks...




