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We have a physical system. We suppose the dynamic of that system follows a model that is
linear to it’s parameters. That means there exists a list of functions ϕ0(t), ϕ1(t), ϕ2(t), · · ·, ϕk(t)
depending of the time t and a list of reals α1, α2, · · ·, αk such that we have the following equality :

ϕ0(t) = α1 × ϕ1(t) + α2 × ϕ2(t) + α3 × ϕ3(t) + · · ·+ αk × ϕk(t). (1)

Suppose now, we can make some experiments to obtain, for different times t the values of ϕ0(t),
ϕ1(t), ϕ2(t), · · ·, ϕk(t).

In this document, we learn to compute, from our data, the parameters α = (α1, α2, · · · , αk)
that fit our data. We means, by fitting our data, that the error we make between our model and
the experiments are the smallest possible according to some criteria we will define later.

For example, suppose that w1, w2, w3 are linear velocities. A linear model according to the
parameters α1, α2 and α3 could be :

√
w3. exp t = α1 × t.w2

1 + α2 × w1.w2 + α3 × cos(3.w2.t).

In that example, we can define ϕ0(t) =
√
w3. exp t, ϕ1(t) = t.w2

1, ϕ2(t) = w1.w2 and ϕ3(t) =
cos(3.w2.t) to obtain

ϕ0(t) = α1 × ϕ1(t) + α2 × ϕ2(t) + α3 × ϕ3(t).

Suppose, we obtain the data set of the Table 1:

id No. exp. date t w1 w2 w3

0 1 01/01 0 0.1 0.5 0.3658
1 1 01/01 1 0.4 0.2 1.1444
2 1 01/01 2 0.8 0.6 10.1610
3 1 01/01 3 0.5 0.4 0.3676
4 2 02/01 0 0.2 0.6 4.8159
5 2 02/01 1 0.5 0.3 4.0255
6 2 02/01 2 0.7 0.7 7.7276
7 2 02/01 3 0.4 0.3 0.1518

Table 1: The measures of two experiments.

We can compute the different values of ϕ0, ϕ1, ϕ2 and ϕ3 for our data set :

id ϕ0(t) =
√
w3 exp t ϕ1(t) = tw2

1 ϕ2(t) = w1w2 ϕ3(t) = cos(3w2t)
0 0.60481402 0. 0.05 1.
1 2.90792637 0.16 0.08 0.82533561
2 23.55359426 1.28 0.48 -0.89675842
3 12.17786617 0.75 0.2 -0.89675842
4 2.19451589 0. 0.12 1.
5 5.45386517 0.25 0.15 0.62160997
6 20.54051275 0.98 0.49 -0.49026082
7 7.82563038 0.48 0.12 -0.90407214

Table 2: The values of ϕ0, ϕ1, ϕ2 and ϕ3
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We want now to estimate the better parameter α =

 α1

α2

α3

 in order to fit the model to the

data set.
The idea is to write equation 1 by using the matrix formalism :

(
ϕ0(t)

)
=

(
ϕ1(t) ϕ2(t) · · · ϕk(t)

)
×


α1

α1

· · ·
αk

 .

In our example, we obtain :

( √
w3. exp t

)
=

(
t.w2

1 w1.w2 cos(3.w2.t)
)
×

 α1

α1

α3


If we define by b(t) =

( √
w3. exp t

)
and by a(t) =

(
t.w2

1 w1.w2 cos(3.w2.t)
)
, we obtain

the following equation:
b(t) = a(t)× α. (2)

In fact [b(t), a(t)] is one row of Table 2. So we can concatenate each row of our data set to
obtain the following matrix definitions :

B =


b(t1)
b(t2)
b(t3)
· · ·

b(tN )

 A =


a(t1)
a(t2)
a(t3)
· · ·

a(tN )

 .

For example, in the previous example, the matrix B is the first column of the Table 2, and the
matrix A contains the 3 last columns :

B =



0.60481402
2.90792637
23.55359426
12.17786617
2.19451589
5.45386517
20.54051275
7.82563038


A =



0. 0.05 1.
0.16 0.08 0.82533561
1.28 0.48 −0.89675842
0.75 0.2 −0.89675842
0. 0.12 1.
0.25 0.15 0.62160997
0.98 0.49 −0.49026082
0.48 0.12 −0.90407214


Now, from equation 2 we obtain the following general identity :

B = A× α.

In fact, the model is not perfect, and we made some errors during the experiments. So we have
:

B = A× α+ ϵ. (3)

where ϵ is the error vector.
So now, the problem consists in finding the parameter α that minimizes the error vector ϵ.

More precisely, we want to find the parameter α that minimizes the square error ||ϵ||2 =
∑

i ϵ
2
i .

We will prove, at the end of that document, the solution of that problem is :

α =
(
At ·A

)−1 ·At ·B. (4)

where At in the transposition of the matrix A.
For example, in our problem :

AT =

 0. 0.16 1.28 0.75 0. 0.25 0.98 0.48
0.05 0.08 0.48 0.2 0.12 0.15 0.49 0.12
1. 0.825 −0.896 −0.896 1. 0.621 −0.490 −0.904

 ,
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At ·A =

 3.4798 1.3525 −2.44737363
1.3525 0.5707 −0.62924384

2.44737363 −0.62924384 5.73363126


and (

At.A
)−1

=

 10.73850093 −23.20290054 2.03725027
−23.20290054 52.12843577 −4.18315528
2.03725027 −4.18315528 0.58491517


We deduce that, the best parameter of our model is given by

α =
(
9.90646281 21.72126782 −0.46834528

)t
.

The error me make with the model is :

ϵt = (A · α−B)t =
(
0.012 0.028 −0.027 0.016 −0.056 −0.010 0.040 −0.040

)
and the square root error is : ||ϵ|| = 0.0924.

We will prove now that, the solution of our problem is :

α =
(
At ·A

)−1 ·At ·B.

We want to minimize the squared error :

L = ||ϵ||2 =
∑
i

ϵ2i .

As L ≥ 0 there exists a minimum. This minimum is reached when, the derivative of L according
to the parameters αi are equal to 0 :

∂L

∂αi
= 0.

Let ∇αL be the gradient of L defined by :

∇αL =


∂L
∂α1
∂L
∂α2

· · ·
∂L
∂αk

.

 .

If L is minimum then its gradient is null :

∃αmin,∀α, L(α) ≥ L(αmin) =⇒ ∇αL(αmin) = 0.

We will now determine αmin the solution of our problem by computing ∇αL :

∇αL = ∇αϵ
tϵ = ∇α(B −Aα)t(B −Aα) = ∇α(B

t − αtAt)(B −Aα);
= ∇αB

tB −∇αB
tAα−∇αα

tAtB +∇αα
tAtAα.

As BtB is a constant, we have ∇αB
tB = 0.

Let’s define the vector ei in Rk as a vector where each row contains a zero, except for row i, which
contains a 1. Now, we can compute ∂BtAα

∂αi
= BtAei and deduce that : ∇αB

tAα = (BtA)t = AtB.

Similarly, we can express, ∂αtAtB
∂αi

= etiA
tB and obtain : ∇αα

tAtB = AtB.
Finally, by using the Leibniz rule,

∇αα
tAtAα = ∇ββ

tAtAα+∇βα
tAtAβ

∣∣
β→α

= AtAα+ (αtAtA)t = 2AtAα,

and we obtain that
∇αL(αmin) = −2AtB + 2AtAαmin = 0.

We conclude that :
αmin =

(
AtA

)−1
AtB.
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