Tutorial 1 - Stacks and Queues

Exercise 1: Implementation of a stack and a queue
Give an implementation of a stack and of a queue by writing the following functions :

def create stack ():
return a new empty stack.
def push(P, e):
Push the element ‘e’ in the stack ’P’.
def pop(P):
Pop an element of the stack ’P’ and return that element.
def size of stack(P):
return the number of elements inside the stack ’P’.
def display stack(P):
display on the terminal the stack P’ as a list.
def create queue ():
return a new empty queue.
def enqueue(F, e):
Enqueue the element ‘e’ in the queue ’'F .
def dequeue(F):
Dequeue an element of the queue ’'F’ and return that element.
def size of queue(F):
return the number of elements inside the queue ’F’.
def display queue(F):
display on the terminal the queue 'F’ as a list.

Draw the contents of the stack and the queue during the execution of the following pro-
grams. Give the content displayed by the terminal.

stack = create stack ()
push(stack, 1)
push(stack, 2)
push(stack, 3)

print (size of stack(stack))
print (pop(stack))
print (pop(stack))
print (pop(stack))
queue = create queue ()

enqueue (queue, 1)
enqueue(queue, 2)

enqueue (queue, 3)

print (
print (
print (
print (

size _of queue(queue))
dequeue(queue))
dequeue(queue))
dequeue(queue))

Exercise 2
Suppose now, you are not allowed to use python list, python dictionary and python tuples.
Suppose now, you just can use the following primitives :

def create stack()
def push(P, e)

def pop(P)

def size of stack(P)

1) Give

an implementation of queues using only stacks by writing the following primitives :

def
def
def
def

create queue ()

enqueue(F, e)

dequeue(F)

size_of queue queue(F)

2) Give

an implementation of array using only the previous primitives. You will implement

the following functions :

def

def

def

def

def

create array ():

Create and return a new empty array.

insert _element(T, id, e):

Insert a new element ’e’ at index ’itd’ in the array T’ .
The size of the array should increase by 1.

delete element(T, id):

Delete an element at indexr ’id’ of the array T’ .

The size of the array should decrease by 1.

replace element(T, id, e):

Replace the element at index ’id’ of 'T’ by the element ’e
The size of the array should not change.

get element(T, id):

Return the element at index ’id’ of the array.

7

3) Give

an implementation of dictionaries using the previous primitives. You will write the

following functions :

def

def

create dictionary ():
Create and return a dictionary

insert association(D, key, value):
Add a new association (’key’,’value’) in the dictionary ’D’.
If there exists an association (’key’, ’wvaluel ’) in ’'D’, the

this association should be replaced by (’key’, value ’).

def delete association(D, key):

Delete the association of ’D’ whose key is ’key ’ .
def in_dictionary(D, key):

Return true is ’key’ is a key of the dictionary ’D’.
def get value(D, key):

Return the value associated with ’key’ in ’'D’.

Exercise 3

Suppose now, the function size_of_stack(P) is not available. That means you just have
access to the following function :

def create stack()
def push(P, e)
def pop(P)

Make again the questions 1, 2 and 3 of the exercise 2 with that new constraint.

