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Multiscale analysis of similarities between images on Riemannian manifolds

Purpose: to compare two images or two videos
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Inpainting

Exemplar-Based Methods, [P. Arias, ...]

• Underlying assumption: image self-similarity.

• Image Patches as basic units of information
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Plan of the talk

Plan

• Problem statement and axiomatic approach.

• Basic set of axioms.

• General classification.

• Linear case: the scale spaces are given by multiples of the
Laplace-Beltrami flow.

• Case of morphological scale spaces: they are given in terms of
geometric equations.

• Some experiments.



Multiscale analysis of similarities between images on Riemannian manifolds

• Purpose: to compare images (or videos) by computing the
similarity of patches defined on the images (or on the videos).

• We will consider images defined on Riemannian manifolds, and we will
define a multiscale comparison of the images defined on
Riemannian manifolds.

Image source: [V. Caselles & L. Igual & O. Sander, An Axiomatic Approach to Scalar Data Interpolation on Surfaces, 2006]



Multiscale analysis of similarities between images on Riemannian manifolds

• Purpose: to compare images (or videos) by computing the
similarity of patches defined on the images (or on the videos).

• We will consider images defined on Riemannian manifolds, and we will
define a multiscale comparison of the images defined on
Riemannian manifolds.

Image source: [V. Caselles & L. Igual & O. Sander, An Axiomatic Approach to Scalar Data Interpolation on Surfaces, 2006]



Multiscale analysis of similarities between images on Riemannian manifolds

• Purpose: to compare images (or videos) by computing the
similarity of patches defined on the images (or on the videos).

• We will consider images defined on Riemannian manifolds, and we will
define a multiscale comparison of the images defined on
Riemannian manifolds.

Image source: [V. Caselles & L. Igual & O. Sander, An Axiomatic Approach to Scalar Data Interpolation on Surfaces, 2006]



Multiscale analysis of similarities between images on Riemannian manifolds

• Purpose: to compare images (or videos) by computing the
similarity of patches defined on the images (or on the videos).

• We will consider images defined on Riemannian manifolds, and we will
define a multiscale comparison of the images defined on
Riemannian manifolds.



Multiscale analysis of similarities between images on Riemannian manifolds

• We will define multiscale comparison measures in the case of images
defined on Riemannian manifolds.

• We will follow an axiomatic approach.

• Our approach can be considered as a nonlocal extension (comparing
two points) of the multiscale analyses defined using the axiomatic
approach in
- Alvarez, L. and Guichard, F. and Lions, P.L. and Morel, J.M., Axioms
and fundamental equations of image processing, 1993.



Multiscale analysis
• A multiscale analysis represents a given image at different scales of
smoothing, the scale being related to the size of the neighborhood which
is used to give an estimate of the brightness of the picture at a given
point. It is a basic preprocessing step for shape recognition [Lowe, 2004],
[Guichard-Morel, 2001], [Cao-Lisani-Morel-Musé-Sur, 2008],...

• The systematic study of multiscale analyses for images was the purpose
of the axiomatic approach proposed in [Alvarez-Guichard-Lions-Morel,
1993].

• Based on a series of axioms which define the structure of the multiscale
space and a set of geometric and photometric invariants, multiscale
analyses were defined in terms of (viscosity) solutions of a parabolic
equation.

• Linear multiscale analysis: Gaussian scale space. Classification covers:

Perona-Malik equation, the Rudin-Osher-Fatemi’s model, the mean curvature

motion. Morphological scale spaces: given in terms of geometric equations that

diffuse the level sets of the image with functions of their principal curvatures.



Multiscale analysis for image comparison

• Our purpose is extend the axiomatic approach to define multiscale
comparison measures in the case of images defined on Riemannian
manifolds, which can be defined by the image domain with a suitable
metric depending on the image (e.g., the image plane endowed with an
anisotropic metric, like the structure tensor [Weickert,1998], [Brox et
al,2006], [Peyré,2009]).

• There will appear a large family of possibilities, derived from the axiomatic

approach.

• The set of axioms will include architectural axioms and comparison principle that
permit to define multiscale analyses as solutions of a degenerate parabolic PDE.

• The inclusion of geometric invariances will be subsumed under the requirement of

intrinsic definition of the multiscale analysis, independent of the parameterization of

the manifold. This essentially restricts the invariances to rotation invariance in the

tangent plane.



Multiscale analysis of similarities between images on Riemannian manifolds

• From the mathematical point of view, the basic ingredients are the
papers

1. Alvarez, L. and Guichard, F. and Lions, P.L. and Morel, J.M., Axioms and
fundamental equations of image processing, 1993.

2. Caselles, V. and Morel, J.M. and Sbert, C., An axiomatic approach to
image interpolation, 1998.

3. Caselles, V. and Igual, L. and Sander, O., An axiomatic approach to scalar
data interpolation on surfaces, 2006.

4. Calderero, F. and Caselles, V., Multiscale Analysis for Images on
Riemannian Manifolds, SIAM J. Imaging Sciences 2013 (in press).

• Actually, some of the results were proved in [1] for multiscale analysis on
images and extended to images on Riemannian manifolds in [4].



Multiscale analysis for image comparison

Basic idea: Given two images u and v defined in their respective image
domains (assume R2 or RN), we want to compare their neighborhoods at
the points x , y ∈ R2, respectively.
The most simple way to compare them would be to compare the two
neighborhoods of x , y using the Euclidean distance. That is

C(t, x , y) =

∫
RN

gt(h)(u(x + h)− v(y + h))2 dh, (1)

where gt is a given window that we assume to be Gaussian of variance t.

This formula gives a simple explicit comparison between the
neighborhoods of x , y and assumes that the image domain is the
Euclidean plane.

Let us note at this point that we could have also used the integral of
u(x + h)v(y + h) as a comparison measure.



Multiscale analysis for image comparison
• In the case of multiscale measures between images defined on Riemannian
manifolds, there will appear a large family of possibilities, derived from the
axiomatic approach (expressed in terms of solutions of a degenerate parabolic
PDE). An (early) example of linear multiscale analysis of similarity measure
is the model

Ct = Tr(G1(x)−1D2
xC)+2Tr(G1(x)−1/2G2(x)−1/2D2

xyC)+Tr(G2(y)−1D2
yC), (2)

where Mi = (RN ,Gi (x)), i = 1, 2 are two Riemannian manifolds associated to
two images u, v , and x ∈M1, y ∈M2.

• In particular, if we assume that the metrics are constant in both images, then
the model becomes

Ct = Trace(AtAD2
xC) + 2Trace(AB tDxyC) + Trace(B tBD2

yC). (3)

where A,B are two square matrices. The multiscale similarilarity measure

C(t, x , y) =

∫
RN

gt(h)C(0, x + Ah, y + Bh) dh,

between the patches centered at x and y , where gt is the Gaussian of scale

t, and C(0, x , y) = (u(x)− v(y))2, satisfies equation (3).



Multiscale analysis for image comparison

Remark The Euclidean comparison measure

C(t, x , y) =

∫
RN

gt(h)(u(x + h)− v(y + h))2 dh, (4)

is not an exception: it solves the equation

Ct = ∆xC + 2Trace(D2
xyC) + ∆yC, (5)

which is possibly the simplest case of linear PDE expressing the
multiscale comparison of two image patches.



Some notation and definitions

• Let (N , h) be a smooth Riemannian manifold in RN+1.

• Particular case: N = RN (or a domain in RN) endowed with a general
metric hij .

• Given a point η ∈ N , we denote by TηN the tangent space to N at
the point η. By T ∗ηN we denote its dual space.

• Rotations in the tangent space Let us define a rotation
R : TηN → TηN as a linear map that satisfies

〈Rv ,Rw〉 = 〈v ,w〉 ∀v ,w ∈ TηN .

Notice that rotations satisfy R tHR = H.

• We will consider the manifold N =M1 ×M2.



Some notation and definitions

• The manifold N =M1 ×M2.
Let (Mi , g i ) be a smooth Riemannian manifold with metric g i , i = 1, 2.
Let Γ(i) be the connection (or Christoffel symbols) on Mi . We shall work
here with a manifold N =M1 ×M2 with the metric h = g 1 × g 2, so
that TξN = Tξ1M1 × Tξ2M2, ξ = (ξ1, ξ2) ∈M1 ×M2. If
(vi ,wi ) ∈ Tξ1M1 × Tξ2M2, ξ = (ξ1, ξ2) ∈M1 ×M2, then we consider
the metric

〈(v1,w1), (v2,w2)〉ξ = 〈v1, v2〉ξ1 +〈w1,w2〉ξ2 = (G 1(ξ1)v1, v2)+(G 2(ξ2)w1,w2).

With a slight abuse of notation, let us write
G (ξ) = diag(G 1(ξ1),G 2(ξ2)).



A priori connections on N =M1 ×M2

Key concept in our results.

Idea: Suppose that both manifolds M1 and M2 coincide with RN

endowed with the Euclidean metric. Let u, v be two given images in RN .
Then it would be standard to use the L2 distance to compare the patches
centered at x and y ,

C(t, x , y) =

∫
RN

gt(h)(u(x + h)− v(y + h))2 dh, (6)

where gt is a given window that we assume to be Gaussian of variance t.
But if the image v is rotated we could also use the L2 distance
between u and a rotated version of v (around y), namely

C(t, x, y) =

∫
RN

gt(h)(u(x + h)− v(y + Rh))2 dh. (7)

We admit that this decision is taken a priori and is done thanks to an
operator that connects the tangent plane at both points.



A priori connections on N =M1 ×M2

Definition. We say that P(ξ), ξ = (ξ1, ξ2) ∈ N , is an a priori
connection map in N if P(ξ) : (Tξ1M1,G 1(ξ1))→ (Tξ2M2,G 2(ξ2)) is
an isometry, i.e.

〈P(ξ)v ,P(ξ)w〉G 2(ξ2) = 〈v ,w〉G 1(ξ1) ∀v ,w ∈ Tξ1M,

and we assume also that the map is differentiable in ξ.

Given an a priori connection P(ξ) : (Tξ1M1,G 1(ξ1))→ (Tξ2M2,G 2(ξ2)), we

can also define its inverse P(ξ)−1 : (Tξ2M2,G 2(ξ2))→ (Tξ1M1,G 1(ξ1)).



A priori connections on N =M1 ×M2

• Case M1 =M2 =M (orientable). We can consider P(ξ) as an
internal a priori connection (into itself) given from parallel transport
between ξ1 and ξ2, which is an isometry.

• In coordinates, P(ξ) expresses the a priori connection in the coordinate
system ψ1 → ψ2. The isometry property can be written as

(P(ξ)tG 2(ξ2)P(ξ)v ,w) = (G 1(ξ1)v ,w),

where P(ξ) is expressed in the basis of Tξ1M1 associated to the metric
G 1(ξ1) and the basis of Tξ2M2 associated to the metric G 2(ξ2). Then

P(ξ)tG 2(ξ2)P(ξ) = G 1(ξ1). (8)



A priori connections on N =M1 ×M2

In another coordinate system:

If P(ξ) is an a priori connection in the coordinate system ψ1 → ψ2

then
P(ξ) := B

G 2,G
2 (ξ2)−1P(ξ)B

G 1,G
1 (ξ1), (9)

is an a priori connection in the coordinate system ψ1 → ψ2.

where ψ = (ψ1, ψ2) is another coordinate system around ξ,

G i (ξi ),G
i
(ξi ), i = 1, 2, be the metric matrices represented in the

coordinate system ψi , ψi , respectively, B
G i ,G

i (ξi ) = D(ψ−1
i ◦ ψi )(0),

i = 1, 2, and BG ,G (ξ) = (B
G 1,G

1 (ξ1),B
G 2,G

2 (ξ2)).

Definition
We say that the coordinate systems ψ,ψ are P(ξ)-related if P(ξ) is
defined by (9).



(Last) notations

• Related germs of functions on N =M1 ×M2. Let Cb(N ) denote the
space of bounded continuous functions in N with the maximum norm. We
think of Cb(N ) as the space of similarity functions on N =M1 ×M2.
We denote by C∞b (N ) the space of infinitely differentiable functions on N .
Let C ∈ Cb(N ). Let us denote
(C , ψ)(x , y) = C(ψ1(x), ψ2(y)), ∀(x , y) ∈ U1 × U2.

• Gradient and Hessian.
We denote by SMξ(N ) the set of symmetric matrices of size 2N × 2N in
N =M1 ×M2. In coordinates, we denote DNC = (DxC ,DyC),

D2
NC =

(
DN ,xxC DN ,xyC
DN ,xyC DN ,yyC

)
.

In coordinates, with i , j , k ∈ {1, . . . ,N},

D2
NC =

(
∂2C
∂x i∂x j

∂2C
∂x i∂y j

∂2C
∂y j∂x i

∂2C
∂y i∂y j

)
−

(
Γ(1)k(x) ∂C

∂xk
0

0 Γ(2)k(y) ∂C
∂yk

)
.

Q((κ)) := {C ∈ C∞b (N ) : ‖DαC‖∞ ≤ κn ∀n ≥ 0 ∀|α| ≤ n}, where (κ) := κn be an increasing sequence of

non-negative constants.



Axioms. Architectural axioms

[Recursivity] T0(C ) = C , Ts(TtC ) = Ts+tC , ∀s, t ≥ 0, ∀C ∈ Cb(N ).

The recursivity axiom is a strong version of causality which implies that
the similarity measure at a coarser scale can be deduced from a finer one,
which is a natural property in image analysis and a sound hypothesis in
human vision [Alvarez-Guichard-Lions-Morel], [...].



Architectural axioms

[Infinitesimal generator] Th(C ,ψ)(ξ)−(C ,ψ)(ξ)
h

→ (A(C), ψ) as h→ 0+ for any
C ∈ C∞b (N ) and any coordinate system ψ = (ψ1, ψ2) around ξ. We assume that

Tt(R(C , ψ))(ξ) = R(Tt(C), ψ)(ξ) + o(t) = Tt(C)(ξ) + o(t) as t → 0+

for any C ∈ Cb(N ), any coordinate system ψ = (ψ1, ψ2), and any R which are
P-related rotations (i.e., ). We have denoted by R(C , ψ) the function in the
coordinate system ψ which is P(ξ)-related (or R-related) to ψ.

It can be shown A(R(C , ψ))(0) = RA(C , ψ)(0) = A(C , ψ)(0)
for any C ∈ Cb(N ), any coordinate system ψ = (ψ1, ψ2), and any R P-related
rotations.

Remark. It can be shown that the Infinitesimal generator axiom contains the

invariance with respect to diagonal rotations in the tangent plane of M1 ×M2.

When (Mi ,G i ) = (M,G) = (RN , I ) it amounts to invariance with respect to

Euclidean diagonal rotations in R2N . That is, Tt(RC) = RTt(C) ∀t ≥ 0,

∀C ∈ C∞b (RN × RN), ∀R ∈ O(N) (Euclidean rotations in RN) where

RC(x , y) = C(Rx ,Ry).



Architectural axioms

[Regularity axiom] ‖Tt(C + hC̃ )− (Tt(C ) + hC̃ )‖∞ ≤ Mht
∀h, t ∈ [0, 1], ∀C , C̃ ∈ Q((κ)) where the constant M depends on Q((κ)).

[Locality] Tt(C )(x)− Tt(C̃ )(x) = o(t) as t → 0+, x ∈ RN ,
∀C , C̃ ∈ Cb(N ) such that DαC (x) = DαC̃ (x) for all multiindices α.



Comparison principle

[Comparison principle] TtC ≤ Tt C̃ ∀t ≥ 0 and all C , C̃ ∈ C∞b (N ) such

that C ≤ C̃ .

The comparison principle is an order-preserving property. It means that if
a similarity measure is always smaller than another, then applying a
multiscale analysis does not invert this relation. Intuitively, the multiscale
analysis produces low resolution versions of the similarity measures, which
should be consistent with the initial ones [Alvarez-Guichard-Lions-Morel],
[...].



Morphological axioms

[Gray level shift invariance] Tt(0) = 0, Tt(C + κ) = Tt(C ) + κ
∀t ≥ 0, ∀C ∈ C∞b (N ), ∀κ ∈ R.

[Gray scale invariance] Tt(f (C )) = f (Tt(C )) ∀t ≥ 0, ∀C ∈ C∞b (N ),
and for any strictly increasing function f : R→ R.

• The inclusion of geometric invariances will be subsumed under the
requirement of intrinsic definition of the multiscale analysis, independent
of the parameterization of the manifold. This essentially restricts the
invariances to rotation invariance in the tangent plane. The consideration
of other geometric invariance (translation or rotation) will be discussed as
a separate chapter for images defined in RN , out of the general
classification.



Multiscale analysis of image similarity measures

Theorem
Let Tt be a multiscale analysis satisfying the Recursivity, Infinitesimal
generator and Regularity axioms. Then A(Cr )→ A(C ) in Cb(N ) if
Cr ,C ∈ C∞b (N ) and DαCr → DαC in Cb(N ) for all α with |α| ≥ 0.

The proof follows the same lines of the corresponding result in

[Alvarez-Guichard-Lions-Morel,1993], and also the same result for manifolds in

[Calderero-Caselles, 2013].



Multiscale analysis of image similarity measures

Theorem
Let Tt be a multiscale analysis satisfying all Architectural axioms, and
the Comparison principle. Then there exists a function
F : SMξ(N )× T ∗ξN × R×N → R increasing with respect to its first
argument such that

Tt(C , ψ)− (C , ψ)

t
→ F (D2(C◦ψ)(0),D(C◦ψ)(0),C (ξ), ξ,G , Γk) in Cb(N ) as t → 0+,

for all C ∈ C∞b (N ), ψ being a coordinate system around ξ ∈ N . The
function F is continuous in its first three arguments.
If we assume that Tt is gray level shift invariant, then the function F
does not depend on C .

(We have denoted G = (G1,G2) and Γ = Γ(1) ⊗ Γ(2). We did not denote explicitly the

arguments for G , Γk . The first argument in F is a symmetric map from TξN to

T∗ξN .)



Multiscale analysis of image similarity measures

Lemma
Let ξ ∈ N , and ψ : U → N be a coordinate system around ξ. Let G , Γk be the
metric coefficients and the Christoffel symbols of N in the coordinate system ψ
at the point ξ. Let A1,A2 : TξN → T ∗ξN be two matrices such that A1,A2 are
symmetric, p ∈ T ∗ξN , c ∈ R. If A1 ≤ A2, then

F (A1, p, c, ξ,G , Γ
k) ≤ F (A2, p, c, ξ,G , Γ

k).

Thus F is elliptic.

Theorem
Let Tt be a multiscale analysis satisfying the all Architectural axioms,
the Comparison principle, and Gray level shift invariance. If
C (t, ξ) = TtC (ξ), then C is a viscosity solution of

Ct = F(D2
NC,DC, ξ,G,Γk), (10)

with C(0, ξ) = C(ξ).



Theorem
Let Tt be a multiscale analysis on N satisfying the Architectural axioms and
the Comparison principle. Let ψ = (ψ1, ψ2) : U = U1 × U2 → N be a
coordinate systems around ξ ∈ N . Let G , Γ be the metric coefficients and the
Christoffel symbols of N in the coordinate system ψ at the point ξ. For any
symmetric matrix X = (Xij) : (TξN , I )→ (T ∗ξN , I ) in SMξ(N , I ),
q ∈ (T ∗ξN , I ), and a ∈ R, let us define the function

H(X , q, a, ξ) = F (X , q, a, ξ, I , 0), (11)

that is, H is the function F obtained when using a geodesic coordinate
system. Then

F (A, p, a, ξ,G , Γk) = H(B t(A− Γ(p))B,B tp, c, ξ) (12)

for any matrix A ∈ SMξ(N ), and any covector p, where BB t = G−1. Moreover
the function H satisfies

H(A′, p′, c, ξ) = H(R tA′R,R tp′, c, ξ). (13)

where A′ : (TξN , I )→ (T ∗ξN , I ) is any matrix in SMξ(N , I ), p′ ∈ (T ∗ξN , I ),
and R is any Euclidean rotation in (TξN , I ) of the form R = diag(R0,R0)
where R0 is an Euclidean rotation in (TξM, I ) .

(It makes explicit the dependence of F in the metric G and the connection Γk ).



Multiscale analysis of image similarity measures

From previous results we obtain the rotation invariance of F (and H) in
the tangent plane:

F (X , p, ξ,G ) = F (R tXR,R tp, ξ,G ),∀diagonal rotations R in (TξN ,G (ξ)),

Diagonal means

R =

(
R1 0
0 R2

)
,

where R1, R2 are related by an a priori connection P.
R1 : (Tξ1M1,G 1(ξ1))→ (Tξ1M1,G 1(ξ1)), and
R2 : (Tξ2M2,G 2(ξ2))→ (Tξ1M2,G 2(ξ2)), with R2P(ξ) = P(ξ)R1.



Multiscale analysis of image similarity measures

Let us assume that M1 =M2 =M (with different metrics). Let us
consider the axiom:

[Axiom of symmetry of the two coordinates] If SC (ξ1, ξ2) = C (ξ2, ξ1),
then Tt(SC ) = STt(C ) ∀t ≥ 0, ∀C ∈ C∞b (M×M).

Lemma
Let Tt be a multiscale analysis satisfying the axioms: all Architectural,
Comparison principle, Gray level Shift invariance, and Symmetry of
the two coordinates invariance. Then F satisfies

F (SAS ,Sp, ξ,SG (ξ), Γk(Sξ)) = F (A, p,Sξ,SG (ξ), Γk(Sξ))

∀A ∈ S(N ), ∀p ∈ N \ {0},∀ξ ∈ N .



The linear case

Lemma
Let M be a Riemannian manifold. Let D be a matrix such that

RDR t = D

for all rotations R in (TηM,G (η)). Then D = λG (η)−1 for some λ ∈ R.



The linear case
Theorem
Let Tt be a multiscale analysis on similarity functions satisfying the
axioms: all Architectural, Comparison principle, and Gray level Shift
invariance. Assume that Tt is linear. Then

Ct = F (D2
NC , ξ,G ),

where

F (X , ξ,G ) = c11(ξ)Tr((G 1)−1(ξ1)X11) + 2c12(ξ,G )Tr(D̄12I 1(ξ1)−1X12)
+c22(ξ)Tr((G 2)−1(ξ2)X22),

where D̄12 is an isometry from (Tξ1M1,G 1(ξ1))→ (Tξ2M2,G 2(ξ2)).
The ellipticity of F implies that c11, c22 ≥ 0.

• the operators cii (ξ)Tr((G i )−1(ξi )Xii ) are multiples of the Laplace-Beltrami
operator.

• This result is equivalent to the one in [Calderero-Caselles] where they prove that
linear scales spaces on M are given by the Laplace-Beltrami operator.

• There are no first order terms in these operators. They cannot couple with
vectors so that we have the invariance induced by the rotations of tangent planes.



The linear case: (1) The case of (Mr, gr(x)) = (RN, gr(x))

To fix ideas consider M1 =M2 =M = RN and g r
ij(x) be general

metrics in RN , r = 1, 2.

We can define P(x , y)(v) = G 2(y)−1/2G 1(x)1/2v , v ∈ RN , as the a priori
connection of x and y .

The PDE obtained is

Ct = a(x , y)∆MxC + 2c12(x , y)Tr(G 2(y)−1/2G 1(x)−1/2DxyC ) + c(x , y)∆MyC ,

where
∆MxC = Tr(G 1(x)−1(Dxxu(x)− Γ(1)(Du)(x))).

Similarly for the operator ∆My .

This will permit to construct also an operator in the case of video.



The linear case: (2) The case of conformal metrics in RN

Let’s take M1 =M2 =M = RN and g r
ij(x) = λr (x)2δij , λ

r (x) > 0 for
x ∈ R.
We define P(x , y)(v) = λ1(x)

λ2(y) v , v ∈ RN , as the a priori connection of x

and y . Then |P(x , y)v |g2 = |v |g1 for all (x , y) ∈ R2N , and

Trg1 (D2
Mxxu(x)) = Tr((G 1)(x)−1D2

Mxxu(x))

=
1√

det(g 1(x))
div

(√
det(g 1(x))(g 1)(x)−1Du(x)

)
= ∆Mxu(x)

which is the Laplace-Beltrami operator.
The computations give that the linear operator on C (t, x , y) can be
written as

Ct = a(x , y)∆MxC + 2
c12(x , y)

λ1(x)λ2(y)
Tr(DxyC ) + c(x , y)∆MyC ,

for functions a(x , y), c12(x , y), c(x , y) so that the operator is elliptic
(that is, if and only if a|v1|2 + 2c12 < v1, v2 > +c |v2|2 ≥ 0 for all v1, v2).



The linear case: (3) The case where (Mr , g) = (RN , I )

Let us consider the case (Mr , g) = (RN , I ). We denote
ξ = (x , y) ∈ RN × RN . We do not subsume this under the general
manifold case, because we can assume a different set of invariances that
permits that the operator has first order terms. Let us consider
translation and rotation invariance:

[Translation invariance:] Tt(τa,bC ) = τa,bTtC ∀t ≥ 0,
∀C ∈ C∞b (RN × RN), ∀a, b ∈ RN where τa,bC (x , y) = C (x + a, y + b).

[Rotation invariance] Tt(RC ) = RTtC ∀t ≥ 0, ∀C ∈ C∞b (RN × RN),
∀R ∈ O(N) where RC (x , y) = C (Rx ,Ry). We have denoted by O(N)
the rotations in RN .



The linear case: (3) The case where (Mr , g) = (RN , I )

Theorem
Let Tt be a multiscale analysis in (RN , I ) satisfying the axioms: all
Architectural, Comparison principle, Gray level Shift invariance, and
Rotation invariance. Assume that Tt is linear. Then

Ct = F (D2C ,DC , z)

where
F (A, v , z) =

2∑
i,j=1

cij(z)TrAij + 〈b(z), p〉,

for some functions cij(z) ∈ R, b(z) ∈ R2N , i , j = 1, 2, such that
cij(R ◦ z) = cij(z), b(R ◦ z) = R ◦ b(z) for all R ∈ O(N) and all z ∈ R2N .
The ellipticity of F implies that (cij(z)) is a positive definite matrix
∀z ∈ R2N .
Moreover, if we assume that Tt is translation invariant, then

F (A, v , z) =
2∑

i,j=1

cijTrAij ,

where cij are constants.



The linear case: (3) The case where (Mr , g) = (RN , I )
Finally, the PDE is

Ct = c11(z)∆xC + 2c12(z)Tr(D2
xyC ) + c22(z)∆yC + 〈b1(z),DxC 〉+ 〈b2(z),DyC 〉.

(14)

An example is
Ct = ∆xC + 2Tr(D2

xyC ) + ∆yC . (15)

Let C(t, x, y) =

∫
RN

gt(z)C(0, x + h, y + h) dh, where gt is the Gaussian

of scale t. Then C (t, x , y) is a solution of (15) with initial condition
C (0, x , y).

• If C (0, x , y) = I (x)J(y), then
C (t, x , y) :=

∫
RN gt(z)I (x + h)J(y + h) dh.

• If C (0, x , y) = (I (x)− J(y))2, then
C (t, x , y) :=

∫
RN gt(z)(I (x + h)− J(y + h))2 dh.

• Another example is C (0, x , y) =
∑N

i=1 Zi (x)Zi (y), where
Z (x) = (Zi (x))Ni=1 is the direction of the gradient of I .



The linear case: (3) The case where (Mr , g) = (RN , I )

Some examples of functions b(z). We can take L1, L2 so that
Li (R ◦ z) = Li (z) for all R ∈ Oz(N). Then

b(z) =

(
L1(z)x
L2(z)y

)
and

b(z) =

(
L1(z)(x − y)
L2(z)(x − y)

)
satisfy R tbi (R ◦ z) = bi (z), ∀R ∈ O(N), ∀i = 1, 2.



The linear case

Remark

Let A,B two N × N matrices,

C(t, x, y) =

∫
RN

gt(z)C(0, x + Ah, y + Bh) dh

where gt is the Gaussian of scale t, and C(0, x, y) = (u(x)− v(y))2.
Then C (t, x , y) satisfies the equation

Ct = Trace(AtAD2
x C ) + 2Trace(AB tDxyC ) + Trace(B tBD2

y C ). (16)

This equation corresponds to the models described in the Theorem for
the linear case, and in particular when the metrics are constant in both
images.



Illustration of a similarity measure

The values of the similarity measure are computed between one point x in the reference image (first row, left) and all the points y of the

secondary image (first row, right), which is taken from a different viewpoint. In the second row we show closeup containing the point x ,

and the value of the similarity measure. Red pixels denote lower values of C(t, x, y). Note that the minima of the similarity measure

occur at the points where the structure of the secondary image is similar to the reference patch. The comparison windows are ellipses

which correspond to the unit ball mapped according to A and B. The third row illustrates the similarity landscape for a larger scale.

Varying the scale of the analysis corresponds in this case to increasing the window size.



The Morphological Axiom

By adding the axiom:

[Gray scale invariance] Tt(f (C )) = f (Tt(C )) ∀t ≥ 0,
∀C ∈ C∞b (M1×M2), and for any strictly increasing function f : R→ R.

It is also called the Morphological axiom.



The Morphological Axiom

Theorem
Let Tt be a multiscale analysis satisfying the axioms: all Architectural,
Comparison principle, and the Morphological Axiom. Then

F (A, p, ξ,G , Γk) = F (Qt
pAQp, p, ξ,G , Γ

k)

∀A ∈ SMξ(N ), ∀p ∈ T ∗ξN \ {0},∀ξ ∈ N .
(17)

A similar statement holds for F̃ . Let B be such that B tGB = I . In terms
of H we have

H(B t(A− Γ(p))B,B tp, ξ) = H(B tQt
p(A− Γ(p))QpB,B tp, ξ)

∀A ∈ SMξ(N ), ∀p ∈ T ∗ξN \ {0},∀ξ ∈ N .
(18)

We do not make precise the structure of the morphologically invariant operators, since

we cannot simultaneously use the same rotation with respect to both ξ1 and ξ2 to

extract curvatures as in [Alvarez-Guichard-Lions-Morel].



The Morphological Axiom

Some examples of morphological scale spaces in the paper. Their
interpretation is much more complex because it probably reflects the
correlations between directions of level lines of both image patches under
comparison.



Some experiments
Reconstruction

Two original images.

Reconstruction result obtained from the information in the left image.
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Multiscale analysis of similarities between images on Riemannian manifolds

Thank you


