From Image to Video Inpainting with Patches

Patrick Pérez

JBMAI 2014 - LABRI

Visual inpainting

- Complete visual data, given surrounding
 - Visually plausible, at least pleasing
 - Different from texture synthesis (though related)

Object removal, concealment of all sorts (including packet loss)

4

Object removal, concealment of all sorts (including packet loss)

Image extension

Image extension

Brief (partial) history

- 1998: Masnou and Morel. Disocclusion with level lines
- [1999: Efros and Leung. Example-based texture synthesis]
- 2000: Bertalmio *et al*. Inpainting as PDE
- [2001: Efros and Freeman. Texture synthesis by quilting]
- 2001: Harrison. Inpainting with exampled-based texture synthesis
- 2002: Bornard et al. Greedy patch-based inpainting
- 2003: Criminisi et al. Greedy patch-based inpainting with priorities
- 2004: Wexler et al. Video inpainting (2007, jal version)
- [2005: Buades and Morel. NL means]
- 2008: Komodakis and Tziritas. Iterative example-based inpainting
- [2009: Barnes et al. PatchMatch]
- 2010: Aujol et al. Variational patch-based inpainting
- 2012: Granados et al. HD video inpainting

Dictionary of block's neigh.

Source Target

Why (square) patches?

- Powerful to recreate both geometry and texture (even if none)
- Easy to manipulate
- Can be linearly combined in semi-local processing
- Have become variationally friendly

Which patche size?

- Depends on occlusion size (at coarsest level if multiscale)
- Depends on scale of visual "patterns" in image

technicolor

Video inpainting

- Not a sequence of image inpainting
- Challenges
 - Temporal consistency (inc. at object level)
 - Dynamic plausibility
 - Complexity of dynamic scene
 - Computational cost
- Wexler *et al*. (2004-2007)

technicolor

Patch-based video inpainting

Wexler et al. (2004-2007)				
Iterative	Generic Automatic	SlowDifficult to reproduce		
Patwardhan <i>et al.</i> (2005, 2007)				
Greedy	Reproducible Relatively fast	Requires segmentationNo cost optimization		
Granados et al. (2012)				
Graph-cut	Generic High resolution	Requires segmentationSlow		

Toward fast and generic video inpainting

- Alasdair Newson's PhD work
 - Co-advised with A. Almansa & Y. Gousseau
- Builds on Wexler et al.
 - Alternate patch search and reconstruction
 - Multi-scale
- Distinctive features
 - Fast approximate patch search
 - Greedy inpainting as inialization
 - Dominant motion compensation
 - Texture-sensitive patch comparison
 - Reproducible!

Toward fast and generic video inpainting

- Alasdair Newson's PhD work
 - Co-advised with A. Almansa & Y. Gousseau
- Builds on Wexler et al.
 - Alternate patch search and reconstruction
 - Multi-scale
- Distinctive features
 - Fast approximate patch search
 - Greedy inpainting as inialization
 - Dominant motion compensation
 - Texture-sensitive patch comparison
 - Reproducible!

Notations

- Image: $u : \Omega \to \mathbb{R}^3$
- Spatio-temporal cuboid centered at $\, p = (x,y,t) : \, \mathcal{N}_p \subset \Omega \,$
- Spatio-temporal image patch: $W_p = [u(q)]_{q \in \mathcal{N}_p} \in \mathbb{R}^{3 \times N}$
- lacksquare Hole and data: $\Omega = \mathcal{H} \cup \mathcal{D}$
- "Shift map": $\phi : \Omega \to \mathbb{R}^3$ s.t. $\forall p, p + \phi(p) \in \tilde{\mathcal{D}}$

Patch-based energy

Compound energy

$$E(u,\phi) = \sum_{p \in \mathcal{H}} \|W_p - W_{p+\phi(p)}\|_2^2$$
$$= \sum_{p \in \mathcal{H}} \sum_{q \in \mathcal{N}_p} \|u(q) - u(q+\phi(p))\|_2^2$$

- Alternate minimization
 - Patch matching, given image

$$\phi(p) = \arg\min_{q \in \tilde{\mathcal{D}}} \|W_p - W_q\|_2^2 - p, \ \forall p \in \Omega \setminus \tilde{\mathcal{D}}$$

Image reconstruction over occlusion, given shift map

$$u(p) = \frac{\sum_{q \in \mathcal{N}_p} s_p^q u(p + \phi(q))}{\sum_{q \in \mathcal{N}_p} s_p^q}, \quad \forall p \in \mathcal{H}$$

Uniform weights, except for last reconstruction: copy from best match

technicolor

Coarse-to-fine

- To improve speed and result quality for large occlusions
- Image pyramid, same patch size through it
- Several iterations (e.g., 20 max.) at each level and up-sample to next
- Final reconstruction: with best match only

Coarse-to-fine

- To improve speed and result quality for large occlusions
- Image pyramid, same patch size through it
- Several iterations (e.g., 20 max.) at each level and up-sample to next
- Final reconstruction: with best match only

Initialization

First filling-in a coarsest resolution: greedy (concentric)

Approximate patch matching

- PatchMatch (Barnes et al. 2009): fast, dense patch correspondenses
- Key ideas
 - Shift map is piece-wise constant
 - Randomization
- Principle
 - Lexicographic passes
 - Exploit regularity: past neighbors propose their shifts
 - Random proposal as well
- Straightforward adaption to 2D+t

First results

technicolor

First results

First results

	One matching pass at full res.		
	Beach umbrella (265x68x200)	Crossing ladies (170x80x87)	Jumping girl (1120x754x200)
Wexler (kd-tree)	$\sim 1000s$	~1000s	$\sim 8000s$
Ours (PatchMatch3D)	$\sim 50s$	$\sim 30s$	~150s
	Total timing		
	Beach umbrella (265x68x200)	Duo (960x704x154)	Museum (1120x754x200)
Granados (graph-cut)	11h		90h
Ours w/o texture	14mn	4h	4h
Ours	24mn	6h	6h

Dealing with texture

SSD not sensitive enough to fine grain texture

Dealing with texture

SSD not sensitive enough to fine grain texture

Extended patch

Include simple texture information (inspired by Liu and Caselles 2013)

$$T(p) = \frac{1}{\operatorname{card}(\nu)} \sum_{q \in \nu} (|I_x(q)|, |I_y(q)|)$$
$$W_p = [(u(q), \lambda T(q))]_{q \in \mathcal{N}_p}$$

Joint multi-scale pyramid

- Camera motion, even small, is a problem
- Good match = similar structure with similar apparent movement

- Simple solution
 - Estimate and compensate dominant motion wrt middle frame
 - Inpaint video
 - Put dominant motion back

technicolor

technicolor

Inpainting outlooks

- Between inventing and copying
 - Inpainting in the (spatio-temporal) gradient domain
 - Dictionary learning and sparse coding
 - Revisiting texture analysis/synthesis
 - Structure, texture, chromaticity, reflectance, transparency
- Other data completion problems
 - Video and multi-view
 - Unconventional images (plenoptic, multispectral, MRI, etc.)
 - Audio
 - Depth maps, point clouds and meshes

