
Datatypes, pattern-matching, and recursion

Datatypes, pattern-matching, and recursion

Yves Bertot

August 2009

Datatypes, pattern-matching, and recursion

In this class, we discuss how to introduce new datatypes and how
to program with them. We shall present :

I Enumerated datatypes

I Structure datatypes

I Fetching components from a structure

I Repeated behavior : recursion

Datatypes, pattern-matching, and recursion

Basic non-recursive datatypes

Enumerated datatypes

You define a datatype by stating what are its element

Inductive month : Type :=
Jan | Feb | Mar | Apr | May | Jun

| Jul | Aug | Sep | Oct | Nov | Dec.

Check Jan.
Jan : month

The various names Jan, Feb, etc, are called constructors.

Datatypes, pattern-matching, and recursion

Basic non-recursive datatypes

Defining values by cases

When a datatype is inductive, you can compute values according
to which element you are looking at

Definition nbdays (m:month) :=
match m with
Apr => 30 | Jun => 30 | Sep => 30 | Nov => 30

| Feb => 28 | _ => 31
end.

Eval compute in nbdays Jul.
= 31 : nat

On the left hand side of =>, one must find a constructor name, or
a variable, or the anonymous variable _.

I beware of typographical errors !

Datatypes, pattern-matching, and recursion

Basic non-recursive datatypes

Record types

A plain record type packs together several objects

Inductive i_plane : Type :=
point (x y : Z).

Check point.
point : Z -> Z -> i_plane

Here again, we enumerated all possible cases, but we used variables
to capture infinite possibilities

Datatypes, pattern-matching, and recursion

Basic non-recursive datatypes

Fetching components in records

Again use the pattern matching construct to look at the value
being manipulated

Definition point_x (p : i_plane) : Z :=
match p with point x _ => x end.

I All cases must be covered, all fields must have a variable

I Here the second field has an anonymous variable

Datatypes, pattern-matching, and recursion

Basic non-recursive datatypes

Several variants and several components

Constructors still cover all cases

Inductive t1 : Type :=
c1t1 (n : Z)(s : string)

| c2t1 (n : nat).

Definition ft1 (v : t1) : Z :=
match v with
c1t1 a s => a

| c2t1 n => Z_of_nat n
end.

Functions defined by pattern-matching still have to cover all cases

Datatypes, pattern-matching, and recursion

Basic non-recursive datatypes

well-formed pattern-matching

I match v with p1 => e1 | ...| pk => ek end

I v must be well-formed and its type must be an inductive type
t

I p1, . . ., pk must be patterns built with the constructors of t

I e1, ek must be well-formed and all share the same type t ′

I e1 can use the variables appearing in p1 with the
corresponding type

I The type of the whole expression is t ′

Datatypes, pattern-matching, and recursion

Basic non-recursive datatypes

Well-formed pattern-matching on an example

Inductive t1 : Type :=
c1t1 (n : Z)(s : string) | c2t1 (n : nat).

Definition ft1 (v : t1) : Z :=
match v with
c1t1 a s => a

| c2t1 n => Z_of_nat n
end.

Datatypes, pattern-matching, and recursion

Recursive types

Recursive types

I When the current type appears in the component types

I Allows for data of arbitrary size

I Typical example : natural numbers

Inductive nat : Set := O | S (n:nat).

Check (O, S O, S (S O)).
(0, 1, 2) : nat * nat * nat

I Pattern matching works as usual

Datatypes, pattern-matching, and recursion

Recursive types

Recursive programming is not free

I Provided only for functions with input in an inductive type
I Strict rules on well-formed recursive calls

I Choice of a principal argument
I Recursive calls only on variables
I Variables for recursive calls obtained by pattern-matching from

principal

I Guarantee of termination (Weak normalization)

Datatypes, pattern-matching, and recursion

Recursive types

Examples of recursive functions on nat

Fixpoint plus (n m : nat) : nat :=
match n with
O => m

| S p => S (plus p m)
end.

Fixpoint minus (n m : nat) : nat :=
match n, m with
S p, S q => minus p q

| n, _ => n
end.

Datatypes, pattern-matching, and recursion

Recursive types

Example : binary trees with integer labels

Inductive btz : Type :=
Nbtz (x : Z) (t1 t2 : btz) | Lbtz.

Fixpoint btz_size (t : btz) :=
match t with
Nbtz _ t1 t2 => 1 + btz_size t1 + btz_size t2

| Lbtz => 1
end.

Exercise : write a function that adds all the integer values in a
binary tree

Datatypes, pattern-matching, and recursion

Polymorphic data types

Polymorphic recursive types

I The type of some components for some constructors can be
given by a variable

I This type becomes an extra argument for the constructors

I Technically, not one type is defined, but a family of types

I Implicit arguments can help recover a polymorphic style

Datatypes, pattern-matching, and recursion

Polymorphic data types

Polymorphic binary trees

Inductive bt (A : Type) : Type :=
Nbt (x : A) (t1 t2 : bt A) | Lbt.

Implicit Arguments Nbt [A].
Implicit Arguments Lbt [A].

Thanks to implicit arguments declarations, the A argument to Nbt
and Lbt is never written, but guessed from the x argument. Nbt
has 4 arguments, but can be used as if it had 3.

Check Nbt 1 Lbt Lbt.
Nbt 1 Lbt Lbt : bt Z

To force implicit arguments, one uses the notation @Lbt

Datatypes, pattern-matching, and recursion

Polymorphic data types

Pattern-matching with parameters

Parameters do not appear in pattern-matching construct

Fixpoint bt_size (A:Type)(t : bt A) : Z :=
match t with
Nbt _ t1 t2 => 1 + bt_size t1 + bt_size t2

| Lbt => 1
end.

Beware : this is not related to implicit arguments.

Datatypes, pattern-matching, and recursion

Polymorphic data types

Polymorphic lists

Lists as provided in Coq are a polymorphic recursive datatype

Inductive list (A : Type) : Type :=
nil | cons (a : A) (l : list A).

The argument A is implicit for both nil and cons.
The notation a :: l is for cons a l ≡ @cons _ a l

Datatypes, pattern-matching, and recursion

Polymorphic data types

Programming with lists

Fixpoint dispatch (A : Type) (l : list A)
: list A * list A :=
match l with
nil => (nil, nil)

| a::nil => (a::nil, nil)
| a::b::tl =>

let (l1, l2) := dispatch A tl in (a::l1, b::l2)
end.

Eval compute in dispatch Z (1::2::3::4::5::nil).
(1::3::5::nil, 2::4::nil) : list Z*list Z

Datatypes, pattern-matching, and recursion

Polymorphic data types

Pair type as a polymorphic datatype

The type of pairs is also a polymorphic inductive type

Inductive prod (A B : Type) : Type :=
pair (a : A) (b : B).

For pair, arguments A and B are implicit the notation A * B stands
for prod A B (when a type is expected).
There also exists a sum type.

Datatypes, pattern-matching, and recursion

Polymorphic data types

Option type as a polymorphic datatype

All functions in Coq are total
When modeling a partial function, it is useful to describe it as a
total function to a type with an extra value

Inductive option (A : Type) : Type :=
Some : A -> option A

| None : option A

The argument A in Some and None is implicit

	Basic non-recursive datatypes
	Recursive types
	Polymorphic data types

