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“I start from one point and go as far as possi-
ble.”
John Coltrane.
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Chapter 1

Introduction

Proof assistants are excellent tools for exploring the structure of mathematical
proofs, studying which hypotheses are really needed, and which proof patterns
are useful and/or necessary. Since the development of a theory is represented
as a bunch of computer files, everyone is able to read the proofs with an arbi-
trary level of detail, or to play with the theory by building alternate proofs or
definitions.

Among all the theorems proved with the help of proof assistants like Coq,
Isabelle, HOL, etc., several statements and proofs share some interesting fea-
tures:

• Their statements are easy to understand, even by non-mathematicians

• Their proof requires some non-trivial mathematical tools

• Their mechanization on computer presents some methodological interest.

This is obviously the case of the four-color theorem [24] and the Kepler
conjecture [23].

Structure of this document

• We present several contributions, whose topic is easy to understand. Each
contribution is chosen according to its potential to illustrate interesting
proof patterns, or how to use some libraries of the Coq system

• Whenever several implementations are possible, we will discuss the pros
and cons of every possible choice

• Most of the proofs we present are constructive. Whenever possible, we
provide the user with an associated function, which she or he can apply in
Gallina or OCaml in order to get a “concrete” feeling of the meaning of the
considered theorem. For instance, in Chapter 5 on page 143, the notion

9



10 CHAPTER 1. INTRODUCTION

of limit ordinal is made more “concrete” thanks to a function canonseq
that computes every item of a sequence which converges on a given limit
ordinal α. This simply typed function allows the user/reader to make
her/his own experimentations. For instance, one can very easily compute
the 42-nd item of a sequence which converges towards ωωω !

• We found it interesting to present several implementions of a given con-
cept. After some discussions of the pros and cons of each solution, we
will choose to develop only one of them, leaving the others as exercises or
projects (i.e. big or difficult exercises). In order to discuss which assump-
tions are really needed for proving a theorem, we will also present several
aborted proofs.

Warning: This document is not an introductory text for Coq, and there are
many aspects of this proof assistant that are not covered. The reader should al-
ready have some basic experience with the Coq system. The Reference Manual
and several tutorials are available on Coq page [21]. First chapters of textbooks
like Interactive Theorem Proving and Program Development [5], Software Foun-
dations [31] or Certified Programming with Dependent Types [17] will give you
the right background.

Contributions are welcome

Any form of contribution is welcome: correction of errors, improvement of Coq
scripts, proposition of inclusion of new chapters, and generally any comment or
proposition that would help us. The text contains several projects which, when
completed, may improve the present work. Please do not hesitate to bring your
contribution!

1.0.0.1 Acknowledgements

Many thanks to Alan Schmitt, Sylvain Salvatin and Théo Zimmerman for their
help on the elaboration of this document. Members of the Formal Methods team
at laBRI for their helpful comments on an oral presentation of this work.

Many thanks also to the Coq development team, Yves Bertot, and mem-
bers of the Coq Club for interesting discussions about the Coq system and the
Calculus of Inductive Constructions.

I owe my interest in discrete maths and their relation to formal proofs and
functional programmings to Srecko Brlek. Equally, there is W. H. Burge’s book
“Recursive Programming Techniques” [10] which was a great source of inspira-
tion.

1.0.0.2 Typographical conventions

Quotations from our Coq source are displayed as follows:
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Require Import Arith.

Definition square (n:nat) := n * n.

Lemma square_double : exists n:nat, n + n = square n.
Proof.

exists 2.

Answers from Coq (including sub-goals, error messages, etc.) are displayed
in slanted style with a different background color.

1 subgoal, subgoal 1 (ID 5)

============================
2 + 2 = square 2

reflexivity.
Qed.

1.0.0.3 Alternative or bad definitions

Finally, we decided to include definitions or lemma statements, as well as tactics,
that lead to dead-ends or to too complex developments, with the following
coloring. Bad definitions and encapsulation in modules called Bad, Bad1, etc.

Module Bad.

Definition double (n:nat) := n + 2.

Lemma lt_double : forall n:nat, n < double n.
Proof.

unfold double; omega.
Qed.

End Bad.

Likewise, alternative, but still unexplored definitions will be presented in
modules Alt, Alt1, etc. Using these definitions is left as an implicit exercise.

Module Alt.

Definition double (n : nat) := 2 * n.

End Alt.
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Lemma alt_double_ok n : Nat.double n = Alt.double n.
Proof.

unfold Alt.double, Nat.double.
omega.

Qed.

1.0.0.4 Links to the Coq source

Active links towards our Coq modules may be incorrect if you got this pdf
document otherwise than by compiling the distribution available in http://
www.labri.fr/casteran/CoqArt/le_teaser/Teaser.tar.gz.

http://www.labri.fr/casteran/CoqArt/le_teaser/Teaser.tar.gz
http://www.labri.fr/casteran/CoqArt/le_teaser/Teaser.tar.gz
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Chapter 2

Smart Computation of xn

2.1 Introduction
Nothing looks simpler than writing some function for computing xn. On the
contrary, this simple programming exercice allows us to address such advanced
programming techniques as:

• monadic programming, and continuation passing style

• type classes, and generalized rewriting

• proof engineering, in particular proof re-using

• proof by reflection

• polymorphism and parametricity

• composition of correct programs, etc.

2.2 Some basic implementations
Let us start with a very naïve way of computing the n-th power of x, where n
is a natural number and x belongs to some type for which a multiplication and
an identity element are defined.

From Powers.FirstSteps.v

Section Definitions.

Variables (A: Type)
(mult: A -> A -> A)
(one: A).

Local Infix "*" := mult.
Local Notation "1" := one.

15
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16 CHAPTER 2. SMART COMPUTATION OF XN

Fixpoint power (x:A)(n:nat) : A :=
match n with 0%nat => 1

| S p => x * x ^ p
end

where "x ^ n" := (power x n).

Compute power Z.mul 1%Z 2%Z 10.

= 1024%Z
: Z

Open Scope string_scope.
Compute power append "" "ab" 12.

= "abababababababababababab"
: string

This function is linear with respect to the number of multiplications needed
to compute xn. Despite this lack of efficiency, and thanks to its simplicity, we
keep it as a specification for more efficient and complex exponentiation algo-
rithms. A function will be considered a correct exponentiation function if we
can prove it is extensionally equivalent to power.

2.2.1 A semi-naïve algorithm
In versions up to V8.9.1, the exponentiation function on type Z was defined as
follows, (in modules Coq.PArith.BinPosDef.Pos and Coq.ZArith.BinIntDef.Z.

(** ** Iteration of a function over a positive number *)

Definition iter {A} (f:A -> A) : A -> positive -> A :=
fix iter_fix x n := match n with
| xH => f x
| xO n' => iter_fix (iter_fix x n') n'
| xI n' => f (iter_fix (iter_fix x n') n')

end.

Definition pow (x:positive) := iter (mul x) 1.

Definition pow_pos (z:Z) := Pos.iter (mul z) 1.

Definition pow x y :=
match y with
| pos p => pow_pos x p
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| 0 => 1
| neg _ => 0

end.

Infix "^" := pow : Z_scope.

At first sight, the function Pos.pow seems to be logarithmic because of the
recursive structure of the help function iter_fix. Unfortunately, it is obvi-
ous that a call to iter f x n will apply n times the function f . Thus, these
exponentiation functions with binary exponents are in fact linear!

Time Compute (1 ^ 56666667)%N.

Finished transaction in 3.604 secs (3.587u,0.007s)

2.2.2 A truly logarithmic exponentiation function
Using the following equations, we can easily define a polymorphic exponentiation
whose application requires only a logarithmic number of multiplications.

x1 = x (2.1)
x2p = (x2)p (2.2)

x2p+1 = (x2)p × x (2.3)
x1 × a = x× a (2.4)
x2p × a = (x2)p × a (2.5)

x2p+1 × a = (x2)p × (a× x) (2.6)

In equalities 2.4 to 2.6, the variable a plays the rôle of an accumulator whose
initial value (set by 2.3) is x. This accumulator helps us to get a tail-recursive
implementation.

For instance, the computation of 214 can be decomposed as follows:

214 = 47

= 163 × 4

= 2561 × (4× 16)

= 16384

With the same notations as in Sect 2.2 on page 15, we can implement this
algorithm in Gallina. The following definitions are still within the scope of the
section open in 2.2 on page 15.

From FirstSteps.v

../V8.9/html/teaser.Powers.FirstSteps.html#Pos_bpow
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Fixpoint binary_power_mult (x a:A)(p:positive) : A
:=
match p with
| xH => a * x
| xO q => binary_power_mult (x * x) a q
| xI q => binary_power_mult (x * x) (a * x) q

end.

Fixpoint Pos_bpow (x:A)(p:positive) :=
match p with
| xH => x
| xO q => Pos_bpow (x * x) q
| xI q => binary_power_mult (x * x) x q

end.

Definition N_bpow x (n:N) :=
match n with
| 0%N => 1
| Npos p => Pos_bpow x p
end.

End Definitions.

Let us close the section Definitions and mark the argument A as implicit.

End Definitions.

Arguments N_bpow {A} _ _ _ _.
Arguments power {A} _ _ _ _.

2.2.2.0.1 Remark Note that closing the section Definitions makes us lose
the handy notations _ * _ and one. Fortunately, operational type classes will
help us to define nice infix notations for polymorphic functions (Sect. 2.3.1 on
page 22).

2.2.3 Examples of computation
It is now possible to test our functions with various interpretations of × and 1:

Compute power Z.mul 1%Z 2%Z 10.

= 1024%Z
: Z

Require Import String.
Open Scope string_scope.
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Compute N_bpow append "" "ab" 12.

= "abababababababababababab"
: string

2.2.3.1 Exponentiation on 2× 2 matrices

Our second example is a definition of Mn where M is a 2× 2 matrix over any
“scalar” type A, assuming one can provide A with a semi-ring structure [21].

A 2 × 2 matrix will be simply represented by a structure with four fields;
each field cij is associated with the i-th line and j-th column of the considered
matrix.

Module M2.
Section Definitions.

Variables (A: Type) (zero one : A) (plus mult : A -> A -> A).

Variable rt : semi_ring_theory zero one plus mult (@eq A).
Add Ring Aring : rt.

Notation "0" := zero.
Notation "1" := one.
Notation "x + y" := (plus x y).
Notation "x * y " := (mult x y).

Structure t : Type := mat{c00 : A; c01 : A;
c10 : A; c11 : A}.

The structure type M2.t allows us to define the product of two matrices. We
use the infix notation ** for distinguishing matrix multiplication from multipli-
cation on type A. Note that the use of operational type classes in Sect 2.3.1 will
make this distinction useless.

Definition M2_mult (M M':t) : t :=
mat (c00 M * c00 M' + c01 M * c10 M')

(c00 M * c01 M' + c01 M * c11 M')
(c10 M * c00 M' + c11 M * c10 M')
(c10 M * c01 M' + c11 M * c11 M').

Infix "'**' := M2_mult (at level 40, left associativity).

The neutral element for M2_mult is the identity matrix.

Definition Id2 : t := mat 1 0 0 1.
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End M2_Definitions.
End M2.

Matrix exponentiation is a well-known method for computing Fibonacci
numbers:

Import M2.

Arguments M2_mult {A} plus mult _ _.
Arguments mat {A} _ _ _ _.
Arguments Id2 {A} _ _.

Definition fibonacci (n:N) :=
c00 N (N_bpow (M2_mult Nplus Nmult)

(Id2 0%N 1%N)
(mat 1 1 1 0)%N
n).

Compute fibonacci 20.

= 10946%N
: N

2.2.3.2 Remark

Our function N_bpow is really logarithmic. Let us make a comparative test
with Standard Library’s exponentiation function on type N (see section 2.2.1 on
page 17).

Time Compute (N_bpow N.mul 1 1 56666667)%N.

Finished transaction in 0. secs (0.u,0.s) (successful)

2.2.4 Formal specification of an exponentiation function:
a first attempt

Let us compare the functions power and N_bpow. The first one is obviously
correct, since it is a straightforward translation of the mathematical definition.
The second one is much more efficient, but it is not obvious that its 18-line
long definition is bug-free. Thus, we must prove that the two functions are
extensionally equal (taking into account conversions between N and nat).

More abstractly, we can define a predicate that characterizes any correct im-
plementation of power, this “naïve” function being a specification of any poly-
morphic exponentiation function.

First, we define a type for any such function.
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Definition power_t := forall (A:Type)
(mult : A -> A -> A)
(one:A)
(x:A)
(n:N), A.

Then, we would say that a function f:power_t is a correct exponentiation
function if it is extensionally equal to power.

Module Bad.

Definition correct_expt_function(f : power_t) : Prop :=
forall A (mult : A -> A -> A) (one:A)

(x:A) (n:N),
power mult one x (N.to_nat n) = f A mult one x n.

Unfortunately, our definition of correct_expt is too restrictive. It suffices
to build an interpretation where the multiplication is not associative or one is
not a neutral element to obtain different results through the two functions.

Section CounterExample.
Let mul (n p : nat) := n + 2 * p.
Let one := 0.

Remark mul_not_associative :
exists n p q, mul n (mul p q) <> mul (mul n p) q.

Proof.
exists 1, 1, 1; discriminate.

Qed.

Remark one_not_neutral :
exists n : nat, mul one n <> n.

Proof.
exists 1; discriminate.

Qed.

Lemma correct_expt_too_strong :
~ correct_expt_function (@N_bpow).

Proof.
intro H; specialize (H _ mul one 1 7%N).
discriminate H.

Qed.

End CounterExample.
End Bad.

So, we will have to improve our definition of correctness, by restricting the
universal quantification to associative operations and neutral elements, i.e. by
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considering monoïds. An exponentiation function will be considered as correct
if it returns always the same result as power in any monoïd.

2.3 Representing Monoids in Coq
In this section, we present a ”minimal” algebraic framework in which exponen-
tiation can be defined and efficiently implemented.

Exponentiation is built on multiplication, and many properties of this op-
eration are derived from the associativity of multiplication. Furthermore, if we
allow the exponent to be any natural number, including 0, then we need to
consider a neutral element for multiplication.

The structure on which we define exponentiation is called a monoid. It is
composed of a carrier A, an associative binary operation × on A, and a neutral
element 1 for × . The required properties of × and 1 are expressed by the
following equations:

∀x y z : A, x× (y × z) = (x× y)× z) (2.7)
∀x : A, x× 1 = 1× x = x (2.8)

In Coq, we define the monoid structure in terms of operational type classes[37,
36]. The tutorial on type classes [15] gives more details on type classes and op-
erational type classes, also illustrated with the monoid structure.

First, we define a class and a notation for representing multiplication oper-
ators, then we use these definitions for defining the Monoid type class.

2.3.1 A common notation for multiplication
Operational type classes (Spitters and van der Weegen [37]) allow us to define
a common notation for multiplication in any algebraic structure. First, we
associate a class to the notion of multiplication on any type A.

Class Mult_op (A:Type) := mult_op : A -> A -> A.

From the type theoretic point of view, the term Mult_op A is βδ-reducible to
A→A→A, and if op has type Mult_op A, then @mult_op A op is convertible to
op. The practical interest of this definition is that the term
@mult_op A op x y, although convertible with op x y, bears more informa-
tion than the second one.

We are now ready for defining a new notation scope, in which the notation
x * y will be interpreted as an application of the function mult_op.

Delimit Scope M_scope with M.
Infix "*" := binop : M_scope.
Open Scope M_scope.
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Let us show two examples of use of the notation scope M_scope. Each
example consists in declaring an instance of Mult_op, then type checking or
evaluating a term of the form x * y in M_scope.

Note that, since the reserved notation "_ * _ " is present in several scopes
such as nat_scope, Z_scope, N_scope, etc., in addition to M_scope, the user
should take care of which scopes are active — and with which precedence — in
a Gallina term. In case of doubt, explicit scope delimiters should be used.

2.3.1.1 Multiplication on Peano Numbers

Multiplication on type nat, called Nat.mul in Standard Library, has type
nat -> nat -> nat, which is convertible with Mult_op nat. Thus the fol-
lowing definition is accepted:

Instance nat_mult_op : Mult_op nat := Nat.mul.

Inside M_scope, the expression 3 * 4 is correctly read as an application of
binop. Nevertheless this term is convertible with Nat.mul 3 4, as shown by
the interaction below.

Set Printing All.
Check 3 * 4.

@mult_op nat nat_mult_op (S (S (S O))) (S (S (S (S O))))
: nat

Unset Printing All.
Compute 3 * 4.

= 12 : nat

2.3.1.2 String Concatenation

We can use the notation "_ * _ " for other types than numbers. In the follow-
ing example, the expression "abc" * "def" is interpreted as
@binop string ?X "abc" "def", then the type class mechanism replaces the
unknown ?X with string_op.

Require Import String.
Instance string_op : Mult_op string := append.
Open Scope string_scope.

Compute "abc" * "def".

= "abcdef" : string
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2.3.1.3 Solving Ambiguities

Let A be some type, and let us assume there are several instances of Mult_op
A. For solving ambiguity issues, one can add a precedence to each instance
declaration of Mult_op A. In any case, such ambiguity can be addressed by
expliciting some arguments of binop. For instance, in Sect. 2.3.3.2 on the next
page, we consider various monoids on types nat and N.

2.3.2 The Monoid Type Class
We are now ready for giving a definition of the Monoid class, using * as an infix
operator in scope %M for the monoid multiplication.

The following class definition is parameterized with some type A, a multi-
plication (called op in the definition), and a neutral element 1 (called one in
the definition).

From file ../V8.9/Powers/Monoid_def.v.

Class Monoid {A:Type}(op : Mult_op A)(one : A) : Prop :=
{

op_assoc : forall x y z:A, x * (y * z) = x * y * z;
one_left : forall x, one * x = x;
one_right : forall x, x * one = x

}.

2.3.3 Building Instances of Monoid

Let A be some type, op an instance of Mult_op A and one: A. In order to
build an instance of (Monoid A op one), one has to provide proofs of “monoid
axioms” op_assoc, one_left and one_right.

Let us show various instances, which will be used in further proofs and
examples. Complete definitions and proofs are given in File ../V8.9/Pow-
ers/Monoid_instances.v.

2.3.3.1 Monoid on Z

The following monoid allows us to compute powers of integers of arbitrary size,
using type Z from standard library:

Instance Z_mult_op : Mult_op Z := Z.mul.

Instance ZMult : Monoid Z_mult_op 1.
Proof.

split.

3 subgoals, subgoal 1 (ID 8)

============================

../V8.9/Powers/Monoid_def.v
../V8.9/Powers/Monoid_instances.v
../V8.9/Powers/Monoid_instances.v
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forall x y z : Z, (x * (y * z))%M = (x * y * z)%M

subgoal 2 (ID 9) is:
forall x : Z, (1 * x)%M = x
subgoal 3 (ID 10) is:
forall x : Z, (x * 1)%M = x}

all: unfold Z_mult_op, mult_op;intros;ring.
Qed.

2.3.3.2 Monoids on type nat and N

We define two monoids on type nat:

• The “natural” monoid (N,×, 1) :

Instance nat_mult_op : Mult_op nat | 5 := Nat.mul.

Instance Natmult : Monoid nat_mult_op 1%nat | 5
Proof.

split;unfold nat_mult_op, mult_op; intros; ring.
Qed.

• The “additive” monoid (N,+, 0). This monoid will play an important
role in correctness proofs of complex exponentiation algorithms. Its most
important property is that the n-th power of 1 is equal to n. See Sect. 2.6.4
on page 47 for more details.

Instance nat_plus_op : Mult_op nat | 12 := Nat.add.

Instance Natplus : Monoid nat_plus_op 0%nat | 12.
(* Proof omitted *)

Similarly, instances NPlus and NMult are built for type N, and PMult for type
positive.

2.3.3.3 Machine integers

Cyclic numeric types are good candidates for testing exponentiations with big
exponents, since the size of data is bounded.

The type int31 is defined in Module Coq.Numbers.Cyclic.Int31.Int31
of Coq’s standard library. The tactic ring works with this type, and helps us
to register an instance Int31Mult of class Monoid int31_mult_op 1.

Instance int31_mult_op : Mult_op int31 := mul31.

Instance Int31mult : Monoid int31_mult_op 1.
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Proof.
split;unfold int31_mult_op, mult_op; intros; ring.

Qed.

Beware that machine integers are not natural numbers !

Module Bad.

Fixpoint int31_from_nat (n:nat) :=
match n with
| O => 1
| S p => 1 + int31_from_nat p
end.

Coercion int31_from_nat : nat >-> int31.

Fixpoint fact (n:nat) :=
match n with
| O => 1
| S p => n * fact p
end.

Example fact_zero : exists n:nat, fact n = 0.
Proof. now exists 40%nat. Qed.

End Bad.

2.3.4 Matrices on a semi-ring
In Sect. 2.2.3.1 on page 19, we defined a function for computing powers of
any 2 × 2 matrix over any semi-ring. For proving a simple property of matrix
exponentiation, we had to prove that matrix multiplication is associative and
admits the identity matrix as a neutral element. These properties are easily
expressed within the type class framework, by defining a family of monoids. It
suffices to define an instance of Monoid within the scope of an hypothesis of
type semi_ring_theory

Section M2_def.
Variables (A:Type)

(zero one : A)
(plus mult : A -> A -> A).

Variable rt : semi_ring_theory zero one plus mult (@eq A).
Add Ring Aring : rt.

Structure M2 : Type := {c00 : A; c01 : A;
c10 : A; c11 : A}.
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Definition Id2 : M2 := Build_M2 1 0 0 1.

Definition M2_mult (m m':M2) : M2 :=
Build_M2

(c00 m * c00 m' + c01 m * c10 m')
(c00 m * c01 m' + c01 m * c11 m')
(c10 m * c00 m' + c11 m * c10 m')
(c10 m * c01 m' + c11 m * c11 m').

Global Instance M2_op : Mult_op M2 := M2_mult.

Global Instance M2_Monoid : Monoid M2_op Id2.
(* Proof omitted *)

End M2_def.

Arguments M2_Monoid {A zero one plus mult} rt.

2.3.5 Monoids and Equivalence Relations
In some contexts, the “axioms” of the Monoid class may be too restrictive. For
instance, consider multiplication in Z/mZ where 1 < m. Although it could be
possible to compute with values of the dependent type {n:N | 0 < m},

it looks simpler to compute with numbers of type N and consider the multi-
plication x× y mod m.

It is easy to prove this operation is associative, using library NArith. Un-
fortunately, the following proposition is false in general (left as an exercise).

∀x : N, (1 ∗ x) mod m = x

Thus, we define a more general class, parameterized by an equivalence re-
lation Aeq on a type A, compatible with the multiplication *. The laws of
associativity and neutral element are not expressed as Leibniz equalities but as
equivalence statements:

First, let us define an operational type class for equivalence relations:

Class Equiv A := equiv : relation A.

Infix "==" := equiv (at level 70) : type_scope.

The definition of class EMonoid looks like Monoid’s definition, plus some
constraints on E_eq.

Class EMonoid (A:Type)(E_op : Mult_op A)(E_one : A)
(E_eq: Equiv A): Prop :=

{
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Eq_equiv :> Equivalence equiv;
Eop_proper :> Proper (equiv ==> equiv ==> equiv) E_op;
Eop_assoc : forall x y z:A, x * (y * z) == x * y * z;
Eone_left : forall x, E_one * x == x;
Eone_right : forall x, x * E_one == x

}.

2.3.5.1 Coercion from Monoid to EMonoid

Every instance of class Monoid can be transformed into an instance of EMonoid,
considering Leibniz’ equality eq. Thus, our definitions and theorems about
exponentiation will take place as much as possible within the more generic
framework of EMonoids.

Global Instance eq_equiv {A} : Equiv A := eq.

Global Instance Monoid_EMonoid `(M:@Monoid A op one) :
EMonoid op one eq_equiv.

Proof.
split; unfold eq_equiv, equiv in *.
- apply eq_equivalence.
- intros x y H z t H0; now subst.
- intros; now rewrite (op_assoc).
- intro; now rewrite one_left.
- intro; now rewrite one_right.
Defined.

Coercion Monoid_EMonoid : Monoid >-> EMonoid.

Every instance of Monoid can now be considered as an instance of EMonoid:

Check NMult : EMonoid N.mul 1%N eq.

NMult:EMonoid N.mul 1%N eq
: EMonoid N.mul 1%N eq

2.3.5.2 Example : Arithmetic modulo m

The following instance of EMonoid describes the set of integers modulo m, where
m is any integer greater or equal than 2. For simplicity’s sake, we represent
such values using the N type, and consider ”equivalence modulo m” instead of
equality. Note that the law of associativity has been stated as Leibniz’ equality.

Section Nmodulo.
Variable m : N.
Hypothesis m_gt_1 : 1 < m.
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Definition mult_mod ( x y : N) := (x * y) mod m.
Definition mod_eq ( x y: N) := x mod m = y mod m.

Global Instance mod_equiv : Equiv N := mod_eq.

Global Instance mod_op : Mult_op N := mult_mod.
Local Open Scope M_Scope.

Global Instance mod_Equiv : Equivalence mod_equiv.

Global Instance mult_mod_proper :
Proper (mod_equiv ==> mod_equiv ==> mod_equiv) mod_op.
(* Proof omitted *)

Lemma mult_mod_associative :
forall x y z, x * (y * z) = x * y * z.
(* Proof omitted *)

Lemma one_mod_neutral_l : forall x, 1 * x == x.
(* Proof omitted *)

Lemma one_mod_neutral_r : forall x, x * 1 == x.
(* Proof omitted *)

Global Instance Nmod_Monoid : EMonoid mod_op 1 mod_equiv.
(* Proof omitted *)

End Nmodulo.

2.3.5.2.1 Example In the following interaction, we show how to instanciate
the parameter m to a concrete value, for instance 256.

Section S256.
Let mod256 := mod_op 256.
Local Existing Instance mod256 | 1.

Compute (211 * 67)

= 57 : N

End S256.

Outside the section S256, the term (211 * 67)%M is interpreted as a plain
multiplication in type N:

Compute (211 * 67)%M.
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= 14137 : N

2.4 Computing Powers in any EMonoid
The module Pow defines two functions for exponentiation on any EMonoid on
carrier A. They are essentially the same as in Sect. 2.2 on page 15. The main
difference lies in the arguments of the functions, which now contain an instance
M of class EMonoid. Thus, the arguments associated with the multiplication, the
neutral element and the equivalence relation associated with M are left implicit.

2.4.1 The naïve (linear) Algorithm
The new version of the linear exponentiation function is as follows:

Fixpoint power`{M: @EMonoid A E_op E_one E_eq}
(x:A) (n:nat) :=

match n with
| 0%nat => E_one
| S p => x * x ^ p
end
where "x ^ n" := (power x n) : M_scope.

The three following lemmas will be used by the rewrite tactic in further
correctness proofs. Note that the first two lemmas are strong (i.e. Leibniz)
equalities, whilst power_eq3 is only an equivalence statement, because its proof
uses one of the EMonoid laws, namely Eone_right.

Lemma power_eq1 {A:Type} `{M: @EMonoid A E_op E_one E_eq}
(x:A) : x ^ 0 = E_one.

Proof. reflexivity. Qed.

Lemma power_eq2 {A:Type} `{M: @EMonoid A E_op E_one E_eq}
(x:A) (n:nat) :
x ^ (S n) = x * x ^ n.

Proof. reflexivity. Qed.

Lemma power_eq3 {A:Type} `{M: @EMonoid A E_op E_one E_eq}
(x:A) : x ^ 1 == x.

Proof. cbn; rewrite Eone_right; reflexivity. Qed.

2.4.1.0.1 Examples of computation From File ../V8.9/Powers/Demo_power.v
The first interaction shows an exponentiation in Z, and the second one in

the type of 31 bits machine integers.1

1phi and phi_inv are standard library’s conversion functions between types Z and int31,
used for making it possible to read and print values of type int31.

../V8.9/Powers/Pow.v
../V8.9/Powers/Demo_power.v
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Open Scope M_scope.

Compute 22%Z ^ 20.

= 705429498686404044207947776%Z

Import Int31.
Coercion phi_inv : Z >-> int31.

Compute (22%int31 ^ 20).

= 2131755008%int31
: int31

2.4.2 The Binary Exponentiation Algorithm
Please find below the implementation of binary exponentiation using type classes
(to be compared with the version in 2.2.2 on page 17).

Fixpoint binary_power_mult `{M: @EMonoid A E_op E_one E_eq}
(x a:A)(p:positive) : A

:=
match p with

| xH => a * x
| xO q => binary_power_mult E_op (x * x) a q
| xI q => binary_power_mult E_op (x * x) (a * x) q

end.

Fixpoint Pos_bpow `{M: @EMonoid A E_op E_one E_eq}
(x:A)(p:positive) :=

match p with
| xH => x
| xO q => Pos_bpow (x * x) q
| xI q => binary_power_mult E_op (x * x) x q

end.

It is easy to extend Pos_bpow’s domain to the type of all natural numbers:

Definition N_bpow {A} `{M: @EMonoid A E_op E_one E_eq} x (n:N) :=
match n with
| 0%N => E_one
| Npos p => Pos_bpow x p
end.

Infix "^b" := N_bpow (at level 30, right associativity): M_scope.
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2.4.3 Refinement and Correctness
We have got two functions for computing powers in any monoïd. So, it is
interesting to ask oneself whether this duplication is useful, and which would
be the respective rôle of N_bpow and power.

• The function power, although very inefficient, is a direct translation of the
mathematical definition, as shown by lemmas power_eq1 to
power_eq3. Moreover, its structural recursion over type nat allows simple
proofs by induction over the exponent. Thus, we will consider power as a
specification of any exponentiation algorithm

• Functions N_bpow and Pos_bpow are more efficient, but less readable than
power, and we cannot use these functions before having proved their cor-
rectness. In fact, the correctness of N_bpow and Pos_bpow will mean “being
extensionally equivalent to power”. For instance N_bpow’s correctness is
expressed by the following statement (in the context of an EMonoid on
type A).

Lemma N_bpow_ok :
forall (x:A) (n:N), x ^b n == x ^ N.to_nat n.

The relationship between power and N_bpow can be considered as a kind of
refinement as in the B-method [1]. Note that the two representations of natural
numbers and the function N.to_nat form a kind of data refinement [18, 2].

2.4.4 Proof of correctness of binary exponentiation w.r.t.
the function power

Section M_given of module coq.Exponentiation.Pow is devoted to the proof of
properties of the functions above. Note that properties of power refer to the
specification of exponentiation, and can be applied for proving correctness of
any implementation.

In this section, we consider an arbitrary instance M of class EMonoid.

Section M_given.
Variables (A:Type) (E_op : Mult_op A)(E_one:A) (E_eq : Equiv A).
Context (M:EMonoid E_op E_one E_eq).

2.4.4.1 Properties of exponentiation

We establish a few well-known properties of exponentiation, and define some
basic tactics for simplifying proof search.

Ltac monoid_rw :=
rewrite (@Eone_left A E_op E_one equiv M) ||

../V8.9/Powers/Pow.v
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rewrite (@Eone_right A E_op E_one equiv M) ||
rewrite (@Eop_assoc A E_op E_one equiv M).

Ltac monoid_simpl := repeat monoid_rw.

Section About_power.

In order to make possible proof by rewriting on expressions which contain the
exponentiation operator, we have to prove that, whenever x == y, the equality
xn == yn holds for any exponent n. For this purpose, we use the Proper class
of module Coq.Classes.Morphisms

Global Instance power_proper :
Proper (equiv ==> eq ==> equiv) power.

(* Proof omitted *)

In the following proofs, we note how notations, type classes and generalized
rewriting can be used to write algebraic properties in a nice way.

Lemma power_x_plus :
forall x n p, x ^ (n + p) == x ^ n * x ^ p.

(* Proof omitted *)

Ltac power_simpl :=
repeat (monoid_rw || rewrite <- power_x_plus).

Please note that the following two lemmas do not require commutativity of
*.

Lemma power_commute :
forall x n p, x ^ n * x ^ p == x ^ p * x ^ n.

(* Proof omitted *)

Lemma power_commute_with_x :
forall x n, x * x ^ n == x ^ n * x.

(* Proof omitted *)

Lemma power_of_power :
forall x n p, (x ^ n) ^ p == x ^ (p * n).

(* Proof omitted *)

The following two equalities are auxiliary lemmas for proving correctness of
the binary exponentiaton functions.

Lemma sqr_def : forall x, x ^ 2 == x * x.
(* Proof omitted *)

https://coq.inria.fr/distrib/current/stdlib/Coq.Classes.Morphisms.html
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Lemma power_of_square :
forall x n, (x * x) ^ n == x ^ n * x ^ n.

(* Proof omitted *)

2.4.5 Equivalence of the two exponentiation functions
Since binary_power_mult is defined by structural recursion on the exponent
p:positive, its basic properties are proved by induction along positive’s con-
structors.

Lemma binary_power_mult_ok :
forall p a x, binary_power_mult x a p ==

a * x ^ Pos.to_nat p.
Proof.

induction p as [q IHq | q IHq| ].
(* Rest of proof omitted *)

Lemma Pos_bpow_ok :
forall (p:positive)(x:A), Pos_bpow x p == x ^ Pos.to_nat p.
(* Proof omitted *)

Lemma N_bpow_ok :
forall (x:A) (n:N), x ^b n == x ^ N.to_nat n.
(* Proof omitted *)

Lemma N_bpow_ok_R :
forall (x:A) (n:nat), x ^b (N.of_nat n) == x ^ n.
(* Proof omitted *)

Lemma Pos_bpow_ok_R :
forall (x:A) (n:nat), n <> 0 ->

Pos_bpow x (Pos.of_nat n) == x ^ n.
(* Proof omitted *)

End About_power.

2.4.5.1 Remark

The preceding lemmas can be applied for deriving properties of the binary ex-
ponentiation functions:

Lemma N_bpow_commute : forall x n p,
x ^b n * x ^b p ==
x ^b p * x ^b n.

Proof.
intros x n p; repeat rewrite N_bpow_ok.
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rewrite power_commute; reflexivity.
Qed.

2.5 Comparing Exponentiation Algorithms with
respect to Efficiency

It looks obvious that the binary exponentiation algorithm is more efficient than
the naïve one. Can we study within Coq the respective efficiency of both func-
tions? Let us take a simple example with the exponent 17, in any EMonoid.

Eval simpl in fun (x:A) => x ^b 17.

= fun x : A =>
x *
(x * x * (x * x) * (x * x * (x * x)) *
(x * x * (x * x) * (x * x * (x * x))))

: A -> A

Therfore, we note that the term (fun (x:A) =>x ^b 17) is convertible, —
thus logically indistinguishable —, with a function that performs 16 multiplica-
tions.

Likewise, let us simplify the term (fun (x:A) =>x ^ 17):

Eval simpl in fun x => x ^ 17.

= fun x : A =>
x * (x * (x * (x * (x * (x * (x * (x *
(x * (x * (x * (x * (x * (x * (x * (x * (x * one)))))

)))))))))))

From these tests, we may infer that representing exponentiation algorithms
as Coq functions hides information about the real structure of the computations,
particularly the sharing on intermediate computations.

Thus, we propose to define a data structure that makes explicit the sequence
of mutiplications that lead to the computation of xn. For instance, the values
of x * x and x * x * (x * x) are used twice in the computation of x17 with
the binary algorithm. This information should appear explicitely in the data
structure chosen for representing exponentiation algorithms.

It is well known that local variables can be used to store intermediate results.
In an ISWIM - ML style, the function computing x17 could be written as follows:

Definition pow_17 (x:A) :=
let x2 := x * x in
let x4 := x2 * x2 in
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let x8 := x4 * x4 in
let x16 := x8 * x8 in
x16 * x.

Unfortunately, Coq’s let-in construct is useless for our purpose, since ζ-conversion
would make the sharing of computations disappear.

Eval cbv zeta beta delta [pow_17] in pow_17.

= fun x : A =>
x * x * (x * x) * (x * x * (x * x)) *
(x * x * (x * x) * (x * x * (x * x))) * x

: A -> A

In the next section, we propose to use a data structure for representing the
computations that lead to the evaluation of some power xn, where intermediary
results are explicitely named for further use in the rest of the computation.

2.5.1 Addition chains
An addition chain (In short : a chain) [6] is a representation of a sequence of
intermediate steps that lead to the evaluation of some xn, under the assumption
that each of these steps is a comutation of a power xi, with i < n.

In articles from the combinatorician community, e.g. [6, 4] addition chains
are represented as sequences of positive integers, each member of which is either
1 or the sum of two previous elements. For instance, the two following sequences
are addition chains for the exponent 87:

c87 = (1, 2, 3, 6, 7, 10, 20, 40, 80, 87) (2.9)
c′87 = (1, 2, 3, 4, 7, 8, 16, 23, 32, 64, 87) (2.10)

It is possible to associate to any addition chain a directed acyclic graph:
whenever i = j + k, there is an arc from xj to xi and an arc from xk to xi.
Figures 2.1 and 2.2 show the gphical representations of c87 and c′87.

Figure 2.1: Graphical representation of c87 (9 multiplications)

x x2 x3 x6 x7 x10 x20 x40 x80 x87

Let us assume that the efficiency of an exponentiation algorithm is pro-
portional to the number of multiplications it requires. This assumption looks
reasonable when the data size is bounded (for instance : machine integers, arith-
metic modulo m, etc.). Let us define the length of a chain c as its number |c| of
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Figure 2.2: Graphical representation of c′87 (10 multiplications)

x x2 x3 x4 x7 x8 x16 x23 x32 x64 x87

exponents (without counting the initial 1). This length is the number of multi-
plications needed for computing the xis by applying the following algorithm:

For any item i of c, there exists j and k in c, where i = j + k, and
xj and xk are already computed.
Thus, compute xi = xj × xk.

In our little example, we have |c87| = 9 < 10 = |c′87|. In the rest of this
chapter, we will try to focus on the following aspects:

• Define a representation of addition chains, that allows to compute effi-
ciently xn in any monoid, for quite large exponents n

• Certify that our representation of chains is correct, i.e. determines a
computation of xn for a given n

• Define and certify functions for automatically generating correct and short-
est as possible chains.

In a previous work [7, 8, 12], additions chains were represented so as to al-
low efficient computations of powers and certification of a family of automatic
chain generators. We present here a new implementation, that takes into ac-
count some advances in the way we use Coq: generalized rewriting, type classes,
parametricity, etc.

2.5.2 A type for addition chains
Let us recall that we want to represent some algorithms of the form described in
section 2.5, but avoiding to represent intermediate results by let-in constructs.
We describe below the main design choices we made:

• Continuation Passing Style (CPS) [33] is a way to make explicit the control
in the evaluation of an expression, in a purely functional way. For every
intermediate computation step, the result is sent to a continuation that
executes the further continuations. When the continuation is a lambda-
abstraction, its bound variable gives a name to this result

• Like in Parametric Higher Order Abstract Syntax (PHOAS) [16], the local
variables associated to intermediate results are represented by variables of
type A, where A is the underlying type of the considered monoid.
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2.5.2.1 Definition

Let A be some type; a computation on A is

• either a final step, returning some value of type A

• or the multiplication of two values of type A, with a continuation that
takes as argument the result of this multiplication, then starts a new
computation.

In the following inductive type definition, the intended meaning of the con-
truct (Mult x y k) is ”multiply x with y, then send the result of this multipli-
cation to the continuation k”.

From File ../V8.9/Powers/Chains.v

Inductive computation {A:Type} : Type :=
| Return (a : A)
| Mult (x y : A) (k : A -> computation).

2.5.2.2 Monadic Notation

The following monadic notation makes terms of type computation look like
expressions of a small programming language dedicated to sequences of muti-
plications. Please look at CPDT [17] for more details on monadic notations in
Coq.

Notation "z '<---' x 'times' y ';' e2 " :=
(Mult x y (fun z => e2))
(right associativity, at level 60).

The computation type family is able to express sharing of intermediate
computations. For instance, the computation of 27 depicted in Figure 2.3 is
described by the following term:

Example comp7 : computation :=
x <--- 2 times 2;
y <--- x times 2;
z <--- y times y ;
t <--- 2 times z ;
Return t.

2.5.2.3 Definition

Thanks to the computation type family, we can associate a type to the kind of
computation schemes described in Figures 2.1 and 2.2.

We define addition chains (in short chains) as functions that map any type
A and any value a of type A into a computation on A:

../V8.9/Powers/Chains.v
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Figure 2.3: The dag associated to a computation of 27

Definition chain := forall A:Type, A -> @computation A.

Thus, terms of type chain describe polymorphic exponentiation algorithms.
For instance, Fig 2.4 shows a definition of the chain of Figure 2.1, for the

exponent 87. Note that, like in PHOAS, bound variables associated with the
intermediary results are Coq variables of type A.

Example C87 : chain :=
fun A (x : A) =>
x2 <--- x times x ;
x3 <--- x2 times x ;
x6 <--- x3 times x3 ;
x7 <--- x6 times x ;
x10 <--- x7 times x3 ;
x20 <--- x10 times x10 ;
x40 <--- x20 times x20 ;
x80 <--- x40 times x40 ;
x87 <--- x80 times x7 ;
Return x87.

Figure 2.4: A chain for raising x to its 87-th power

The structure of the definition of types computation and chain suggest that
basic definitions over chain will have the following structure:

• A recursive function on type computation A (for a given type A)

• A main function on type chain that calls the previous one on any A:Type.
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For instance, the following function computes the length of any chain, i.e.
the number of multiplications of the associated computations. Note that the
function chain_length calls the auxiliary function computation_length, with
the variable A instantiated to the singleton type unit.

Any other type in Coq would have fitted our needs, but unit and its unique
inhabitant tt was the simplest solution.

Fixpoint computation_length {A} (a:A)(m : @computation A)
: nat :=

match m with
| Mult _ _ k => S (computation_length a (k a))
| _ => 0%nat

end.

Definition chain_length (c:chain)
:= computation_length tt (c _ tt).

Compute chain_length C87.

= 9 : nat

2.5.3 Chains as a (small) programming language
The chain type can be considered as a tiny programming language dedicated
to compute powers in any EMonoid. Thus, we have to define a semantics for
this language. This semantics is defined in two parts:

• A structurally recursive function, — parameterized with an EMonoid M on a
given type A —, that computes the value associated with any computation
on M

• A polymorphic function that takes as arguments a chain c, a type A, an
EMonoid on A, and a value x:A, then executes the computation (c A x).

Fixpoint computation_execute {A:Type} (op: Mult_op A)
(c : computation) :=

match c with
| Return x => x
| Mult x y k => computation_execute op (k (x * y))
end.

Definition chain_execute (c:chain) {A} op (a:A) :=
computation_execute op (c A a).

Definition computation_eval `{M:@EMonoid A E_op E_one E_eq}
(c : computation) : A := computation_execute E_op c.

Definition chain_apply (c:chain)
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{M:@EMonoid A E_op E_one E_eq} a : A :=
computation_eval (c A a).

Project 2.1 Study how to compile efficiently such data structures.

Examples: The following interactions show how to apply the chain C87 for
exponentiation within two different monoids:

Compute chain_apply C87 3%Z.

= 323257909929174534292273980721360271853387%Z
: Z

Compute chain_apply C87 (M:=M2N) (Build_M2 1 1 1 0)%N.

= {|
c00 := 1100087778366101931%N;
c01 := 679891637638612258%N;
c10 := 679891637638612258%N;
c11 := 420196140727489673%N |}

: M2 N

2.5.3.1 Chain Correctness and Optimality

A chain is said to be correct with respect to a positive integer p if its execution
in any monoid computes p-th powers.

Definition chain_correct_nat (c: chain) (n:nat) :=
n <> 0 /\
forall `(M:@EMonoid A E_op E_one E_eq) (x:A),

chain_apply c x == x ^ n.

Definition chain_correct (c: chain) (p:positive) :=
chain_correct_nat c (Pos.to_nat p).

Definition 2.1 A chain c is optimal for a given exponent p if its length is less
or equal than the length of any chain correct for p.

Definition optimal (p:positive) (c : chain) :=
forall c', chain_correct p c' ->

(chain_length c <= chain_length c')%nat.
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2.6 Proving a chain’s correctness
In this section, we present various ways of proving that a given chain is correct
w.r.t. a given exponent. First, we just try to apply the definition in Sec-
tion 2.5.3.1 on the previous page, but this method is very inefficient, even for
small exponents. In a second step, we use more sophisticated techniques such
as reflection and parametricity. Automatic generation of correct chains will be
treated in Sect. 2.7 on page 52.

2.6.1 Proof by rewriting
Let us show how to prove the correctness of some chains, using the EMonoid
laws shown in Sect. 2.3.5 on page 27.

Ltac slow_chain_correct_tac :=
match goal with

[ |- chain_correct ?c ?p ] =>
let A := fresh "A" in
let op := fresh "op" in
let one := fresh "one" in
let eqv := fresh "eqv" in
let M := fresh "M" in
let x := fresh "x"
in split;

[discriminate |
unfold c, chain_apply, computation_eval; simpl;
intros A op one eq M x; monoid_simpl M; reflexivity]

end.

Example C7_ok : chain_correct C7 7.
Proof.

slow_chain_correct_tac.
Qed.

Unfortunately, this approach is terribly inefficient, even for quite small ex-
ponents:

Example C87_ok : chain_correct C87 87.
Proof.
Time slow_chain_correct_tac.

Finished transaction in 62.808 secs (62.677u,0.085s) (successful)

Qed.
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In addition to this big computation time, this approach generates a huge
proof term. Just try to execute the command “Print C87_ok” to get a mea-
sure of its size. In order to understand this poor performance, let us consider
an intermediate subgoal of the previous proof generated after a sequence of
unfoldings and simplifications. This goal is presented below.

1 subgoal, subgoal 1 (ID 219)

A : Type
E_op : Mult_op A
E_one : A
E_eq : Equiv A
M : EMonoid E_op E_one E_eq
x : A
============================
x * x * x * (x * x * x) * x * (x * x * x) *
(x * x * x * (x * x * x) * x * (x * x * x)) *
(x * x * x * (x * x * x) * x * (x * x * x) *
(x * x * x * (x * x * x) * x * (x * x * x))) *
(x * x * x * (x * x * x) * x * (x * x * x) *
(x * x * x * (x * x * x) * x * (x * x * x)) *
(x * x * x * (x * x * x) * x * (x * x * x) *
(x * x * x * (x * x * x) * x * (x * x * x)))) *

(x * x * x * (x * x * x) * x) ==
x *
(x *
(x *
(x *
(x *
(x *
(x *
(x *
(x *
(x *
(x *
(x *
(x *
(x * (x * (x * (x * (x * (x * (x * (x * (x * (x *
..))))))))))))))))))))))

This goal is solved by the following tactic composition:

monoid_simpl M; reflexivity.

This inefficiency certainly comes from the cost of setoid rewriting. At every
application of an EMonoid law, the system must verify that the context of this
rewriting is compatible with the equivalence relation associated with the current
EMonoid. The rest of this chapter is devoted to the presentation of more efficient
methods for proving chain correctness.
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2.6.2 Correctness Proofs by Reflection
Instead of letting the tactic rewrite look for contexts in which setoid rewrit-
ing is possible, we propose to use (deterministic) computations for obtaining a
“canonical” form for terms generated from a variable x by contructors associated
with monoid multiplication and neutral element.

The reader will find general explanations about proofs by reflection in Coq,
for instance in Chapter 16 of Coq’Art[5] and the numerous examples (including
the ring tactic) in Coq’s reference manual.

2.6.2.1 How does reflection work

Let us consider again the subgoal on page 43, the conclusion of which has the
form |a1 == a2|, where |a1| and |a2| are terms of type A. Instead of spending
space and time in setoid rewritings, we would like to normalize the terms |a1|
and |a2| and verify that the associated normal forms are equal.

Defining such a normalization function is possible on an inductive type.
The following type describes expressions composed of monoid operations and
inhabitants of a given type A.

(** Binary trees of multiplications over A *)

Inductive Monoid_Exp (A:Type) : Type :=
Mul_node (t t' : Monoid_Exp A) | One_node | A_node (a:A).

Arguments Mul_node {A} _ _.
Arguments One_node {A} .
Arguments A_node {A} _ .

Thus, the main steps of a correctness proof of a given chain, e.g. C87 will
be the following ones:

1. generate a subgoal as in page 43,

2. express each term of the equivalence as the image of a term of type
Monoid_Exp A,

3. normalize both terms and verify that their normal forms are equal.

The rest of this section is devoted to the definition of the normalization
function on Monoid_Exp A, and the proofs of lemmas that link equivalence on
type A and equality of normal forms of terms of type Monoid_Exp A.

2.6.2.2 Linearization function

The following functions help to transform any term of type Monoid_Exp A into
a flat “normal form”.
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Fixpoint flatten_aux {A:Type} (t fin : Monoid_Exp A)
: Monoid_Exp A :=

match t with Mul_node t t' =>
flatten_aux t (flatten_aux t' fin)

| One_node => fin
| x => Mul_node x fin

end.

Fixpoint flatten {A:Type} (t: Monoid_Exp A) : Monoid_Exp A :=
match t with
| Mul_node t t' => flatten_aux t (flatten t')
| One_node => One_node
| X => Mul_node X One_node
end.

2.6.2.3 Interpretation function

The function eval maps any term of type Monoid_Exp A into a term of type
A.

Function eval {A:Type} {op one eqv}
(M: @EMonoid A op one eqv)
(t: Monoid_Exp A) : A :=

match t with
| Mul_node t1 t2 => (eval M t1 * eval M t2)%M
| One_node => one
| A_node a => a

end.

The following two lemmas relate the linearization function flatten with the
interpretation function eval.

Lemma flatten_valid {A} `(M: @EMonoid A op one eqv):
forall t , eval M t == eval M (flatten t).
(* Proof omitted *)

Lemma flatten_valid_2 {A} `(M: @EMonoid A op one eqv):
forall t t' , eval M (flatten t) == eval M (flatten t') ->

eval M t == eval M t'.
(* Proof omitted *)

2.6.2.4 Transforming a multiplication into a tree

Let us now build a tool for building terms of type Monoid_Exp A out of terms of
type A containing multiplications of the form (_ * _)%M and the variable one.
In fact, what we want to define is an inverse of the function flatten.
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Since mult_op is not a constructor (see Sect. 2.3.1), the transformation of a
product of type A into a term of type Monoid_Exp A is done with the help of a
tactic:

(** "Quote" tactic *)

Ltac model A op one v :=
match v with
| (?x * ?y)%M => let r1 := model A op one x

with r2 := model A op one y
in constr:(@Mul_node A r1 r2)

| one => constr:(@One_node A)
| ?x => constr:(@A_node A x)
end.

For instance, the term (x * x * x * (x * x * x) * x) is transformed by
model in the following term of type Monoid_Exp A

(eval M
(Mul_node

(Mul_node
(Mul_node (Mul_node (A_node x) (A_node x)) (A_node x))
(Mul_node (Mul_node (A_node x) (A_node x)) (A_node x)))

(A_node x)))

2.6.3 reflection tactic
The tactic monoid_eq_A converts a goal of the form (E_eq X Y ), where X
and Y are terms of type A, into (E_eq (eval M (model X)) (eval M (model
Y))). This last goal is intended to be solved thanks to the lemma flatten_valid_2.

Ltac monoid_eq_A A op one E_eq M :=
match goal with
| [ |- E_eq ?X ?Y ] =>

let tX := model A op one X with
tY := model A op one Y in
(change (E_eq (eval M tX) (eval M tY)))

end.

2.6.3.1 Main reflection tactic

The tactic reflection_correct_tac tries to prove a chain’s correctness by
a comparison of two terms of type Monoid_Exp A: one being obtained from
the chain’s definition, the other one by expansion of the naïve exponentiation
definition.
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Ltac reflection_correct_tac :=
match goal with
[ |- chain_correct ?c ?n ] =>
split; [try discriminate |

let A := fresh "A"
in let op := fresh "op"
in let one := fresh "one"
in let E_eq := fresh "eq"
in let M := fresh "M"
in let x := fresh "x"
in (try unfold c); unfold chain_apply;
simpl; red; intros A op one E_eq M x;
unfold computation_eval;simpl;
monoid_eq_A A op one E_eq M;
apply flatten_valid_2;try reflexivity

]
end.

2.6.3.2 Example

The following dialogue clearly shows the efficiency gain over naïve setoid rewrit-
ing.

Example C87_ok : chain_correct C87 87.
Proof.
Time reflection_correct_tac.

Finished transaction in 0.038 secs (0.038u,0.s) (successful)

Qed.

This tactic is not adapted to much bigger exponents. In
Module Euclidean_Chains, for instance, we tried to apply this tactic for proving
the correctness of a chain associated with the exponent 45319. We had to inter-
rupt the prover, which was trying to build a linear tree of 2× 45319 + 1 nodes!
Indeed, using reflection_correct_tac is like doing a symbolic evaluation of
an inefficient (linear) exponentiation algorithm.

In the next section, we present a solution that avoids doing such a lot of
computations.

2.6.4 Chain correctness for —practically — free!
2.6.4.1 About parametricity

Let us now present another tactic for proving chain correctness, in the tradition
of works on parametricity and its use for proving properties on programs. Stra-

../V8.9/html/teaser.Powers.Euclidean_Chains.html#big_chain
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chey [38] explores the nature of parametric polymorphism: “Polymorphic func-
tions behave uniformly for all types” then Reynolds [32] formalizes this notion
through binary relations. Wadler [40], then Cohen et al. [19] use this relation
for deriving theorems about functions that operate on parametric polymorphic
types.

Let us look again at the definitions of type family computation and the type
chain:

Inductive computation {A:Type} : Type :=
| Return (a : A)
| Mult (x y : A) (k : A -> computation).

Definition chain := forall A:Type, A -> @computation A.

Let c be a closed term of type chain; c is of the form
fun (A:Type)(a:A) => ta, where ta is a term of type @computation A. Obvi-
ously, in every subterm of ta of type A, the two first arguments of constructor
Mult or the argument of Return are either a or a variable introduced as the
formal argument of a continuation k. In effect, there is no other way to build
terms of type A in the considered context.

Marc Lasson’s paramcoq plug-in (available as opam package coq-paramcoq)
generates a family of binary relations definitions from computation’s definition.

Inductive
computation_R (A B : Type) (R : A -> B -> Type)

: computation -> computation -> Type :=
| computation_R_Return_R :

forall (a1 : A) (a2 : B), R a1 a2 ->
computation_R A B R (Return a1) (Return a2)

| computation_R_Mult_R : forall (x1 : A) (x2 : B),
R x1 x2 ->
forall (y1 : A) (y2 : B),
R y1 y2 ->
forall (k1 : A -> computation)

(k2 : B -> computation),
(forall (H : A) (H0 : B),

R H H0 ->
computation_R A B R (k1 H) (k2 H0)) ->

computation_R A B R
(z <--- x1 times y1; k1 z)
(z <--- x2 times y2; k2 z)

Let A and B be two types, and R : A→B→Type a relation. Two com-
putations cA: @computation A and cB: @computation B are related w.r.t.
computation_R if every pair of arguments of Mult and Return at the same
position are related w.r.t. R.
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2.6.4.2 Definition

A chain c is parametric if it has the same behaviour for any pair of types A and
B, any relation R between A and B and any R-related pair of arguments a and
b:

Definition parametric (c:chain) :=
forall A B (R: A -> B -> Type) (a:A) (b:B),
R a b -> computation_R R (c A a) (c B b).

2.6.4.3 How to use these definitions?

Let us use parametricity for proving easily a given chain’s correctness. In other
words, let c be a chain and p:positive be a given exponent. Consider some
instance of EMonoid over a type A. We want to prove that the application of
the chain c to any value a of type A returns the value ap.

We first use Coq’s computation facilities for “guessing” the exponent asso-
ciated with any given chain. It suffices to instantiate “monoid multiplication”
with addition on positive integers.

Definition the_exponent_nat (c:chain) : nat :=
chain_apply c (M:=Natplus) 1%nat.

Definition the_exponent (c:chain) : positive :=
chain_execute c Pos.add 1%positive.

Compute the_exponent C87.

= 87%positive
: positive

We show how to prove that a given chain c, applied to any a, really computes
ap, where p = the_exponent c. Parametricity allows us to compare executions
on any monoid M with executions on NatPlus. Let us consider the following
mathematical relation

{(x, n) ∈ M × N | 0 < n ∧ x = an}

Definition power_R (a:A) :=
fun (x:A)(n:nat) => n <> 0 /\ x == a ^ n.

First, we prove the following lemma, that relates computation_R with the
result of the executions of the corresponding computations:

Lemma power_R_is_a_refinemnt (a:A) :
forall(gamma : @computation A)

(gamma_nat : @computation nat),
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computation_R (power_R a) gamma gamma_nat ->
power_R a (computation_eval gamma)

(computation_eval (M:= Natplus) gamma_nat).
(* Proof omitted *)

Thus, if c:chain is parametric, this refinement lemma allows us to prove a
correctness result:

Lemma param_correctness_nat :
forall c:chain, parametric c ->

chain_correct_nat c (the_exponent_nat c).
(* Proof omitted *)

A similar result can be proven with the exponent in positive. First we
instantiate the parameter R of computation_R, with the relation that links the
representations of natural numbers on respective types nat and positive. Then
we use our lemmas for rewriting under the assumption that the considered chain
is parametric. Please note how our approach is related with data refinement
(see also [19]). The reader may also consult a survey by D. Brown on the most
important contributions to the notion of parametricity [9].

Lemma exponent_pos2nat : forall c: chain, parametric c ->
the_exponent_nat c = Pos.to_nat (the_exponent c).

Lemma exponent_pos_of_nat : forall c: chain, parametric c ->
the_exponent c = Pos.of_nat (the_exponent_nat c).

Lemma param_correctness (c:chain) :
parametric c ->
chain_correct c (the_exponent c).

Proof.
intros; rewrite exponent_pos_of_nat; auto.
red; rewrite exponent_pos2nat;auto.
rewrite Pos2Nat.id, <- exponent_pos2nat;auto.
apply param_correctness_nat; auto.

Qed.

Lemma param_correctness suggests us a method for verifying that a given
chain c is correct w.r.t. some positive exponent p:

1. Verify that c is parametric.

2. Verify that p is equal to (the_exponent c).

2.6.4.4 How to prove a chain’s parametricity

Despite the apparent complexity of computation_R’s definition, it is very simple
to prove that a given chain is parametric. The following tactics proceed as
follows:
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1. Given a chain c, consider two types A and B, and any relation R:A->B->Prop,

2. Push into the context declarations of a:A, b:B and an hypothesis assuming
R a b.

3. Then the tactic crosses in parallel the terms (c A a) and (c B b) (of the
same structure),

• On a pair of terms of the form Mult xA yA (fun zA => tA) and
Mult xB yB (fun zB => tB), the tactic checks whether R xA xB
and R yA yB are already assumed in the context, then pushes into the
context the declaration of zA and zB and the hypothesis
Hz: R zA zB, then crosses the terms tA and tB

• On a pair of terms of the form (Return xA) and (Return xB), the
tactic just checks whether (R xA xB) is assumed.

The tactic itself is simpler than its explanation.

Ltac parametric_tac :=
match goal with [ |- parametric ?c] =>

red ; intros;
repeat (right;[assumption | assumption | ]);
left; assumption

end.

Example P87 : parametric C87.
Proof. Time parametric_tac.

Finished transaction in 0.005 secs (0.005u,0.s) (successful)

Qed.

2.6.4.5 Proving a chain’s correctness

Finally, for proving that a given chain c is correct with respect to an ex-
ponent p, it suffices to check that c is parametric, and to apply the lemma
param_correctness. The reader will note how this computation-less method
is much more efficient than our reflection tactic.

Ltac param_chain_correct :=
match goal with
[|- chain_correct ?c ?p ] =>
apply param_correctness; parametric_tac
end.

Lemma C87_ok' : chain_correct C87 87.
Time param_chain_correct.
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Finished transaction in 0.005 secs (0.005u,0.s) (successful)

Qed.

2.6.4.6 Remark

For the reasons exposed in Section 2.6.4.1 on page 48, it seems obvious that any
well-written chain is parametric. Unfortunately, we cannot prove this property
in Coq, for instance by induction on c, since chain is a product type and not
an inductive type.

Definition any_chain_parametric : Type :=
forall c:chain, parametric c.

Goal any_chain_parametric.
Proof.
intros c A B R a b ; induction c.

2 subgoals, subgoal 1 (ID 556)

c : chain
A : Type
B : Type
R : A -> B -> Type
a : A
b : B
a0 : A
============================
R a b -> computation_R R (Return a0) (c B b)

...

Abort.

Given this situation, we could admit (as an axiom) that any chain is para-
metric. Nevertheless, if a chain is under the form of a closed term, using
parametric_tac is so efficient than we prefer to avoid a shameful introduc-
tion of an axiom in our development.

2.7 Certified Chain Generators
In this section, we are interested in the correct by construction paradigm. We
just want to give a positive exponent to Coq and get a (hopefully) correct and
efficient chain for this exponent.
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We first define the notion of chain generator, then present a certified gen-
erator that simulates the binary exponentiation algorithm. Last, we present a
better chain generator based on integer division.

2.7.1 Definitions
We call chain generator any function that takes as argument any positive integer
and returns a chain.

Definition chain_generator := positive -> chain.

A generator g is correct it it returns a correct chain for any exponent:

Definition correct_generator (g : positive -> chain) :=
forall p, chain_correct p (g p).

Correct generators can be used for computing powers on the fly, thanks to
the following functions:

Definition cpower_pos (g : chain_generator) p
`{M:@EMonoid A E_op E_one E_eq} a :=

chain_apply (g p) (M:=M) a.

Definition cpower (g : chain_generator) n
`{M:@EMonoid A E_op E_one E_eq} a :=

match n with 0%N => E_one
| Npos p => cpower_pos g p a

end.

Note also that the use of chain generators is independent from the techniques
presented in Sect. 2.6: Designing an efficient and correct chain generator may
be a long and hard task. On the other hand, once a generator is certified, we
are assured of the correctness of all its outputs. Finally, we say that a generator
g is optimal if it returns chains whose length are less or equal than any chain
returned by any correct generator:

Definition optimal_generator (g : positive -> chain) :=
forall p:positive, optimal p (g p).

2.7.2 The binary chain generator
Let us reinterpret the binary exponentiation algorithms in the framework of
addition chains. Instead of directly computing xn for some base x and exponent
n, we build chains that describe the computations associated with the binary
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exponentiation method. Not surprisingly, this chain generation will be described
in terms of recursive functions, once the underlying monoid is fixed.

As for the ”classical” binary exponentiation algorithm, we define an auxiliary
computation generator for the product of an accumulator a with an arbitrary
power of some value x. Then, the main function builds a computation for any
positive exponent:

Fixpoint axp_scheme {A} p : A -> A -> @computation A :=
match p with

| xH => (fun a x => y <--- a times x ; Return y)
| xO q => (fun a x => x2 <--- x times x ; axp_scheme q a x2)
| xI q => (fun a x => ax <--- a times x ;

x2 <--- x times x ;
axp_scheme q ax x2)

end.

Fixpoint bin_pow_scheme {A} (p:positive)
: A -> @computation A:=

match p with
| xH => fun x => Return x
| xI q => fun x => x2 <--- x times x; axp_scheme q x x2
| xO q => fun x => x2 <--- x times x ; bin_pow_scheme q x2
end.

The following function associates a chain to any positive exponent:

Definition binary_chain (p:positive) : chain :=
fun A => bin_pow_scheme p.

Compute binary_chain 87.

= fun (A : Type) (x : A) =>
x0 <--- x times x;
x1 <--- x times x0;
x2 <--- x0 times x0;
x3 <--- x1 times x2;
x4 <--- x2 times x2;
x5 <--- x4 times x4;
x6 <--- x3 times x5;
x7 <--- x5 times x5;
x8 <--- x7 times x7;
x9 <--- x6 times x8;
Return x9

: chain
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2.7.2.1 Proof of binary_chain’s correctness

Let us now prove that binary_chain always returns correct chains. First, due
to the structure of this generator’s definition, we study the properties of the
auxiliary functions that operate on a given monoid M .

Section binary_power_proof.

Variables (A: Type)
(E_op : Mult_op A)
(E_one : A)
(E_eq: Equiv A).

Context (M : EMonoid E_op E_one E_eq).

Existing Instance Eop_proper.

Lemma axp_correct : forall p a x,
computation_eval (axp_scheme p a x) == a * x ^ (Pos.to_nat p).
(* Proof by induction on p *)

Lemma binary_correct :
forall p x,

computation_eval (bin_pow_scheme p (A:=A) x) ==
x ^ (Pos.to_nat p).

(* Proof by induction on p *)

End binary_power_proof.

Lemma binary_generator_correct : correct_generator binary_chain.
Proof.
red;unfold chain_correct, binary_chain, chain_apply;
split; [auto| intros A op one Eq M x; apply binary_correct].

Qed.

2.7.2.2 The binary method is not optimal

It is easy to prove by contradiction that the binary method is not the most effi-
cient for computing powers. First, let us assume that binary_chain is optimal:

Section non_optimality_proof.

Hypothesis binary_opt : optimal binary_chain.

Then, let us consider for instance the binary chain generated for the exponent
87.

Compute chain_length (binary_chain 87).
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= 10 : nat

Let us recall that C87’s length has been evaluated to 9 (Sect 2.5.2.3, and that
this chain is correct (Sect 2.6.4.5 on page 51). Thus, it is very easy to finish our
proof:

Lemma binary_generator_not_optimal : False.
Proof.

generalize (binary_opt gen _ _ C87_ok);
compute; omega.

Qed.

End non_optimality_proof.

2.7.2.3 Exercise

Prove that for any positive integer p, the length of any optimal chain for p is
less than twice the number of digits of the binary representation of p.

2.8 Euclidean Chains
In this section, we present an efficient chain generator. The chains built by
this generator are never longer than the chains built by the binary generator.
Moreover, for an infinite number of exponents, the chains it builds are strictly
shorter than the chain returned by binary_chain. Euclidean chains are based
on the following idea:

For generating a chain that computes xn, one may choose some
natural number 0 < p < n, and build a chain that computes first xp

then uses this value for computing xn.

For instance, a computation of x42 can be decomposed into a computation
of y = x3, then a computation of y14. The efficiency of the chain built with this
methods depends heavily on the choice of p. See [7] for details.

Considering chain generators and their correctness, we may consider the dual
of decomposition of exponents: we would like to write composable correct chain
generators. For instance, we want to build some object that, “composed” with
any correct chain for n, returns a correct chain for 3n.

2.8.0.0.1 Note: All the Coq material described in this section is available
on File coq/Exponentiation/Euclidean_Chains.v

2.8.1 Chains and Continuations : f-chains
Please consider the following small example:

../V8.9/Powers/Euclidean_Chains.v
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Example C3 : chain :=
fun A (x:A) =>
x2 <--- x times x;
x3 <--- x2 times x ;
Return x3.

The execution of this chain on some value x : A stops after computing x3,
because of the Return “statement”. However, we would like to compose the
instructions of C3 with a chain for another exponent n, in order to generate a
chain for the exponent 3× n.

Since computation is an inductive family of types, it could be possible to de-
fine a composition operator that works like list appending (replacing the Return
y of the first computation with the second computation). This approach is left
as an exercise. The solution we present is based on functional programming
and the concept of continuation.

Exercice 2.1 Develop the approach suggested in the previous paragraph.

2.8.1.1 Type definition of f-chains

Let us consider incomplete or open chains. Such an object waits for another
chain to resume a computation.

Figure 2.5 represents an f-chain associated with the exponent 3, as a dag
with an input and one output the edges of which are depicted as thick arrows.

x x2 x3

Figure 2.5: Graphical representation of F3

In other words, this kind of objects can be considered as functions from
chains to chains. So, we called their type Fchain.

First, we define a type of continuations, i.e. functions that wait for some
value x, then build a computation for raising x to some given exponent.

Definition Fkont (A:Type) := A -> @computation A.

An f-chain is just a polymorphic function that combines a continuation
and en element into a computation:

Definition Fchain := forall A, Fkont A -> A -> @computation A.
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2.8.1.2 Examples

Let us define a chain for computing the cube of some x, then sending the result
to a continuation k.

Definition F3 : Fchain :=
fun A k (x:A) =>
y <--- x times x ;
z <--- y times x ;
k z.

Any f-chain can be converted into a chain by the help of the following func-
tion:

Definition F2C (f : Fchain) : chain :=
fun (A:Type) => f A Return.

Compute the_exponent (F2C F3).

= 3%nat

In the rest of this chapter, we will use two other f-chains, respectively asso-
ciated with the exponents 1 and 2. Chains F1, F2 and F3 will form a basis to
generate chains for many exponents by composition of correct functions.

Definition F1 : Fchain :=
fun A k (x:A) => k x.

Definition F2 : Fchain :=
fun A k (x:A) =>

y <--- x times x ;
k y.

2.8.1.3 F-chain application and composition

The following definition allows us to consider any value f of type Fchain as a
function of type chain → chain.

Definition Fapply (f : Fchain) (c: chain) : chain :=
fun A x => f A (fun y => c A y) x.

In a similar way, composition of f-chains is easily defined (see Figure 2.6
on the facing page).

Definition Fcompose (f1 f2: Fchain) : Fchain :=
fun A k x => f1 A (fun y => f2 A k y) x.
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Lemma F1_neutral_l : forall f, Fcompose F1 f = f.
Proof. reflexivity. Qed.

Lemma F1_neutral_r : forall f, Fcompose f F1 = f.
Proof. reflexivity. Qed.

f1 f2

Figure 2.6: Composition of f-chains f1 and f2 (Fcompose)

2.8.1.4 Examples

The following examples show that the apparent complexity of the previous def-
inition is counterbalanced with the simplicity of using Fapply and Fcompose.

Example F9 := Fcompose F3 F3.

Compute F9.

= fun (A : Type) (x : Fkont A) (x0 : A) =>
x1 <--- x0 times x0;
x2 <--- x1 times x0; x3 <--- x2 times x2;
x4 <--- x3 times x2;
x x4

: Fchain

Remark F9_correct :chain_correct (F2C F9) 9.
Proof.
apply param_correctness_pos; lazy; parametric_tac.

Qed.

x x2 x3 y y2 y3
y := x

Figure 2.7: Composition of F-chains: F9

Using structural recursion and the operator FCompose, we build a chain for
any exponent of the form 2n:
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Fixpoint Fexp2_of_nat (n:nat) : Fchain :=
match n with O => F1

| S p => Fcompose F2 (Fexp2_of_nat p)
end.

Definition Fexp2 (p:positive) : Fchain :=
Fexp2_of_nat (Pos.to_nat p).

Compute Fexp2 4.

= fun (A : Type) (x : Fkont A) (x0 : A) =>
x1 <--- x0 times x0;
x2 <--- x1 times x1; x3 <--- x2 times x2;
x4 <--- x3 times x3; x x4

: Fchain

2.8.2 F-chain correctness
Let f be some term of type Fchain, and n:nat. We would like to say that f is
correct w.r.t. n:nat if for any continuation k and a, the application of f to k
and a computes k(an).

Module Bad.

Definition Fchain_correct (f : Fchain) (n:nat) :=
forall A `(M : @EMonoid A op E_one E_equiv) k (a:A),
computation_execute op (f A k a)==
computation_execute op (k (a ^ n)).

Let us now try to prove that F3 is correct w.r.t. 3.

Theorem F3_correct : Fchain_correct F3 3.
Proof.

intros A op E_one E_equiv M k a ; simpl.
monoid_simpl M.

A : Type
op : Mult_op A
E_one : A
E_equiv : Equiv A
M : EMonoid op E_one E_equiv
k : Fkont A
a : A
H : Proper (equiv ==> equiv ==> equiv) op
============================
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computation_execute op (k (a * a * a)) ==
computation_execute op (k (a * (a * (a * E_one))))

Abort.
End Bad.

This failure is due to a lack of an assumption that the continuation k is proper
with respect to the equivalence equiv. Thus, Coq is unable to infer from the
equivalence (a * a * a) == (a * (a * (a * E_one)))
that k (a * a * a) and k (a * (a * (a * E_one))) are equivalent compu-
tations.

2.8.2.0.1 Definition: A continuation k:Fkont A is proper if, whenever x
== y holds, the computations k x and k y are equivalent.

Class Fkont_proper
`(M : @EMonoid A op E_one E_equiv) (k: Fkont A ) :=

Fkont_proper_prf:
Proper (equiv ==> computation_equiv op E_equiv) k.

We are now able to improve our definition of correctness, taking only proper
continuations into account.

Definition Fchain_correct_nat (f : Fchain) (n:nat) :=
forall A `(M : @EMonoid A op E_one E_equiv) k

(Hk :Fkont_proper M k)
(a : A) ,

computation_execute op (f A k a) ==
computation_execute op (k (a ^ n)).

Definition Fchain_correct (f : Fchain) (p:positive) :=
Fchain_correct_nat f (Pos.to_nat p).

2.8.2.1 Examples

Let us show some manual correctness proofs for small f-chains:

Lemma F1_correct : Fchain_correct F1 1.
Proof.
intros until M ; intros k Hk a ; unfold F1; simpl.
apply Hk; monoid_simpl M; reflexivity.

Qed.

While proving F3’s correctness, we will have to apply the properness hypoth-
esis on k:
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Theorem F3_correct : Fchain_correct F3 3.
Proof.

intros until M; intros k Hk a; simpl.

A : Type
op : Mult_op A
E_one : A
E_equiv : Equiv A
M : EMonoid op E_one E_equiv
k : Fkont A
Hk : Fkont_proper M k
a : A
============================
computation_execute op (k (a * a * a)) ==
computation_execute op (k (a * (a * (a * E_one))))}

apply Hk.

...
============================

a * a * a == a * (a * (a * E_one))}

monoid_simpl M; reflexivity.
Qed.

Correctness of F2 is proved the same way:

Theorem F2_correct : Fchain_correct F2 2.
Proof.

intros until M; intros k Hk a; simpl;
apply Hk; monoid_simpl M; reflexivity.

Qed.

2.8.2.2 Composition of correct f-chains: a first attempt

We are now looking for a way to generate correct chains for any positive number.
It seems obvious that we could use Fcompose for building a correct f-chain for
n× p by composition of a correct f-chain for n and a correct f-chain for p.

Let us try to certify this construction:

Module Bad2.

Lemma Fcompose_correct_attempt :
forall f1 f2 n1 n2, Fchain_correct f1 n1 ->

Fchain_correct f2 n2 ->
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Fchain_correct (Fcompose f1 f2)
(n1 * n2).

(* Beginning of proof omitted *)

Hk : Fkont_proper M k
a, x, y : A
Hxy : x == y
============================
computation_execute op (f2 A k x) ==
computation_execute op (f2 A k y)

No hypothesis guarantees us that the execution of f2 respects the equivalence
x == y.

Abort.

Thus, we need to define also a notion of properness for f-chains. A first
attempt would be :

Module Bad3.

Class Fchain_proper_ (fc : Fchain) := Fchain_proper_prf :
forall `(M : @EMonoid A op E_one E_equiv) k ,

Fkont_proper M k
forall x y, x == y ->

@computation_equiv _ op E_equiv (fc A k x) (fc A k y).

This definition is powerful enough for proving that properness is preserved
by composition:

Instance Fcompose_proper_ (f1 f2 : Fchain)
(_ : Fchain_proper_simple f1)
(_ : Fchain_proper_simple f2) :

Fchain_proper_ (Fcompose f1 f2).
Proof.
intros until M;intros k Hk x y Hxy; unfold Fcompose;cbn.
apply (H _ _ _ _ M); auto.
intros u v Huv;apply (H0 _ _ _ _ M);auto.
Qed.

Nevertheless, we had to throw away this definition of properness: In further
developments (Sect. 2.8.3 on page 66) we shall have to compare executions of the
form fc A kx x and fc A ky y where x == y and kx and ky are “equivalent”
but not convertible continuations.

End Bad3.
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2.8.2.3 A better definition of properness

The following generalization will allow us to consider continuations that are
different (according to Leibniz equality) but lead to equivalent computations
and results.

Definition Fkont_equiv `(M : @EMonoid A op E_one E_equiv)
(k k': Fkont A ) :=
forall x y : A, x == y ->

computation_equiv op E_equiv (k x) (k' y).

Class Fchain_proper (fc : Fchain) := Fchain_proper_prf :
forall `(M : @EMonoid A op E_one E_equiv) k k' ,

Fkont_proper M k -> Fkont_proper M k' ->
Fkont_equiv M k k' ->
forall x y, x == y ->

@computation_equiv _ op E_equiv
(fc A k x)
(fc A k' y).

2.8.2.4 Examples

The definition above allows us to build simply several instances of the class
Fchain_proper:

Instance F1_proper : Fchain_proper F1.
Proof.

intros until M ; intros k k' Hk Hk' H a b H0; unfold F1; cbn;
now apply H.

Qed.

Ltac add_op_proper M H :=
let h := fresh H in

generalize (@Eop_proper _ _ _ _ M); intro h.

Instance F3_proper : Fchain_proper F3.
Proof.

intros A op one equiv M k k' Hk Hk' Hkk' x y Hxy;
apply Hkk'; add_op_proper M H; repeat rewrite Hxy;
reflexivity.

Qed.

We are now able to prove Fexp2 n’s correctness by induction on n:

Instance Fexp2_nat_proper (n:nat) :
Fchain_proper (Fexp2_of_nat n).

Proof.
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induction n; cbn.
- apply F1_proper.
- apply Fcompose_proper ; [apply F2_proper | apply IHn].

Qed.

Lemma Fexp2_nat_correct (n:nat) :
Fchain_correct_nat (Fexp2_of_nat n) (2 ^ n).

Proof.
induction n; cbn.
- apply F1_correct.
- rewrite Nat.add_0_r;

replace (2 ^ n + 2 ^ n)%nat with (2 * 2 ^n)%nat by omega;
apply Fcompose_correct_nat;auto.
+ apply F2_correct.
+ apply Fexp2_nat_proper.

Qed.

Lemma Fexp2_correct (p:positive) :
Fchain_correct (Fexp2 p) (2 ^ p).

(* Proof omitted *)

Instance Fexp2_proper (p:positive) : Fchain_proper (Fexp2 p).
(* Proof omitted *)

We are now able to build chains for any exponent of the form 2k × 3p, using
Fcompose. Les us look at a simple example:

Hint Resolve F1_correct F1_proper
F3_correct F3_proper Fcompose_correct Fcompose_proper
Fexp2_correct Fexp2_proper .

Example F144: {f : Fchain | Fchain_correct f 144 /\
Fchain_proper f}.

Proof.
change 144 with ( (3 * 3) * (2 ^ 4))%positive.
exists (Fcompose (Fcompose F3 F3) (Fexp2 4)); auto.
Defined.

Compute proj1_sig F144.

= fun (A : Type) (x : Fkont A) (x0 : A) =>
x1 <--- x0 times x0;
x2 <--- x1 times x0;
x3 <--- x2 times x2;
x4 <--- x3 times x2;
x5 <--- x4 times x4;
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x6 <--- x5 times x5;
x7 <--- x6 times x6;
x8 <--- x7 times x7;
x x8

: Fchain

2.8.3 Building chains for two distinct exponents : k-chains

2.8.3.1 Introduction

Not every chain can be built efficiently with Fcompose. For instance, consider
the exponent n = 23 = 3 + 24 + 22.

One may attempt to define a new operator for combining f-chains for n and
p into an f-chain for n+ p.

Definition Fplus (f1 f2 : Fchain) : Fchain :=
fun A k x =>
f1 A (fun y =>

f2 A (fun z => t <--- z times y; k t) x)
x.

For instance, we can define a chain for 23:

Let F23 := Fplus F3 (Fplus (Fexp2 4) (Fexp2 2)).

Unfortunately, our construct is still very inefficient, since it results in dupli-
cations of computations, as shown by the normal form of F23.

Compute F23

= fun (A : Type) (k : Fkont A) (x0 : A) =>
x1 <--- x0 times x0;
x2 <--- x1 times x0;
x3 <--- x0 times x0;
x4 <--- x3 times x3;
x5 <--- x4 times x4;
x6 <--- x5 times x5;
x7 <--- x0 times x0;
x8 <--- x7 times x7;
x9 <--- x8 times x6;
x10 <--- x9 times x2;
k x10

We observe that the variables x3 and x7 are useless, since they will have the
same value as x1. Likewise, computing x8 (same value as x4) is a waste of time.

A better scheme for computing x23 would be the following one:
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1. Compute x, x2, x3, and x6 = (x3)
2, then x7,

2. Compute x10 = x7 × x3, then x20

3. Finally, return x23 = x20 × x3

In fact, the first step of this sequence computes two values: x7 and x3, that
are re-used by the rest of the computation.

Like in some programming languages that allow ”multiple values”, like Scheme
and Common Lisp, we chosed to express this feature in terms of continuations
that accept two arguments. Thus, we extend our previous definitions to chains
that return two different powers of their argument2.

Definition Kkont A:= A -> A -> @computation A.

Definition Kchain := forall A, Kkont A -> A -> @computation A.

2.8.3.2 Examples

The chain k3_1 sends both values x and x3 to its continuation. Likewise, k7_3
“returns” x7 and x3.

Example k3_1 : Kchain := fun A (k:Kkont A) (x:A) =>
x2 <--- x times x ;
x3 <--- x2 times x ;
k x3 x.

Example k7_3 : Kchain := fun A (k:Kkont A) (x:A) =>
x2 <--- x times x;
x3 <--- x2 times x ;
x6 <--- x3 times x3 ;
x7 <--- x6 times x ;
k x7 x3.

x x2 x3
x x3

x

Figure 2.8: Graphical representation of K3_1

2The name Kchain comes from previous versions of this development. It may be changed
later.
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x x2 x3 x6 x7
x x7

x3

Figure 2.9: Graphical representation of K7_3

2.8.3.3 Definitions

First, we have to adapt to k-chains our definitions of correctness and properness.

Definition Kkont_proper `(M : @EMonoid A op E_one E_equiv)
(k : Kkont A) :=

Proper (equiv ==> equiv ==> computation_equiv op E_equiv) k .

Definition Kkont_equiv `(M : @EMonoid A op E_one E_equiv)
(k k': Kkont A ) :=

forall x y : A, x == y -> forall z t, z == t ->
computation_equiv op E_equiv (k x z) (k' y t).

A k-chain is correct with respect to two exponents n and p if it computes
xn and xp for any x in any monoid M .

Definition Kchain_correct_nat (kc : Kchain) (n p : nat) :=
forall `(M : @EMonoid A op E_one E_equiv)

(k : Kkont A),
Kkont_proper M k ->
forall (x : A) ,

computation_execute op (kc A k x) ==
computation_execute op (k (x ^ n) (x ^ p)).

Definition Kchain_correct (kc : Kchain) (n p : positive) :=
Kchain_correct_nat kc (Pos.to_nat n) (Pos.to_nat p).

Class Kchain_proper (kc : Kchain) :=
Kchain_proper_prf :
forall `(M : @EMonoid A op E_one E_equiv) k k' x y ,

Kkont_proper M k ->
Kkont_proper M k' ->
Kkont_equiv M k k' ->
E_equiv x y ->
computation_equiv op E_equiv (kc A k x) (kc A k' y).

2.8.3.4 Example

For instance, let us prove that k7_3 is proper and correct for the exponents 7
and 3.
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Instance k7_3_proper : Kchain_proper k7_3.
Proof.
intros until M; intros; red; unfold k7_3; cbn;
add_op_proper M H3; apply H1; rewrite H2; reflexivity.

Qed.

Lemma k7_3_correct : Kchain_correct k7_3 7 3.
Proof.
intros until M; intros; red; unfold k7_3; simpl.
apply H; monoid_simpl M; reflexivity.

Qed.

2.8.4 Systematic construction of correct f-chains and k-
chains

We are now ready to define various operators on f- and k-chains, and prove
these operators preserve correcness and properness. We will also show that
these operators allow to generate easily correct chains for any positive exponent.
They will be used to generate chains for numbers of the form n = bq + r where
0 ≤ r < b, assuming the previous construction of correct chains for r, b and q.
For instance, Figure 2.10 shows how K7_3 is built as a composition of K3_1 and
F2.

K3_1
x

F2
x3

x3

×x6

x

x7

Figure 2.10: Decomposition of K7_3

2.8.4.1 Conversion from k-chains into f-chains

Any k-chain for n and p can be converted into an f-chain, just by applying it to
a continuation that ignores its second argument.

◦
kn,p

x xn

Figure 2.11: The K2F (knp) construction

Definition K2F (knp : Kchain) : Fchain :=
fun A (k:Fkont A) => kc A (fun y _ => k y).
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Lemma K2F_correct :
forall knp n p, Kchain_correct kc n p ->

Fchain_correct (K2F knp) n.
(* Proof omitted *)

Instance K2F_proper (kc : Kchain)(_ : Kchain_proper kc) :
Fchain_proper (K2F kc).

(* Proof omitted} *)

2.8.4.2 Construction associated with Euclidean division with a pos-
itive rest

Let n = bq + r, with 0 < r < b. Then, for any x, xn = (xb)q × xr. Thus, we
can compose an chain that computes xb and xr with a chain that raises any y
to its q-th power for obtaining a chain that computes xn.

Kb,r
x

Fq
xb

xb

×

xr

xbq xbq+r

Figure 2.12: The KFK combinator

Definition KFK (kbr : Kchain) (fq : Fchain) : Kchain :=
fun A k a =>
kbr A (fun xb xr =>

fq A (fun y =>
z <--- y times xr; k z xb) xb) a.

Lemma KFK_correct :
forall (b q r : positive) (kbr : Kchain) (fq : Fchain),
Kchain_correct kbr b r ->
Fchain_correct fq q ->
Kchain_proper kbr ->
Fchain_proper fq ->
Kchain_correct (KFK kbr fq) (b * q + r) b.

(* Proof omitted *)

Instance KFK_proper :
forall (kbr : Kchain) (fq : Fchain),

Kchain_proper kbr ->
Fchain_proper fq ->
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Kchain_proper (KFK kbr fq)
(* Proof omitted *)

2.8.4.3 Ignoring the remainder

Let n = bq + r, with 0 < r < b. The following construction computes xr and
xb, then xbq, and finally sends xbq+r to the continuation, throwing away xb.

Kb,r
x

Fq
xb

×

xr

xbq xbq+r

Figure 2.13: The KFF combinator

Definition KFF (kbr : Kchain) (fq : Fchain) : Fchain :=
K2F (KFK kbr fq).

Lemma KFF_correct :
forall (b q r : positive) (kbr : Kchain) (fq : Fchain),
Kchain_correct kbr b r ->
Fchain_correct fq q ->
Kchain_proper kbr ->
Fchain_proper fq -> Fchain_correct (KFF kbr fq) (b * q + r).
(* Proof omitted *)

Instance KFF_proper :
forall (kbr : Kchain) (fq : Fchain),
Kchain_proper kbr -> Fchain_proper fq -> Fchain_proper (KFF kbr fq).
(* Proof omitted *)

2.8.4.4 Conversion of an f-chain into a k-chain

The following conversion is useful when a chain generation algorithm needs to
build a k-chain for exponents p and 1:

Definition FK (f : Fchain) : Kchain :=
fun (A : Type) (k : Kkont A) (a : A) =>

f A (fun y => k y a) a.

Lemma FK_correct : forall (p: positive) (Fp : Fchain),
Fchain_correct Fp p ->
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Fchain_proper Fp ->
Kchain_correct (FK Fp) p 1.

(* Proof omitted *)

Instance FK_proper (Fp : Fchain) (_ : Fchain_proper Fp):
Kchain_proper (FK Fp).

(* Proof omitted *)

2.8.4.5 Computing xp and xpq

Fp
x

Fq
xp

xp

xpq

Figure 2.14: The FFK combinator

Definition FFK (fp fq : Fchain) : Kchain :=
fun A k a => fp A (fun xb => fq A (fun y => k y xb) xb) a.

Lemma FFK_correct :
forall (p q : positive) (fp fq : Fchain),
Fchain_correct fp p ->
Fchain_correct fq q ->
Fchain_proper fp ->
Fchain_proper fq -> Kchain_correct (FFK fp fq) (p * q ) p.

(* Proof omitted *)

Instance FFK_proper
(fp: Fchain) (fq : Fchain)
(_ : Fchain_proper fp)
(_ : Fchain_proper fq) : Kchain_proper (FFK fp fq) .

(* Proof omitted *)

2.8.4.6 A correct-by-construction chain

A simple example will show us how to build correct chains for any positive
exponent, using the operators above.

Hint Resolve KFF_correct KFF_proper KFK_correct KFK_proper.

Definition F87 :=



2.8. EUCLIDEAN CHAINS 73

let k7_3 := KFK k3_1 (Fexp2 1) in
let k10_7 := KFK k7_3 F1 in
KFF k10_7 (Fexp2 3).

Lemma OK87 : Fchain_correct F87 87.
Proof.
unfold F87; change 87 with (10 * (2 ^ 3) + 7)%positive.
apply KFF_correct;auto.
change 10 with (7 * 1 + 3); apply KFK_correct;auto.
change 7 with (3 * 2 ^ 1 + 1)%positive; apply KFK_correct;auto.
Qed.

Note that this method of construction still requires some interaction from
the user. In the next section, we build a function that maps any positive number
n into a correct and proper chain for n. Thus correct chain generation will be
fully automated.

2.8.5 Automatic chain generation by Euclidean division
The goal of this section is to write a function make_chain (p:positive):
chain that builds a correct chain for p, using the Euclidean method above.
In other words, we want to get correct chains by computation. The correctness
of the result of this computation should be asserted by a theorem:

Theorem make_chain_correct :
forall p, chain_correct (make_chain p) p.

In the previous section, we considered two different kinds of objects: f-chains,
associated with a single exponent, and k-chains, associated with two exponents.
We would expect that the function make_chain we want to build and certify is
structured as a pair of mutually recursive functions. In Coq , various ways of
building such functions are available:

• Structural [mutual] recursion with Fixpoint

• Using Program Fixpoint

• Using Function.
Since our construction is based on Euclidean division, we could not define

our chain generator by structural recursion. For simplicity’s sake, we chosed to
avoid dependent elimination and used Function with a decreasing measure.

For this purpose, we define a single data-type for associated with the gener-
ation of F- and K-chains.

We had two slight technical problems to consider:
• The generation of a k-chain for n and p is meaningfull only if p < n.

Thus, in order to avoid a clumsy dependent pattern-matching, we chosed
to represent a pair (n, p) where 0 < p < n by a pair of positive numbers
(p, d) where d = n− p
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• In order to avoid to deal explicitely with mutual recursion, we defined a
type called signature for representing both forms of function calls. Thus,
it is easy to define a decreasing measure on type signature for proving
termination. Likewise, correctness and properness statements are also
indexed by this type.

Inductive signature : Type :=
| (** Fchain for the exponent n *)

gen_F (n:positive)
| (** Kchain for the exponents p+d and p *)

gen_K (p d: positive).

The following dependently-typed functions will help us to specify formally
any correct chain generator.

(**
exponent associated with a signature:

*)
Definition signature_exponent (s:signature) : positive :=
match s with
| gen_F n => n
| gen_K p d => p + d
end.

(**
Type of the associated continuation
*)

Definition kont_type (s: signature)(A:Type) : Type :=
match s with
| gen_F _ => Fkont A
| gen_K _ _ => Kkont A
end.

Definition chain_type (s: signature) : Type :=
match s with
| gen_F _ => Fchain
| gen_K _ _ => Kchain
end.

Definition correctness_statement (s: signature) :
chain_type s -> Prop :=
match s with

| gen_F p => fun ch => Fchain_correct ch p
| gen_K p d => fun ch => Kchain_correct ch (p + d) p

end.
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Definition proper_statement (s: signature) :
chain_type s -> Prop :=
match s with
| gen_F p => fun ch => Fchain_proper ch
| gen_K p d => fun ch => Kchain_proper ch

end.

(** Full correctness *)

Definition OK (s: signature)
:= fun c: chain_type s =>

correctness_statement s c /\
proper_statement s c.

2.8.6 The dichotomic strategy
Assume we want to build automatically a correct f-chain for some positive inte-
ger n. If n equals to 1, 3, or 2p for some positive integer p, this task is immediate,
thanks to the constants F1, F3 and Fexp2. Otherwise, like in [7], we decompose
n into bq + r, where 1 < b < n, and compose the recursively built chains for q
and r on one side, and q on the other side.

The efficiency of this method depends on the choice of b. In [7], the function
that maps n into b is called a strategy. In this chapter, we concentrate on the
so-called dichotomic strategy.

δ(n) = n÷ 2k where k = b(log2 n)/2c.
Intuitively, it corresponds to splitting the binary representation of a positive

integer into two halves. For instance, consider n = 87 its binary representation
is 1010111. The number b(log2 n)/2c is equal to 3. Dividing n by 23 gives the
decomposition n = 10 × 23 + 7. Thus, a chain for n = 87 can be built from a
chain computing both x7 and x10, and a chain that raises its argument to its
8− th power.

Module teaser.Powers.Dichotomy contains a definition of the function delta,
and proofs that if n > 3 then 1 < δ(n) < n.

2.8.7 Main chain generation function
We are now able to define a function that generates a correct chain for any
signature. We use the Recdef module of Standard Library, with an appropriate
measure.

Definition signature_measure (s : signature) : nat :=
match s with
| gen_F n => 2 * Pos.to_nat n
| gen_K p d => 2 * Pos.to_nat (p + d) +1

end.

../V8.9/Powers/Dichotomy.v
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The following function definition generates several proof obligations, for
proving that the measure on signatures is strictly decreasing along recursive
calls. Thus, there are 9 such obligations, which take the form of inequalities
between expressions that contain Euclidean divisions on positive numbers.

Function chain_gen (s:signature) {measure signature_measure}
: chain_type s :=

match s return chain_type s with
| gen_F i =>

if pos_eq_dec i 1 then F1 else
if pos_eq_dec i 3
then F3
else
match exact_log2 i with

Some p => Fexp2 p
| _ =>

match N.pos_div_eucl i (Npos (dicho i))
with
| (q, 0%N) =>
Fcompose (chain_gen (gen_F (dicho i)))

(chain_gen (gen_F (N2Pos q)))
| (q,r) => KFF (chain_gen

(gen_K (N2Pos r)
(dicho i - N2Pos r)))

(chain_gen (gen_F (N2Pos q)))

end end

| gen_K p d =>
if pos_eq_dec p 1 then FK (chain_gen (gen_F (1 + d)))
else

match N.pos_div_eucl (p + d) (Npos p) with
| (q, 0%N) => FFK (chain_gen (gen_F p))

(chain_gen (gen_F (N2Pos q)))
| (q,r) => KFK (chain_gen (gen_K (N2Pos r)

(p - N2Pos r)))
(chain_gen (gen_F (N2Pos q)))

end
end.

(* A lot of arithmetic proofs omitted *)
Defined.

Definition make_chain (n:positive) : chain :=
F2C (chain_gen (gen_F n)).

Thanks to the Recdef package, we are now able to get automatically built
chains using the dichotomic strategy.
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Compute make_chain 87.

= fun (A : Type) (x : A) =>
x0 <--- x times x;
x1 <--- x0 times x;
x2 <--- x1 times x1;
x3 <--- x2 times x;
x4 <--- x3 times x1;
x5 <--- x4 times x4;
x6 <--- x5 times x5;
x7 <--- x6 times x6;
x8 <--- x7 times x3;
Return x8

: chain

2.8.7.1 Correctness of the Euclidean chain generator

Recdef’s functional induction tactic allows us to prove that every value re-
turned by chain_gen s is correct w.r.t. s and proper. The proof obligations are
solved thanks to the previous lemmas on the composition operators on chains:
Fcompose, KFK, etc. Unfortunately, a lot of interaction is still needed or proving
properties of Euclidean division and binary logarithm. We plan to develop tools
for allowing us to write shorter proof scripts.

Lemma chain_gen_OK : forall s:signature, OK s (chain_gen s).
intro s; functional induction chain_gen s.
Proof.
(* A lot of arithmetic proofs omitted *)

Theorem make_chain_correct :
forall p, chain_correct (make_chain p) p.

Proof.
intro p; destruct (chain_gen_OK (gen_F p)).
unfold make_chain; apply F2C_correct; apply H.
Qed.

2.8.7.2 A last example

Let us compute 677776145319 with 32 bits integers:

Ltac compute_chain ch := let X := fresh "x" in
let Y := fresh "y" in
let X := constr:ch in
let Y := (eval vm_compute in X) in
exact Y.
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Let big_chain := ltac:(compute_chain (make_chain 6145319)).

Print big_chain.

big_chain =
fun (A : Type) (x : A) =>
x0 <--- x times x; x1 <--- x0 times x0;
x2 <--- x1 times x1; x3 <--- x2 times x1;
x4 <--- x3 times x3; x5 <--- x4 times x;
x6 <--- x5 times x5; x7 <--- x6 times x6;
x8 <--- x7 times x1; x9 <--- x8 times x5;
x10 <--- x9 times x8; x11 <--- x10 times x9;
x12 <--- x11 times x11; x13 <--- x12 times x11;
x14 <--- x13 times x10; x15 <--- x14 times x14;
x16 <--- x15 times x11; x17 <--- x16 times x16;
x18 <--- x17 times x17; x19 <--- x18 times x18;
x20 <--- x19 times x19; x21 <--- x20 times x20;
x22 <--- x21 times x21; x23 <--- x22 times x22;
x24 <--- x23 times x23; x25 <--- x24 times x24;
x26 <--- x25 times x25; x27 <--- x26 times x26;
x28 <--- x27 times x14; Return x28

: forall A : Type, A -> computation

Time Compute Int31.phi
(chain_apply big_chain (snd (positive_to_int31 67777))).

= 2014111041%Z
: Z

Finished transaction in 0.005 secs (0.005u,0.s) (successful)}

Compute chain_length big_chain.

= 29%nat
: nat

2.9 Projects

Project 2.2 (Optimality and relative efficiency)

1. Prove that the chain generated by Fexp2 is optimal.

2. Prove that the length of any optimal chain for n is greater or equal than
blog2 nc.
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3. Prove that, for any positive n, the length of any Euclidean chain gener-
ated by the dichotomic strategy is always less or equal than the length
of binary_chain n, and for an infinite number of positive integers n, the
first chain is strictly shorter than the latter.

4. Prove that our implementation of the dichotomic strategy describes the
same function as in the litterature (for instance [7].) This is important if
we want to follow the complexity analyses in this and similar articles.

5. Study how to compile a chain into imperative code, using a register allo-
cation strategy (it may be useful to define chain width ).

2.9.0.0.1 Remark: The first two questions of the list above should involve
a universal quantification on type chain. It may be necessary (but we’re not
sure) to consider some restriction on parametric chains.

Project 2.3 (Proof techniques)

1. Improve automated proofs on types positive and N.

2. Compare Program Fixpoint and Function for writing make_chain. Con-
sider measure vs well-founded relations, mutual recursion, possibility of
using sigma-types, etc.

3. Chains are always associated with strictly positive exponents. Thus, many
lemmas about chain correctness can be proved using semi-groups instead
of monoids. Define type classes for semi-groups and use them whenever
possible.
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Part II

Hydras and Ordinal
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Chapter 3

Hydras and Hydra Games

3.1 Introduction
Hydra games appeared in an article published in 1982 by two mathematicians:
L. Kirby and J. Paris [28]: Accessible Independence Results for Peano Arith-
metic, Kirby and Paris. Although the mathematical contents of this paper are
quite advanced, hydra games (a.k.a. hydra battles) are very easy to understand.
There are now several sites on Internet where you can find tutorials on hydra
games, together with simulators you can play with. See, for instance, the page
written by Andrej Bauer [3]. The author of the present document wishes to
express his gratitude to the late Patrick Dehornoy, whose talk was determinant
for our desire to work on this topic.

Hydra battles, as well as Goodstein Sequences [25, 28] are a nice way to
present complex termination problems. The article by Kirby and Paris presents
a proof of termination based on ordinal numbers, as well as a proof that this
termination is not provable in Peano arithmetic. In the book dedicated to J.P.
Jouannaud [20], N. Dershowitz and G. Moser give a thorough survey on this
topic [22].

Here, we present a development for the Coq proof assistant, after the work
of Kirby and Paris. This formalization contains the following main parts:

• Representation in Coq of hydras and hydra battles

• A proof that every battle is finite and won by Hercules. This proof is
based on a variant which maps any hydra to an ordinal strictly less than
ε0 and is strictly decreasing along any battle.

• Using a combinatorial toolkit designed by J. Ketonen and R. Solovay [27],
we prove that, for any ordinal µ < ε0, there exists no such variant mapping
any hydra to an ordinal stricly less than µ. Thus, the complexity of ε0 is
realy needed for the previous proof.

83
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We hope that such a work, besides exploring a nice piece of discrete maths,
will show how Coq and its standard library are well fitted to help us to under-
stand some non-trivial mathematical developments, and also to experiment the
constructive parts of the proof through functional programming.

We also hope to provide highlights on infinity (both potential and actual)
through the notions of function, computation, limit, types and proofs.

3.1.1 Remarks
In [28], Kirby and Paris showed that there is no proof of termination of all hydra
battles in Peano Arithmetic (PA). Since we are used to writing proofs in higher
order logic, the restriction to PA was quite unnatural for us. Thus, we chose to
consider a class of proofs using the full expressive power of CIC, and to measure
the difficulty of proving termination through an ordinal number.

Unlike mathematical literature, where definitions and proofs are spread over
many articles and books, the whole proof is now inside your computer. It is
composed of the .v files you downloaded and parts of Coq’s standard library.
Thus, there is no ambiguity in our definitions and the premises of the the-
orems. Furthermore, you will be able to navigate through the development,
using your favourite editor or IDE, and some commands like Search, Locate,
Print Assumptions Id, etc.

Except in the Schutte library, dedicated to an axiomatic presentation of
the set of countable ordinal numbers, all our development is axiom-free, and
respects the rules of intuitionistic logic.

3.1.1.0.1 Main references In our development, we adapt the definitions
and prove many theorems which we found in the following articles.

• “Accessible independence results for Peano arithmetic” by Laurie Kirby
and Jeff Paris [28]

• ”Rapidly growing Ramsey Functions” by Jussi Ketonen and Robert Solo-
vay [27]

• “The Termite and the Tower”, by Will Sladek [35]

3.2 On hydras
Technically, a hydra is just a finite ordered tree, each node of which has any
number of sons. Note that, contrary to the computer science tradition, we will
show the hydras with the heads up and the foot (i.e. the root of the tree) down.
Fig. 3.1 represents such a hydra, which will be referred to as Hy in our examples
(please look at the module ../V8.9/Ordinals/Hydra/Hydra_Examples.v).

We use a specific vocabulary for talking about hydras. Table 3.1 shows the
correspondance between our terminology and the usual vocabulary for trees in
computer science.

../V8.9/Ordinals/Hydra/Hydra_Examples.v
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Figure 3.1: The hydra Hy

Hydras Finite rooted trees
foot root
head leaf
node node
segment (directed) edge
sub-hydra subtree
daughter immediate subtree

Table 3.1: Translation from hydras to trees

The hydra Hy has a foot (below), five heads, and eight segments. We leave
it to the reader to define various parameters such as the height, the size, the
highest arity (number of sons of a node) of a hydra. In our example, these
parameters have the respective values : 4, 9 and 3.

3.2.1 The rules of the game
A hydra battle is a fight between Hercules and the Hydra. More formally, a
battle is a sequence of rounds. At each round:

• If the hydra is composed of just one head, the battle is finished and Her-
cules is the winner

• Otherwise, Hercules chops off one head of the hydra

– If the head is at distance 1 from the foot, the head is just lost by the
hydra

– Otherwise, let us denote by r the node that was at distance 2 from
the removed head in the direction of the foot, and consider the sub-
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hydra h′ of h, whose root is r 1. Let n be some natural number. Then
h′ is replaced by n + 1 of copies of h′ which share the same root r.
The replication number n may be different (and generally is) at each
round of the fight. It may be chosen by the hydra, according to its
strategy, or imposed by some particular rule. In many presentations
of hydra battles, this number is increased by 1 at each round. In the
following presentation, we will also consider battles where the hydra
is free to chose its number of replication at every round of the battle2.

Note that the description given in [28] of the replication process in hydra
battles is also semi-formal.

“From the node that used to be attached to the head which was
just chopped off, traverse one segment towards the root until the
next node is reached. From this node sprout n replicas of that part
of the hydra (after decapitation) which is “above” the segment just
traversed, i.e. those nodes and segments from which, in order to
reach the root, this segment would have to be traversed. If the head
just chopped off had the root of its nodes, no new head is grown. ”

Moreover, we note that this description is in imperative terms. In order to
build a formal study of the properties of hydra battles, we prefer to use math-
ematical language, i.e. graphs, relations, functions, etc. Thus, the replication
process will be represented as a binary relation on a data type Hydra, linking
the state of the hydra before and after the transformation. A battle will thus
be represented as a sequence of terms of type Hydra.

3.2.2 Example
Let us start a battle between Hercules and the hydra Hy of Fig. 3.1.

At the first round, Hercules choses to chop off the rightmost head of Hy.
Since this head is near the floor, the hydra loses this head. Let us call Hy' the
resulting state of the hydra, represented in Fig. 3.2 on the facing page.

Next, assume Hercules choses to chop off one of the two highest heads of
Hy', for instance the rightmost one. Fig. 3.3 on the next page represents the
rotten neck in dashed lines, and the part that will be replicated in red. Assume
also that the hydra decides to add 4 copies of the red part. We obtain a new
state Hy'' depicted in Fig. 3.4.

Figs. 3.5 and 3.6 on page 88 represent a possible third round of the battle,
with a replication factor equal to 2. Let us call Hy''' the state of the hydra
after that third round.

1h′ will be called “the wounded part of the hydra” in the subsequent text. In Figures 3.3
on the facing page and 3.5 on page 88, this sub-hydra is displayed in red.

2Let us recall that, if the chopped-off head was at distance 1 from the foot, the replication
factor is meaningless.
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Figure 3.2: Hy’: the state of Hy after one round

•

•

•

•

Figure 3.3: A beheading

•

•

•

•• • • • •

Figure 3.4: Hy”, the state of Hy after two rounds
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•• • • • •

Figure 3.5: A third beheading (wounded part in red)
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•

•

•• • • • •
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•

•• • • • •

•

•

•• • • • •

Figure 3.6: The configuration Hy”’ of Hy
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We leave it to the reader to guess the following rounds of the battle …

3.3 Hydras and their representation in Coq
Various Coq developments represent trees the nodes of which have a non-fixed
number of sons. The reader can, for instance, look at Chapter 14, pages 400-406
of [5]. Our representation uses two mutual inductive types: Hydra to represent
any hydra, and Hydrae to represent finite sequences of hydras.

From ../V8.9/Ordinals/Hydra/Hydra_Definitions.v

Inductive Hydra : Set :=
| node : Hydrae -> Hydra
with Hydrae : Set :=
| hnil : Hydrae
| hcons : Hydra -> Hydrae -> Hydrae.

Project 3.1 (**) Another very similar representation could use the list type
family instead of the specific type Hydrae:

Module Alt.

Inductive Hydra: Set :=
hnode (daughters : list Hydra).

End Alt.

Using this representation, re-define all the constructions of this chapter. You
will probably have to use patterns described for instance in [5] or the archives
of the Coq-club [21].

Project 3.2 The type Hydra above describes hydras as plane trees, i.e. as
drawn on a sheet of paper or computer screen. Thus, hydras are oriented, and
it is appropriate to consider a leftmost or rightmost head of the beast. It could
be interesting to consider another representation, in which every non-leaf node
has a multi-set – not an ordered list – of daughters.

3.3.0.1 Abbreviations

We provide several notations for “patterns” which occur often in our develop-
ments.

From ../V8.9/Ordinals/Hydra/Hydra_Definitions.v

(** heads *)
Notation head := (node hnil).

../V8.9/Ordinals/Hydra/Hydra_Definitions.v
../V8.9/Ordinals/Hydra/Hydra_Definitions.v
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(** nodes with 1, 2 or 3 daughters *)
Notation hyd1 h := (node (hcons h hnil)).
Notation hyd2 h h' := (node (hcons h (hcons h' hnil))).
Notation hyd3 h h' h'' :=

(node (hcons h (hcons h' (hcons h'' hnil)))).

For instance, the hydra Hy of Figure 3.1 on page 85 is defined in Gallina as
follows:

From ../V8.9/Ordinals/Hydra/Hydra_Examples.v

Example Hy := hyd3 head
(hyd2

(hyd1
(hyd2 head head))

head)
head.

Hydras quite frequently contain multiple copies of the same pattern. The
following functions will help us to describe and reason about replications in
hydra battles.

From ../V8.9/Ordinals/Hydra/Hydra_Definitions.v

Fixpoint hcons_mult (h:Hydra)(n:nat)(s:Hydrae):Hydrae :=
match n with
| O => s
| S p => hcons h (hcons_mult h p s)
end.

(** hydra with n copies of the same daughter *)

Definition hyd_mult h n :=
node (hcons_mult h n hnil).

For instance, the hydra Hy′′ of Fig 3.4 on page 87 can be defined in Coq as
follows:

From ../V8.9/Ordinals/Hydra/Hydra_Examples.v

Example Hy'' :=
hyd2 head

(hyd2 (hyd_mult (hyd1 head) 5)
head).

../V8.9/Ordinals/Hydra/Hydra_Examples.v
../V8.9/Ordinals/Hydra/Hydra_Definitions.v
../V8.9/Ordinals/Hydra/Hydra_Examples.v
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3.3.0.2 Recursive functions on type Hydra

For defining a recursive function over the type Hydra, one has to consider the
three constructors node, hnil and hcons of the mutually inductive types Hydra
and Hydrae. Let us define for instance the function that computes the number
of nodes of any hydra:

From ../V8.9/Ordinals/Hydra/Hydra_Definitions.v

Fixpoint hsize (h:Hydra) : nat :=
match h with node l => S (lhsize l)
end

with lhsize l : nat :=
match l with hnil => 0

| hcons h hs => hsize h + lhsize hs
end.

This definition results in the creation of three reduction rules:

Compute hsize Hy.

= 9
: nat

Likewise, the height (maximum distance between the foot and a head) is
defined by mutual recursion:

Fixpoint height (h:Hydra) : nat :=
match h with node l => lheight l
end

with lheight l : nat :=
match l with
| hnil => 0
| hcons h hs => Max.max (S (height h)) (lheight hs)
end.

Compute height Hy.

= 4
: nat

Exercice 3.1 Define a function max_degree: Hydra → nat which returns the
highest degree of a node in any hydra. For instance, the evaluation of the term
max_degree Hy should return 3.

../V8.9/Ordinals/Hydra/Hydra_Definitions.v
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3.3.1 Induction principles for hydras
In this section, we show how induction principles are used to prove properties
on the type Hydra. Let us consider for instance the following statement:

“ The height of any hydra is strictly less than its size. ”

3.3.1.1 A failed attempt

One may try to use the default tactic of proof by induction, that corresponds
to an application of the automatically generated induction principle for type
Hydra:

Hydra_ind :
forall P : Hydra -> Prop,
(forall h : Hydrae, P (node h)) -> forall h : Hydra, P h

Ler us start a simple proof by induction.
From ../V8.9/Ordinals/Hydra/Hydra_Examples.v

Module Bad.

Lemma height_lt_size (h:Hydra) :
height h <= hsize h.

Proof.
induction h as [s].

1 subgoal, subgoal 1 (ID 11)

s : Hydrae
============================
height (node s) <= hsize (node s)

We might be tempted to do an induction on the sequence s:

1 focused subgoal
(unfocused: 0), subgoal 1 (ID 19)

h : Hydra
s' : Hydrae
IHs' : height (node s') <= hsize (node s')
============================
height (node (hcons h s')) <= hsize (node (hcons h s'))

Note that the displayed subgoal does not contain any assumption on h, thus
there is no way to infer any property about the height and size of the hydra
(hcons h t).

../V8.9/Ordinals/Hydra/Hydra_Examples.v
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Abort.

End Bad.

3.3.1.2 A principle for mutual induction

In order to get an appropriate induction scheme for the types Hydra and Hydrae,
we can use Coq’s command Scheme.

Scheme Hydra_rect2 := Induction for Hydra Sort Type
with Hydrae_rect2 := Induction for Hydrae Sort Type.

Check Hydra_rect2.

Hydra_rect2
: forall (P : Hydra -> Type) (P0 : Hydrae -> Type),

(forall h : Hydrae, P0 h -> P (node h)) ->
P0 hnil ->
(forall h : Hydra, P h ->

forall h0 : Hydrae, P0 h0 -> P0 (hcons h h0)) ->
forall h : Hydra, P h

3.3.1.3 A correct proof

Let us now use Hydra_rect2 for proving that the height of any hydra is strictly
less than its size. Using this scheme requires an auxiliary predicate, called P0
in Hydra_rect2’s statement. Let us begin by defining an ad-hoc version of
List.Forall.

From ../V8.9/Ordinals/Hydra/Hydra_Examples.v

(** All elements of s satisfy P *)

Fixpoint h_forall (P: Hydra -> Prop) (s: Hydrae) :=
match s with

hnil => True
| hcons h s' => P h /\ h_forall P s'

end.

Lemma height_lt_size (h:Hydra) :
height h < hsize h.
Proof.
induction h using Hydra_rect2 with
(P0 := h_forall (fun h => height h < hsize h)).

1. The first subgoal is as follows:

../V8.9/Ordinals/Hydra/Hydra_Examples.v
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h: Hydrae
IHh : h_forall (fun h : Hydra => height h < hsize h) h
============================
height (node s) < hsize (node s)

This goal is easily solvable, using some arithmetic. We let the reader look
at the source of this development.

2. The second subgoal is trivial:

============================
h_forall (fun h : Hydra => height h < hsize h) hnil

reflexivity.

3. Finally, the last subgoal is also easy to solve:

h : Hydra
h0 : Hydrae
IHh : height h < hsize h
IHh0 : h_forall (fun h : Hydra => height h < hsize h) h0
============================
h_forall (fun h1 : Hydra => height h1 < hsize h1)

(hcons h h0)

split;auto.
Qed.

Exercice 3.2 It happens very often that, in the proof of a proposition of the
form ∀ h:Hydra, P h, the predicate P0 is h_forall P . Design a tactic for
induction on hydras that frees the user from binding explicitely P0, and solves
trivial subgoals. Apply it for writing a shorter proof of height_lt_size.

Exercice 3.3 The principles Hydra_rect2 and Hydrae_rect2, which allow to
build terms of sort Type, allow to build directly functions on types Hydra and
Hydrae. Please redefine the function hsize as an application of Hydra_rect2,
and prove that your version is extensionnaly equal to the one of Sect. 3.3.0.2.
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3.4 Relational description of hydra battles

In this section, we represent the rules of hydra battles as a binary relation
associated with a round, i.e. an interaction composed of the two following
actions:

1. Hercules chops one head off the hydra

2. Then, the hydra replicates the wounded part (if the head is at distance
≥ 2 from the foot).

The relation associated with each round of the battle is parameterized by the
expected replication factor (irrelevant if the chopped head is at distance 1 from
the foot).

In our description, we will apply the following naming convention: if h rep-
resents the configuration of the hydra before a round, then the configuration of
h after this round will be called h′. Thus, we are going to define a proposition
(round_n n h h′) whose intended meaning will be “ the hydra h is transformed
into h′ in a single round of a battle, with the expected replication factor n ”.

Since the replication of parts of the hydra depends on the distance of the
chopped head from the foot, we decompose our description into several cases,
under the form of a bunch of [mutually] inductive predicates over the types
Hydra and Hydrae.

We decompose the relation associated with each round in two cases:

R1 The chopped off head was at distance 1 from the foot.

R2 The chopped off head was at a distance greater or equal than 2 from the
foot.

3.4.1 Chopping off a head at distance 1 from the foot (re-
lation R1)

If Hercules chops a head near the floor, there is no replication at all. We use an
auxiliary predicate, associated with the removing of one head from a sequence
of hydras.
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From ../V8.9/Ordinals/Hydra/Hydra_Definitions.v

Inductive S0 : relation Hydrae :=
| S0_first : forall s, S0 (hcons head s) s
| S0_rest : forall h s s', S0 s s' ->

S0 (hcons h s) (hcons h s').

Inductive R1 : Hydra -> Hydra -> Prop :=
| R1_intro : forall s s', S0 s s' -> R1 (node s) (node s').

3.4.1.1 Example

Let us represent in Coq the transformation of the hydra of Fig. 3.1 on page 85
into the configuration represented in Fig. 3.2.

From ../V8.9/Ordinals/Hydra/Hydra_Examples.v

Example Hy_1 : R1 Hy Hy'.
Proof.

split; right; right; left.
Qed.

3.4.2 Chopping of a head at distance ≥ 2 from the foot
(relation R2)

Let us now consider beheadings where the chopped off head is at distance greater
or equal than 2 from the foot. All the following relations are parameterized by
the number n of new copies added by the hydra.

Let s be a sequence of hydras. The proposition S1 n s s' holds if s′ is
obtained by replacing some element h of s by n + 1 copies of h′, where R1 h
h' holds, in other words, h' is just h, without the chopped head. S1 is an
inductive relation with two constructors that allow to choose the position in s′

of the wounded sub-hydra h.
From ../V8.9/Ordinals/Hydra/Hydra_Definitions.v

Inductive S1 (n:nat) : Hydrae -> Hydrae -> Prop :=
| S1_first : forall s h h' ,

R1 h h' ->
S1 n (hcons h s) (hcons_mult h' (S n) s)

| S1_next : forall h s s',
S1 n s s' ->
S1 n (hcons h s) (hcons h s').

The rest of the definition is structured as two mutually inductive relations
on hydras and sequences of hydras. The first constructor of R2 describes the

../V8.9/Ordinals/Hydra/Hydra_Definitions.v
../V8.9/Ordinals/Hydra/Hydra_Examples.v
../V8.9/Ordinals/Hydra/Hydra_Definitions.v
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case where the chopped head is exactly at height 2. The others constructors
allow us to consider beheadings at height strictly greater than 2.

From ../V8.9/Ordinals/Hydra/Hydra_Definitions.v

Inductive R2 (n:nat) : Hydra -> Hydra -> Prop :=
| R2_intro : forall s s', S1 n s s' -> R2 n (node s) (node s')
| R2_intro_2 : forall s s', S2 n s s' -> R2 n (node s) (node s')

with S2 (n:nat) : Hydrae -> Hydrae -> Prop :=
| S2_first : forall h h' s ,

R2 n h h' ->
S2 n (hcons h s) (hcons h' s)

| S2_next : forall h r r',
S2 n r r' ->
S2 n (hcons h r) (hcons h r').

3.4.2.1 Example

Let us prove the transformation of Hy' into Hy'' (see Fig. 3.4 on page 87).
From ../V8.9/Ordinals/Hydra/Hydra_Examples.v

Example R2_example: R2 4 Hy' Hy''.
Proof.
right; right; left; right; left; left; left; split; left.

Qed.

3.4.3 Description of a round
We combine the two cases above into one relation. First, we define the relation
round_n n h h' where n is the expected number of replications (irrelevant in
the case of an R1-transformation).

From ../V8.9/Ordinals/Hydra/Hydra_Examples.v

Definition round_n n h h' := R1 h h' \/ R2 n h h'.

By abstraction over n, we define a round (small step) of a battle:

Definition round h h' := exists n, round_n n h h'.

Infix "-1->" := round (at level 60).

Project 3.3 Give a direct translation of Kirby and Paris’s description of hy-
dra battles (quoted on page 86) and prove that our relational description is
consistent with theirs.

../V8.9/Ordinals/Hydra/Hydra_Definitions.v
../V8.9/Ordinals/Hydra/Hydra_Examples.v
../V8.9/Ordinals/Hydra/Hydra_Examples.v
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3.4.4 Rounds and battles
Using library Relations.Relation_Operators, we define round_plus, the transi-
tive closure of round, and round_star, the reflexive and transitive closure of
round.

Definition round_plus := clos_trans_1n Hydra round.
Infix "-+->" := rounds (at level 60).

Definition round_star h h' := h = h' \/ round_plus h h'.
Infix "-*->" := round_star (at level 60).

Exercice 3.4 Prove the following lemma:

Lemma rounds_height : forall h h',
h -+-> h' -> height h' <= height h.

Remark 3.1 Coq’s library Coq.Relations.Relation_Operators contains three
logically equivalent definitions of the transitive closure of a binary relation.
This equivalence is proved in Coq.Relations.Operators_Properties .

Why three definitions for a single mathematical concept? Each definition
generates an associated induction principle. According to the form of statement
one would like to prove, there is a “best choice”:

• For proving ∀y, xR+ y → P y, prefer clos_trans_n1

• For proving ∀x, xR+ y → P x, prefer clos_trans_1n

• For proving ∀x y, xR+ y → P x y, prefer clos_trans,

But there is no “wrong choice” at all: the equivalence lemmas in
Coq.Relations.Operators_Properties allow the user to convert any one of the
three closures into another one before applying the corresponding elimination
tactic. The same remark also holds for reflexive and transitive closures.

Exercice 3.5 Define a restriction of round, where Hercules always chops off
the leftmost among the lowest heads.

Prove that, if h is not a simple head, then there exists a unique h′ such that
h is transformed into h' in one round, according to this restriction.

Exercice 3.6 (Interactive battles) Given a hydra h, the specification of a
hydra battle for h is the type {h':Hydra | h -*-> h'}. In order to avoid
long sequences of split, left, and right, design a set of dedicated tactics
for the interactive building of a battle. Your tactics will have the following
functionalities:

• Chose to stop a battle, or continue

https://coq.inria.fr/distrib/current/stdlib/Coq.Relations.Relation_Operators.html
https://coq.inria.fr/distrib/current/stdlib/Coq.Relations.Relation_Operators.html
https://coq.inria.fr/distrib/current/stdlib/Coq.Relations.Operators_Properties.html
https://coq.inria.fr/distrib/current/stdlib/Coq.Relations.Operators_Properties.html
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• Chose an expected number of replications

• Navigate in a hydra, looking for a head to chop off.

Use your tactics for simulating a small part of a hydra battle, for instance
the rounds which lead from Hy to Hy''' (Fig. 3.6 on page 88).

Hint: Please keep in mind that the last configuration of your interactively
built battle is known only at the end of the battle. Thus, you will have to
create and solve subgoals with existential variables. For that purpose, the tactic
eexists, applied to the goal {h':Hydra | h -*-> h'} generates the subgoal
h -*-> ?h'.

3.4.5 Classes of battles
In some presentations of hydra battles, e.g. [28, 3], the transformation associ-
ated with the i-th round may depend on i. For instance, in these articles, the
replication factor at the i-th round is equal to i. In other examples, one can
allow the hydra to apply any replication factor at any time. In order to be the
most general as possible, we define the type of predicates which relate the state
of the hydra before and after the i-th round of a battle.

From ../V8.9/Ordinals/Hydra/Hydra_Definitions.v

Definition dep_round_t := nat -> Hydra -> Hydra -> Prop.

Class Battle := {battle_r : dep_round_t;
battle_inclusion : forall i h h',

battle_r i h h' -> round h h'}.

The most general class of battles is free, which allows the hydra to chose
any replication factor at every step:

From ../V8.9/Ordinals/Hydra/Hydra_Definitions.v

Instance free : Battle.
Proof.
refine (Build_Battle (fun i h h' => round h h') _); auto.

Defined

The standard class corresponds to an arithmetic progression of the replica-
tion factor : 0, 1, 2, 3, . . . .

From ../V8.9/Ordinals/Hydra/Hydra_Definitions.v

Instance standard : Battle.
Proof.
refine (Build_Battle round_n _).
intros i h h' H; now exists i.
Defined.

../V8.9/Ordinals/Hydra/Hydra_Definitions.v
../V8.9/Ordinals/Hydra/Hydra_Definitions.v
../V8.9/Ordinals/Hydra/Hydra_Definitions.v
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3.4.6 Fights
Let b be some instance of class Battle. It is easy to define inductively the
relation between the i-th and the j-th steps of a battle of type b.

From ../V8.9/Ordinals/Hydra/Hydra_Definitions.v

Inductive fight (B:Battle) : nat -> Hydra -> nat -> Hydra -> Prop :=
| fight_1 : forall i h h', battle_r B i h h' ->

fight B i h (S i) h'
| fight_n : forall i h j h' h'', battle_r B i h h'' ->

fight B (S i) h'' j h' ->
fight B i h j h'.

Remark 3.2 The class free is strongly related with the transitive closure
round_plus, as expressed by the following lemmas.

From ../V8.9/Ordinals/Hydra/Hydra_Lemmas.v

Lemma fight_free_equiv1 : forall i j h h',
fight free i h j h' -> h -+-> h'.

Lemma fight_free_equiv2 : forall h h',
h -+-> h' ->

forall i, exists j, fight free i h j h'.

3.5 A long battle
In this section we show how long a hydra battle can last. The following example
considers a very small hydra, shown on figure 3.7.

•

•

Figure 3.7: The hydra hinit

Definition hinit := hyd3 (hyd_mult head 3) head head.

Moreover, in order to compute the length of a battle, we set Hercules strategy
: to chop the rightmost head at each round, and the hydra’s strategy : at the
i-th round, the replication factor is exactly i (which means that the battle is a
standard battle, see section 3.4.5 on the previous page).

../V8.9/Ordinals/Hydra/Hydra_Definitions.v
../V8.9/Ordinals/Hydra/Hydra_Lemmas.v
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The battle is so long that no test can give us an estimation of its length,
and we do need the expressive power of logic to compute this length. How-
ever, in order to guess this length, we made some experiments, computing with
Gallina, Coq’s functional programming language. Thus, we can consider this
development as a collaboration of proof and computation.

We want to verify whether Hercules wins a standard battle starting from
hinit at time t = 0 , and in this case, in how many rounds. We assume
Hercules’ strategy is to chop off the rightmost head at every round.

All the experiment is described in file ../V8.9/Ordinals/Hydra/BigBattle.
v.

(* ICI *)
During the two first rounds, our hydra loses its two rightmost heads. Thus

just before the third round, it looks like in figure 3.8.

•

•

Figure 3.8: The hydra (hyd1 h3)

The following lemma is a formal statement about the two first rounds of the
battle.

Lemma L_0_2 : fight standard 0 hinit 2 (hyd1 h3).

A first study with pencil and paper suggested us that, after three rounds,
the hydra always look like in figure 3.9 on the next page (with a variable number
of subtrees of height 1 or 0). Thus, we introduce handy notations.

Notation h3 := (hyd_mult head 3).
Notation h2 := (hyd_mult head 2).
Notation h1 := (hyd1 head).

Definition hyd a b c :=
node (hcons_mult h2 a

(hcons_mult h1 b
(hcons_mult head c hnil))).

For instance Fig 3.9 on the following page shows the hydra (hyd 3 4 2).
The hydra hyd 0 0 0 is the “final” hydra of any terminating battle, i.e. a tree
whith exactly one node and no edge.

With these notations, we get a formal description of the three first rounds.

../V8.9/Ordinals/Hydra/BigBattle.v
../V8.9/Ordinals/Hydra/BigBattle.v
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•

• • • • • • •

Figure 3.9: The hydra (hyd 3 4 2)

Lemma L_2_3 : fight standard 2 (hyd1 h3) 3 (hyd 3 0 0).

Lemma L_0_3 : fight standard 0 hinit 3 (hyd 3 0 0).

We would like to have a formal proof that the length of the considered battle
is equal to some integer N , but we have first to guess this number. In order
to study experimentally the different configurations of the battle, we will use
a simple datatype for representing the states as tuples composed of the round
number, and the respective number of daughters h2, h1, and heads of the current
hydra.

Record state : Type :=
mks {round: nat ; n2 : nat ; n1 : nat ; nh : nat}.

The following function returns the next configurarion of the game. Note that
this function is defined only for making experiments and is not “certified”. For-
mal proofs about our battle will only start with the lemma lemma:step-fight,
page 105.

Definition next (s : state) :=
match s with
| mks round a b (S c) => mks (S round) a b c
| mks round a (S b) 0 => mks (S round) a b (S round)
| mks round (S a) 0 0 => mks (S round) a (S round) 0
| s => s
end.

We can make bigger steps through iterations of next.

Fixpoint iterate {A:Type} (f : A -> A) (n:nat) (x: A) :=
match n with
| 0 => x
| S p => f (iterate f p x)

end.
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The following function allows us to compute the state of the battle at round
n.

Definition test n := iterate next (n-3) (mks 3 3 0 0).

Compute test 3.
(**

= {| round := 3; n2 := 3; n1 := 0; nh := 0 |}
: state
*)

Compute test 4.
(*

= {| round := 4; n2 := 2; n1 := 4; nh := 0 |}
: state

*)

Compute test 5.
(*

= {| round := 5; n2 := 2; n1 := 3; nh := 5 |}
: state

*)

Compute test 2000.
(*
= {| round := 2000; n2 := 1; n1 := 90; nh := 1102 |}

: state
*)

The computations above illustrate the limitations of blind tests. The bat-
tle we study seems to be awfully long. Let us concentrate our tests on some
particular events : the states where nh = 0

From the value of test 5, it is obvious that at the 10-th round, the counter
nh will be equal to zero.

Compute test 10.
(*

= {| round := 10; n2 := 2; n1 := 3; nh := 0 |}
: state

*)

Thus, (1+11) rounds later, the n1 field will be equal to 2, and nh will equal
to 0.

Compute test 22.
(*
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= {| round := 22; n2 := 2; n1 := 2; nh := 0 |}
: state

*)

Compute test 46.
(*

= {| round := 46; n2 := 2; n1 := 1; nh := 0 |}
: state

*)

Compute test 94.

(*

= {| round := 94; n2 := 2; n1 := 0; nh := 0 |}
: state

*)

Next round, we decrement n2 and set n1 to 95.

Compute test 95.

(*

= {| round := 95; n2 := 1; n1 := 95; nh := 0 |}
: state

*)

We now have some intuition of the sequence. It looks like the next “nh=0
” event will happen at the 192 = 2(95 + 1)-th round, then at the 2(192 + 1)-th
round.

Definition doubleS (n : nat) := 2 * (S n).

Compute test (doubleS 95).

(**
= {| round := 192; n2 := 1; n1 := 94; nh := 0 |}

: state
*)

Compute test (iterate doubleS 2 95).
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(*
= {| round := 386; n2 := 1; n1 := 93; nh := 0 |}

: state
*)

We are now able to reason about the sequence of transitions defined by our
hydra battle. Instead of using the data-type state we study the relationship
between different configurations of the battle.

Let us define a binary relation associated with every round of the battle. In
the following definition i is associated with the round number (or date, if we
consider a discrete time), and a, b, c respectively associated with the number
of h2, h1 and heads connected to the hydra’s foot.

Inductive one_step (i: nat) :
nat -> nat -> nat -> nat -> nat -> nat -> Prop :=

| step1 : forall a b c, one_step i a b (S c) a b c
| step2 : forall a b , one_step i a (S b) 0 a b (S i)
| step3 : forall a, one_step i (S a) 0 0 a (S i) 0.

The relation between one_step and the rules of hydra battle is asserted by
the following lemma.

Lemma step_fight : forall i a b c a' b' c',
one_step i a b c a' b' c' ->
fight standard i (hyd a b c) (S i) (hyd a' b' c').

Next, we define “big steps” as the transitive closure of one_step, and reach-
ability (from the initial configuration of figure 3.7 at time 0).

Inductive steps : nat -> nat -> nat -> nat ->
nat -> nat -> nat -> nat -> Prop :=

| steps1 : forall i a b c a' b' c',
one_step i a b c a' b' c' -> steps i a b c (S i) a' b' c'

| steps_S : forall i a b c j a' b' c' k a'' b'' c'',
steps i a b c j a' b' c' ->
steps j a' b' c' k a'' b'' c'' ->
steps i a b c k a'' b'' c''.

Definition reachable (i a b c : nat) : Prop :=
steps 3 3 0 0 i a b c.

The following lemma establishes a relation between steps and the predicate
fight.

Lemma steps_fight : forall i a b c j a' b' c',
steps i a b c j a' b' c' ->
fight standard i (hyd a b c) j (hyd a' b' c').
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Thus, any result about steps will be applicable to standard fights. Using
the predicate steps our study of the length of the considered battle can be
decomposed into three parts:

1. Characterization of regularities of some events

2. Study of the beginning of the battle

3. Computing the exact length of the battle.

First, we prove that, if at round i the hydra is equal to (hyd a (S b) 0),
then it will be equal to (hyd a b 0) at the 2(i+ 1)-th round.

Lemma LS : forall c a b i, steps i a b (S c) (i + S c) a b 0.
Proof.

induction c.
- intros; replace (i + 1) with (S i).

+ repeat constructor.
+ ring.

- intros; eapply steps_S.
+ eleft; apply rule1.
+ replace (i + S (S c)) with (S i + S c) by ring; apply IHc.

Qed.

Lemma doubleS_law : forall a b i, steps i a (S b) 0 (doubleS i) a b 0.
Proof.

intros; eapply steps_S.
+ eleft; apply step2.
+ unfold doubleS; replace (2 * S i) with (S i + S i) by ring;

apply LS.
Qed.

Lemma reachable_S : forall i a b, reachable i a (S b) 0 ->
reachable (doubleS i) a b 0.

Proof.
intros; right with (1 := H); apply doubleS_law.

Qed.

From now on, the lemma reachable_S allows us to watch larger steps of the
fight.

Lemma L4 : reachable 4 2 4 0.
Proof.

left; constructor.
Qed.

Lemma L10 : reachable 10 2 3 0.
Proof.
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change 10 with (doubleS 4).
apply reachable_S, L4.

Qed.

Lemma L22 : reachable 22 2 2 0.
Proof.
change 22 with (doubleS 10).
apply reachable_S, L10.

Qed.

Lemma L46 : reachable 46 2 1 0.
Proof.
change 46 with (doubleS 22); apply reachable_S, L22.

Qed.

Lemma L94 : reachable 94 2 0 0.
Proof.
change 94 with (doubleS 46); apply reachable_S, L46.

Qed.

Lemma L95 : reachable 95 1 95 0.
Proof.
eapply steps_S.
- eexact L94.
- repeat constructor.

Qed.

We are now able to make giant steps in the simulation of the battle. First,
we iterate the lemma reachable_S.

Lemma Bigstep : forall b i a , reachable i a b 0 ->
reachable (iterate doubleS b i) a 0 0.

Proof.
induction b.
- trivial.
- intros; simpl; apply reachable_S in H.

rewrite <- iterate_comm; now apply IHb.
Qed.

Applying lemmas BigStep and L95 we make a first jump.

Definition M := (iterate doubleS 95 95).

Lemma L2_95 : reachable M 1 0 0.
Proof.
apply Bigstep, L95.

Qed.
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Figure 3.10 represents the hydra at the M -th round. At the M+1-th round,
it will look like in fig 3.11.

•

•

Figure 3.10
The state of the hydra after M rounds.

•

• • • •

. . .

. . . • •

Figure 3.11
The state of the hydra after M + 1 rounds (with M + 1 heads).

Lemma L2_95_S : reachable (S M) 0 (S M) 0.
Proof.

eright.
- apply L2_95.
- left; constructor 3.

Qed.

Then, applying once more the lemma BigStep, we get the exact time when
Hercules wins!

Definition N := iterate doubleS (S M) (S M).

Theorem SuperbigStep : reachable N 0 0 0 .
Proof.

apply Bigstep, L2_95_S.
Qed.
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We are now able to prove formally that the considered fight is composed of
N steps.

Lemma Almost_done :
fight standard 3 (hyd 3 0 0) N (hyd 0 0 0).

Proof.
apply steps_fight, SuperbigStep.

Qed.

Theorem Done :
fight standard 0 hinit N head.

Proof.
eapply fight_trans.
- apply Almost_done.
- apply L_0_3.

Qed.

Now, we would like to get an intuition of how big the number N is. For that
purpose, we use a minoration of the function doubleS by the function fun n
=> 2 * n.

Definition exp2 n := iterate (fun n => 2 * n) n 1.

Using some facts (proven in ../V8.9/Ordinals/Hydra/BigBattle.v) we
get several minorations.

Lemma minoration_0 : forall n, 2 * n <= doubleS n.

Lemma minoration_1 : forall n x, exp2 n * x <= iterate doubleS n x.

Lemma minoration_2 : exp2 95 * 95 <= M.

Lemma minoration_3 : exp2 (S M) * S M <= N.

Lemma minoration : exp2 (exp2 95 * 95) <= N.

The number N is greater or equal than 22
95×95. If we wrote N in base 10,

N would require at least 1030 digits!

3.6 Reasoning about any battle
The example we just studied shows that the termination of any battle may take
a very long time. If we want to study hydra battles in general, we have to
consider any hydra and any strategy, both for Hercules and the hydra itself.
So, we first give some definitions, generally borrowed from transition systems
vocabulary (see [39] for instance).

../V8.9/Ordinals/Hydra/BigBattle.v
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3.6.1 Termination of all battles
The termination of all battles is naturally expressed by the predicate well_founded
defined in the module Coq.Init.Wf of the Standard Library.

Definition Termination := well_founded (transp _ round).

3.6.2 Reachability
Let b be an instance of battle. We say that a configuration (i, h) is reachable if
there exists some initial hydra h0 such that the transformation from (0, h0) into
(i, h) belongs to b. The following inductive definition considers also the case
where i = 0 and h = h0.

From ../V8.9/Ordinals/Hydra/Hydra_Definitions.v

Inductive reachable (b : Battle)
: nat -> Hydra -> Prop :=

| reachable_0 : forall h1, reachable b 0 h1
| reachable_S : forall i h h0, fight b 0 h0 i h ->

reachable b i h.

A nice property of the classes free and standard is that every configuration
(i, h) is reachable. It is sufficient to add i heads to h’s foot and start the battle
at time 0.

From ../V8.9/Ordinals/Hydra/Hydra_Lemmas.v

Lemma reachable_free : forall i h, reachable free i h.

Lemma reachable_standard : forall h i, reachable standard i h.

3.6.3 Liveliness
We say that a kind b of battles is alive if for any reachable configuration (i, h),
where h is not a head, there exists a further step in class b.

From ../V8.9/Ordinals/Hydra/Hydra_Definitions.v

Definition Alive (b : Battle) :=
forall i h,
reachable b i h -> h <> head ->
{h' : Hydra | b i h h'}.

The theorems Alive_free and Alive_standard of the module ../V8.9/
Ordinals/Hydra/Hydra_Theorems show that the classes free and standard
satisfy this property.

../V8.9/Ordinals/Hydra/Hydra_Definitions.v
../V8.9/Ordinals/Hydra/Hydra_Lemmas.v
../V8.9/Ordinals/Hydra/Hydra_Definitions.v
../V8.9/Ordinals/Hydra/Hydra_Theorems
../V8.9/Ordinals/Hydra/Hydra_Theorems
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Theorem Alive_free: Alive free.

Theorem Alive_standard: Alive standard.

Both theorems are proved with the help of the following strongly specified
function:

From ../V8.9/Ordinals/Hydra/Hydra_Lemmas.v

Definition next_round_dec n :
forall h , (h = head) + {h' : Hydra & {R1 h h'} + {R2 n h h'}}.

3.7 Termination
In this section, we are interested in proofs of termination of all battles for a
given class of battles, and specifically proofs by variants.

Let b be an instance of class Battle. A variant for b consists in a well-
founded relation < on some type A, and a function (also called a measure)
m:Hydra->A such that for any successive steps (i, h) and (1+, h′) of a battle in
b, the inequality m(h′) < m(h) holds.

From ../V8.9/Ordinals/Hydra/Hydra_Definitions.v

Class Hvariant {A:Type}{Lt:relation A}(Wf: well_founded Lt)(b : Battle)
(m: Hydra -> A): Prop :=
{variant_decr :forall i h h', reachable b i h -> h <> head ->

b i h h' -> Lt (m h') (m h)}.

Exercice 3.7 Prove that, if there is an instance of Hvariant Lt wf_Lt b m,
then there exists no infinite battle in b.

3.7.1 Some failed attempts
The class Hvariant is parameterized by a well-founded order < on some type
A, a class of battles b and a measure m. When < or m are badly given for a
given class b, one may fail to find a variant.

In this section, we present some naïve attempts, where we fail to build proof
a termination of free battles.

3.7.1.1 Using the Hydra’s height as a variant

A first plan to prove termination of all hydra battles is to use a simple measure
that maps any hydra to a natural number. For instance, let us check whether
the function height could be such a variant.

../V8.9/Ordinals/Hydra/Hydra_Lemmas.v
../V8.9/Ordinals/Hydra/Hydra_Definitions.v
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•

•

Figure 3.12

Unfortunately, that does not work. Please consider the hydras of Fig. 3.15
on page 116 and 3.12. The former can be transformed into the latter in one
round, but their heights are equal.

From ../V8.9/Ordinals/Hydra/Omega_Small.v

Lemma height_bad : ~ Hvariant lt_wf free height.
Proof.

intros [H];
specialize (H 1 (hyd1 (hyd2 head head)) (hyd1 (hyd1 head)));
apply (lt_irrefl 2), H.
- apply reachable_free.
- discriminate.
- exists 0; right; R2_here 0; left.

Qed.

3.7.1.2 Using any variant defined on nat

We could imagine that our previous failure is due to the choice of height as a
measure, and that a more complex function would work. In fact, we can prove
that no instance of class WfVariant round Peano.lt m can be build, where
m is any function of type Hydra → nat.

Let us present the main steps of that proof, the script of which is in the
module Omega_Small.v 3.

Let us assume there is a variant m from Hydra into nat for proving the
termination of all hydra battles.

Section Impossibility_Proof.
Variable m : Hydra -> nat.
Hypothesis Hvar : Hvariant lt_wf free m.

We define an injection from the type nat into Hydra. For any natural number
i, ι(i) is the hydra composed of a foot and i+1 heads at height 1. For instance,
Fig. 3.13 represents the hydra ι(3).

3 The name of this file means “the ordinal ω is too small for proving the termination of
[free] hydra battles ”. In effect, the elements of ω, considered as a set, are just the natural
numbers.

../V8.9/Ordinals/Hydra/Omega_Small.v
../V8.9/html/teaser.Ordinals.Hydra.Omega_Small.html
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•

Figure 3.13: The hydra ι(3)

Let iota (i: nat) := hyd_mult head (S i).

Let us consider now some hydra big_h out of the range of the injection ι
(see Fig. 3.12 on the facing page).

Let big_h := hyd1 (hyd1 head).

Using the functions m and ι, we define a second hydra small_h, and show
there is a one-round battle that transforms big_h into small_h. Please note
that, due to the hypothesis Hvar, we are interested in the termination of free
battles. There is no problem to consider a round with m big_h as replication
factor.

Let small_h := iota (m big_h).

Fact big_to_small : big_h -1-> small_h.
Proof.

exists (m big_h); right; repeat constructor.
Qed.

But, by hypothesis, m is a variant. Hence, we infer the following inequality.

Lemma m_lt : m small_h < m big_h.

In order to get a contradiction, it suffices to prove the inequality m big_h
<= m small_h, i.e. m big_h <= m (iota (m big_h)).

More generally, we prove the following lemma:

Lemma m_ge : forall i:nat , i <= m (iota i).

Intuitively, it means that, from any hydra of the form iota i, the battle will
take i rounds. Thus the associated measure cannot be less than i. Technically,
we prove this lemma by Peano induction on i.

• The base case i = 0 is trivial

• Otherwise, let i be any natural number and assume the inequality i ≤
m(ι(i).
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1. But the hydra ι(S(i)) can be transformed in one round into ι(i) (by
losing its righmost head, for instance)

2. Since m is a variant, we have m(ι(i)) < m(ι(S(i))), hence i <
m(ι(S(i))), which implies S(i) ≤ m(ι(S(i))).

Then our proof is almost finished.

Theorem Contradiction : False.
Proof.
apply (Nat.lt_irrefl (m big_h));

apply Lt.le_lt_trans with (m small_h).
- apply m_ge.
- apply m_lt.

Qed.

End Impossibility_Proof.

Exercice 3.8 Prove that there exists no variant m from Hydra into nat for
proving the termination of all standard battles.

3.7.1.3 Lexicographic order on nat*nat

We prove now that even the type nat * nat, provided with the lexicographic
product of (nat,<) by itself is too simple for proving the termination of all hydra
battles. This impossibility result will prevent us from considering measures like
the following one:

Let m h = (height h, hsize h).

The proof we are going to develop has exactly the same structure as the pre-
vious one. Nevertheless, the proof of technical lemmas is a little more complex.
In effect, the structure of the lexicographic order on N × N is more complex
than the natural strict order < on N. Consider for instance that there exists an
infinite number of pairs between (1, 0) and (2, 0).

Remark 3.3 The order structure we consider in this section is also known as
the ordinal ω2. We identify any pair (i, j) ∈ N × N with the ordinal ω × i + j.
Thus the three kinds of ordinals in ω2 are represented as follows:

null ordinal : the pair (0, 0)

successor ordinal : any pair (i, j) where j > 0

limit ordinal : any pair (i, 0) where i > 0

The detailed proof script is in the file ../V8.9/Ordinals/Hydra/Omega2_
Small.v.

../V8.9/Ordinals/Hydra/Omega2_Small.v
../V8.9/Ordinals/Hydra/Omega2_Small.v
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3.7.1.4 Preliminaries

Let us assume there is a variant from Hydra into nat*nat (with the lexicographic
ordering) for proving the termination of all hydra battles.

From ../V8.9/Ordinals/Hydra/Omega2_Small.v

Section Impossibility_Proof.

Let t := (nat * nat)%type.

(** non-dependent lexicographic strict ordering on nat*nat *)

Let lt2 : relation t := lexico Peano.lt Peano.lt.

Infix "<" := lt2.

(** reflexive closure of lt2 *)
Let le2 := clos_refl _ lt2.
Infix "<=" := le2.

Variable m : Hydra -> t.

Context (Hvar : Hvariant lt2_wf free m).

Let us follow the same pattern as in Sect. 3.7.1.2. First, we define an injection
from type t into Hydra. We associate with any pair (i, j) the hydra with i
branches of length 2 and j branches of length 1.

From ../V8.9/Ordinals/Hydra/Omega2_Small.v

Let iota (p: t) :=
node (hcons_mult (hyd1 head) (fst p)

(hcons_mult head (snd p) hnil)).

For instance, Figure 3.14 shows the hydra associated to the pair (3, 5).

•

• • •

Figure 3.14: The hydra ι(3, 5)

Like in Sect. 3.7.1.2, we build a hydra out of the range of iota (represented
in Fig. 3.15 on the following page).

../V8.9/Ordinals/Hydra/Omega2_Small.v
../V8.9/Ordinals/Hydra/Omega2_Small.v
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•

•

Figure 3.15
The hydra big_h.

Let big_h := hyd1 (hyd2 head head).

In a second step, we build a “smaller” hydra.

Let small_h := iota (m big_h).

Like in Sect. 3.7.1.2, we prove the double inequality m big_h <= m small_h
< m big_h, which is impossible.

3.7.1.5 Proof of the inequality m small_h < m big_h

For proving the inequality m_lt: m small_h < m big_h, it suffices to build a
fight transforming big_h into small_h.

First we prove that small_h is reachable from big_h in one or two steps.
Let us decompose m big_h into the pair (i, j). If j = 0, then one round suffices
to transform big_h into ι(i, j). If j > 0, then a first round transforms big_h
into ι(i+ 1, 0) and a second round into ι(i, j). So, we have the folowing result.

Lemma big_to_small: big_h -+-> small_h.

Since m is a variant, we infer the following inequality:

Corollary m_lt : m small_h < m big_h.

3.7.1.6 Proof of the inequality m big_h <= m small_h

The proof of the inequality m big_h <= m small_h is quite more complex than
in Sect 3.7.1.2. If we consider some pair (i, j), where i > 0, there exists an infinite
number of pairs stricly less than (i, j), and there exists an infinite number of
battles that start from ι(i, j). In effect, at any configuration ι(k, 0), the hydra
can freely chose any replication number. Intuitively, the measure of such a hydra
must be large enough for taking into account all the possible battles issued from
that hydra. Let us give more technical details.
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• The proof of the lemma m_ge : forall p : t, p <= m (iota p) uses
well-founded induction on p, and not structural induction on natural num-
bers

• For any pair p, we have to distinguish between three cases, according to
the value of p’s components.

– p = (0, 0)

– p = (i, 0), where i > 0 : p corresponds to a limit ordinal
– p = (i, j), where j > 0 : p is the successor of (i, j − 1).

Before starting the proof, we have to express the notion of limit in terms of
least upper bounds, through the following logical equivalence.

From Omega2_Small.v.

Lemma limit_is_lub : forall i p,
(forall j, (i,j) < p) <-> (S i, 0) <= p.

Let us define the notion of elementary “step” of decreasing sequences in t

Inductive step : t -> t -> Prop :=
| succ_step : forall i j, step (i, S j) (i, j)
| limit_step : forall i j, step (S i, 0) (i, j).

The following lemma establishes a correspondance between the relation step
and hydra fights.

Lemma step_to_fight : forall p q, step p q -> iota p -+-> iota q.

Thus, starting from any inequality q < p on type t, we can build by transfi-
nite induction over p a fight that transforms the hydra ι(p) into ι(q).

From ../V8.9/Ordinals/Hydra/Omega2_Small.v

Lemma m_ge : forall p : t, p <= m (iota p).
Proof.
intro p ; pattern p;

apply well_founded_induction with
(R := lt2) (1:= wf_lexico lt_wf lt_wf);

intros (i,j) IHij (* rest of proof skipped *)

i, j : nat
IHij : forall y : t, y < (i, j) -> y <= m (iota y)
============================
(i, j) <= m (iota (i, j))

../V8.9/html/teaser.Ordinals.Hydra.Omega2_Small.html
../V8.9/Ordinals/Hydra/Omega2_Small.v
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Then we have to consider three cases, according to the values of i and j.

• If p = (0, 0) then obviously, ι(p) ≥ p = (0, 0)

• If p = (i + 1, 0) for some i ∈ N, we remark that p is strictly greater than
any pair (i, j), where j is any natural number.
Applying the battle rules, for any j, we have ι(i + 1, j) -1-> ι(i, j), thus
m(ι(p)) > m(ι(i, j) since m is assumed to be a variant.
Applying the induction hypothesis, we get the inequality m(ι(i, j)) ≥ (i, j)
for any j.
Thus, m(ι(p)) > (i, j) for any j. Applying the lemma limit_is_lub, we
get the inequality ι(i+ 1, 0) ≥ (i+ 1, 0)

• If p = (i, j + 1) with j ∈ N, we have ι(p) -1-> ι(i, j), hence m(ι(p)) >
m(ι(i, j)) ≥ (i, j), thus m(ι(p)) ≥ (i, j + 1) = p

3.7.1.7 End of the proof

Since < is a strict order (irreflexive and transitive) on nat*nat, we can conclude
that there is no variant for termination on the lexicographic square of (N, <).

1. From m_lt, we infer the strict inequality m small_h < m big_h

2. from m_ge, we get m big_h <= m (iota (m big_h)) = m small_h

From ../V8.9/Ordinals/Hydra/Omega2_Small.v

Theorem Impossible : False.
Proof.

destruct (StrictOrder_Irreflexive (m big_h)).
apply le2_lt2_trans with (m small_h).
- unfold small_h; apply m_ge.
- apply m_lt.

Qed.

End Impossibility_Proof.

Exercice 3.9 Prove that there exists no variant m from Hydra into nat*nat
for proving the termination of all standard battles.
Hint: Make a copy of file ../V8.9/Ordinal/Hydra/Omega2_Small.v, and re-
place free with standard in the declaration
Context (Hvar : Hvariant (Lt:=lt2) (wf_lexico lt_wf lt_wf) free m),
then try to replay the proof.

Remark 3.4 In Chapter 5, we will prove a theorem that is much more general
than the two previous results about N and N × N. The proof of that general
result will share the same structure, but will require a lot of technical results.

../V8.9/Ordinals/Hydra/Omega2_Small.v
../V8.9/Ordinal/Hydra/Omega2_Small.v
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Logically, the two theorems we prove in this chapter are useless, because they
are subsumed by a less specific one. Nevertheless, the proof structure is more
apparent in these simple versions, which motivates their inclusion at this place
of our document.

Exercice 3.10 Write direct proofs (i.e. without applying the result and tools
of Chap. 5) that the following data structures are too simple for defining a
variant for any hydra battle.

• ωn : the set of all n-uples of natural numbers, ordered by lexicographic
ordering

• ωω: the set of all decreasing sequences (with respect to ≤) of natural
numbers, ordered by lexicographic ordering on lists.
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Chapter 4

A proof of termination

In this chapter, we present a formal and self contained proof of termination of
all [free] hydra battles. First, we take from Manolios and Vroon [29] a repre-
sentation of the ordinal ε0 as terms in Cantor normal form. Then, we define
a variant for hydra battles as a measure that maps any hydra to an ordinal
strictly less than ε0.

4.1 Ordinal numbers
The proof of termination of all hydra battles presented in [28] is based on ordinal
numbers. From a mathematical point of view, an ordinal is a representant of an
equivalence class for isomorphims of strict, total and well-founded orders.

We can also associate to every ordinal α a set whose elements are all ordinals
strictly less than α. Thus, it is meaningful to consider finite, infinite, demunera-
ble and non-countable ordinals. The relation < on ordinals is well-founded, and
the order ≤ associated with < is total.

We cannot cite all the litterature published on ordinals since Cantor’s book [11],
and leave it to the reader to explore the bibliography. Let us cite the book by
Schütte [34] which contains an axiomatic definition of the set of countable ordi-
nals we used as a mathematical specification of our implementaion in Coq [14].

Out of respect of the tradition, the meta-variables for ordinals will be α, β,
γ, etc.

4.1.1 Definitions
Let α be an ordinal; we say that α is a successor if there exists some ordinal β
such that α is is the least ordinal strictly greater than β.

We say that an ordinal λ is a limit ordinal is λ is the least upper bound of
a stricly increasing sequence of ordinals. The meta-variable λ will be used for
denoting limit ordinals.

121
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An ordinal is either 0, a limit ordinal or a successor ordinal. This case
analysis, as well as transfinite (i.e. well-founded) induction is used in many
proofs about ordinal numbers.

The segment of finite ordinals is isomorphic to the set of natural numbers.
The first infinite ordinal is the limit ordinal ω.
The operations +, × and exponentiation on N are extended on ordinals num-

bers. Note that these extensions are not commutative any more. For instance
ω = 1 + ω 6= ω + 1 and ω = 2× ω 6= ω × 2. The ordinal ε0 is the least solution
of the equation α = ωα.

Please note that the set of countable ordinals is not countable.
Unless otherwise specified, we will only consider ordinals less than ε0 in this

chapter.

4.1.2 Ordinal Notations
It a proof assistant like Coq it may be useful to represent ordinals through
some data-type, and make arithmetical operations and comparison effectively
implemented through certified functions. Our user contribution [14] represents
the set of ordinals less than ε0 in Cantor normal form, and the set of ordinals
less than Γ0 in Veblen normal form.

4.2 The ordinal ε0
The ordinal ε0 is the least ordinal number that satisfies the equation α = ωα,
where ω is the least limit ordinal. Thus, we can consider ε0 as an infinite
ω-tower.

Any ordinal less that ε0 can be represented by a unique Cantor normal form,
that is, an expression which is either the ordinal 0 or a sum ωα1×n1+ωα2×n2+
· · ·+ωαp×np where all the αi are ordinals in Cantor normal form, α1 > α2 > αp,
and all the ni are positive integers.

An example of Cantor normal form is displayed in Fig 4.1: Note that any
ordinal of the form ω0 × i+ 0 is just written i.

ω(ωω +ω2×8+ω) + ωω + ω4 + 6

Figure 4.1: An ordinal in Cantor normal form

In the rest of this section, we define a type for representing in Coq all the
ordinals less than ε0, then extend some arithmetic operations to this type, and
finally prove that our representation fits well with the expected mathematical
properties: the order we define is a well order, and the decomposition into Can-
tor normal form is compatible with the arithmetic operations of exponentiation
of base ω and addition.
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4.2.0.0.1 Remark Unless explicitly mentionned, the term ”ordinal” will be
used instead of ”ordinal less than ε0”.

4.2.0.0.2 Remark One could think that it is useless to prove in Coq well
known facts about ordinal numbers. Please keep in mind that we provide a data
structure and functions written in Gallina for representing ordinals less than
ε0. Thus, we have to prove our representation is are correct w.r.t. the “classic”
mathematical concepts. At least, we must prove the properties of the ordinal
ε0 that are really used in the proof of properties of hydra battles.

4.2.1 A data type for representing Cantor normal forms

Let us define an inductive type whose constructors are respectively associated
with the ways to build Cantor normal forms:

• the ordinal 0

• the construction (α, n, β) 7→ ωα × (n+ 1) + β (n ∈ N)

From ../V8.9/Ordinals/Epsilon0/T1.v

Inductive T1 : Set :=
| zero : T1
| ocons : T1 -> nat -> T1 -> T1.

Remark

The name T1 we gave to this data-type is proper to this development and refers
to a hierarchy of ordinal notations. For instance we denoted the type of ordinals
less than Γ0 in Veblen normal form by an inductive type T2.

Inductive T2 : Set :=
zero : T2

| cons : T2 -> T2 -> nat -> T2 -> T2.

Another useful ordinal notation could be used for denoting the ordinals
strictly less than ωω, but list nat could be used as well.

Inductive T0 : Set :=
zero : T0

| cons : nat -> T0 -> T0.

../V8.9/Ordinals/Epsilon0/T1.v
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4.2.1.1 Example

For instance, the ordinal ωω + ω3 × 5 + 2 is represented by the following term:

Example alpha_0 : T1 :=
ocons (ocons (ocons zero 0 zero)

0
zero)

0
(ocons (ocons zero 2 zero)

4
(ocons zero 1 zero)).

ocons

ocons

ocons

zero 0 zero

0 zero

0 ocons

ocons

zero 2 zero

4 ocons

zero 1 zero

Figure 4.2: The tree-like representation of the ordinal ωω + ω3 × 5 + 2

4.2.1.1.1 Remark For simplicity’s sake, we chosed to forbid expressions of
the form ωα×0+β. Thus, the contruction (ocons α n β is intented to represent
the ordinal ωα × (n+1)+ β and not ωα ×n+ β. In a future version, we should
replace the type nat with positive in T1’s definition. But this replacement
would take a lot of time ….

4.2.2 Abbreviations
Some abbreviations may help to write more consisely complex ordinal terms.

4.2.2.1 Finite ordinals

For representing finite ordinals, i.e. natural numbers, we first introduce a no-
tation for terms of the form n + 1, then define a coercion from type nat into
T1.

Notation "'FS' n" :=
(ocons zero n zero) (at level 29) : t1_scope.

Definition fin (n:nat) : T1 :=
match n with 0 => zero | S p => FS p end.

Coercion fin : nat >-> T1.
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Example ten : T1 := 10.

4.2.2.2 The ordinal ω

Since ω’s Cantor normal form is i.e. ωω0 × 1 + 0, we can define the following
abbreviation:

Notation omega := (ocons (ocons zero 0 zero) 0 zero).

Note that omega is not an identifier„ thus any tactic like unfold omega
would fail.

4.2.2.3 The ordinal ωα, a.k.a. φ0(α)

We provide also a notation for ordinals of the form ωα.

Notation "'phi0' alpha" := (ocons alpha 0 zero) (at level 29) : t1_scope.

Remark 4.1 The name φ0 comes from ordinal numbers theory. In [?], Schütte
defines φ0 as the ordering (i.e. enumerating) function of the set of additive
principal ordinals i.e. strictly positive ordinals α that verify ∀β < α, β+α = α.
For Schütte, ωα is just a notation for φ0(α). See also Chapter 6 on page 163.

4.2.2.4 The hierarchy of ω-towers:

The ordinal ε0, although not represented by a finite term in Cantor normal form,
is approximed by the sequance of ω-towers.

From ../V8.9/Ordinals/Epsilon0/T1.v

Fixpoint omega_tower (height:nat) : T1 :=
match height with
| 0 => 1
| S h => phi0 (omega_tower h)
end.

For instance, Figure 4.3 represents the ordinal returned by the evaluation of
the term omega_tower 7.

ωωωωωωω

Figure 4.3: The ω-tower of height 7

../V8.9/Ordinals/Epsilon0/T1.v
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4.2.3 Comparison between ordinal terms
In order to compare two terms of type T1, we define a recursive function compare
that maps two ordinals α and β to a value of type comparison. This type is
defined in Coq’s standard library Init.Datatypes and contains three construc-
tors: Lt (less than), Eq (equal), and Gt (greater than).

From ../V8.9/Ordinals/Epsilon0/T1.v

Fixpoint compare (alpha alpha':T1):comparison :=
match alpha, alpha' with
zero, zero => Eq

| zero, ocons a' n' b' => Lt
| _ , zero => Gt
| (ocons a n b),(ocons a' n' b') =>

(match compare a a' with
| Lt => Lt
| Gt => Gt
| Eq => (match lt_eq_lt_dec n n'

with
inleft (left _) => Lt

| inright _ => Gt
| _ => compare b b'

end)
end)

end.

It is now easy to define the boolean predicate lt_b α β: “ α is strictly less
than β ”. By coercion to sort Prop we define also the predicate lt.

From ../V8.9/Ordinals/Epsilon0/T1.v

Definition lt_b alpha beta : bool :=
match compare alpha beta with

Lt => true
| _ => false

end.

Definition lt alpha beta : Prop := lt_b alpha beta.

Please note that this definition of lt makes it easy to write proofs by reflec-
tion, as shown by the following examples.

Example E1 : lt (ocons omega 56 zero) (tower 3).
Proof. reflexivity. Qed.

Example E2 : ~ lt (tower 3) (tower 3).
Proof. discriminate. Qed.

../V8.9/Ordinals/Epsilon0/T1.v
../V8.9/Ordinals/Epsilon0/T1.v
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The following lemmas establish relations between compare, the predicate lt
and Leibniz equality eq.

From ../V8.9/Ordinals/Epsilon0/T1.v

Lemma compare_refl : forall alpha, compare alpha alpha = Eq.

Lemma compare_reflect : forall alpha beta,
match compare alpha beta with
| Lt => lt alpha beta
| Eq => alpha = beta
| Gt => lt beta alpha
end.

We prove also that the relation lt is a strict total order.
From ../V8.9/Ordinals/Epsilon0/T1.v

Theorem lt_irrefl : forall alpha, ~ lt alpha alpha.

Theorem lt_trans :
forall alpha beta: T1,
lt alpha beta ->
forall gamma, lt beta gamma -> lt alpha gamma.

Definition lt_eq_lt_dec :
forall alpha beta : T1,

{lt alpha beta} + {alpha = beta} + {lt beta alpha}.

Note that the order lt is not reflected in the structure (size and/or height)
of the terms of T1. For instance the ordinal of Fig 4.1 is strictly less than the
structurally simpler ωωω × 2.

4.2.3.1 A Predicate for characterizing normal forms

We note that our data-type T1 allows us to write expressions that are not prop-
erly in Cantor normal form as specified in Section 4.2. For instance, consider
the following term of type T1.

Example bad_term : T1 := ocons 1 1 (ocons omega 2 zero).

This term would have been written ω1 × 2+ ωω × 3 in the usual mathemat-
ical notation. We note that the exponents of ω are not in the right (strictly
decreasing) order.

With the help of the order lt on T1, we are now able to characterize the set
of all well-formed ordinal terms:

From ../V8.9/Ordinals/Epsilon0/T1.v

../V8.9/Ordinals/Epsilon0/T1.v
../V8.9/Ordinals/Epsilon0/T1.v
../V8.9/Ordinals/Epsilon0/T1.v
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Fixpoint nf_b (alpha : T1) : bool :=
match alpha with
| zero => true
| ocons a n zero => nf_b a
| ocons a n ((ocons a' n' b') as b) =>

(nf_b a && nf_b b && lt_b a' a)%bool
end.

Definition nf alpha :Prop := nf_b alpha.

Compute nf_b bad_term.

= false
: bool

Remarks

We would like to get rid of terms of type T1 which are not in Cantor normal form.
In our development, we use indifferently three ways of specifying properties of
proper ordinal terms.

• Prove statements of the form forall alpha: T1, nf alpha -> P alpha,
where P is a predicate over type T1

• Define the restriction of some relations to terms in Cantor normal form:

From ../V8.9/Ordinals/Prelude/Restriction.v

Definition restrict {A:Type}(E: Ensemble A)(R: relation A) :=
fun a b => E a /\ R a b /\ E b.

From ../V8.9/Ordinals/Epsilon0/T1.v

Definition LT := restrict nf lt.
Infix "<" := LT : t1_scope.

Definition LE := restrict nf le.
Notation "alpha <= beta" := (LE alpha beta) : t1_scope.

Example E0: ~ zero <= bad_term.
Proof.
compute; firstorder.

Qed.

Example E'0 : ~ bad_term <= zero.
Proof.

../V8.9/Ordinals/Prelude/Restriction.v
../V8.9/Ordinals/Epsilon0/T1.v
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compute; firstorder.
Qed.

• Define a class Ordinal.

Class Ordinal : Type := t1_2o{cnf : T1; cnf_ok : nf cnf}.

Definition lt (alpha beta : Ordinal) :=
T1.LT (@cnf alpha) (@cnf beta).

Definition le (alpha beta : Ordinal) :=
T1.LE (@cnf alpha) (@cnf beta).

Infix "<" := lt : epsilon0_scope.
Infix "<=" := le : epsilon0_scope.

Thus, theorem statements may have the following form:
forall alpha: Ordinal, P alpha.

4.2.4 Syntactic definition of limit and successor ordinals
Pattern matching and structural recursion allow us to define the notion of suc-
cessor and limit ordinal with the help of boolean functions on type T1.

From ../V8.9/Ordinals/Epsilon0/T1.v

Fixpoint is_succ alpha :=
match alpha with

zero => false
| ocons zero _ _ => true
| ocons alpha n beta => is_succ beta

end.

Fixpoint is_limit alpha :=
match alpha with

zero => false
| ocons zero _ _ => false
| ocons alpha n zero => true
| ocons alpha n beta => is_limit beta

end.

Compute is_limit omega.

= true
: bool

Compute is_succ 42.

../V8.9/Ordinals/Epsilon0/T1.v
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= true
: bool

The correctness of these definitions with respect to the mathematical no-
tions of limit and successor ordinals is established through several lemmas. For
instance, Lemma canonS_limit, page 147, shows that if α is (syntactically) a
limit ordinal, then it is the least upper bound of a strictly increasing sequence
of ordinals.

The following function allows us to discriminate three cases for any term of
ype T1.

Definition zero_succ_limit (alpha: T1) :
{is_succ alpha} + {is_limit alpha} + {alpha=zero}.

4.2.5 Arithmetic on ε0

4.2.5.1 Successor

The successor of any ordinal α < ε0 is defined by structural recursion on its
Cantor normal form.

From ../V8.9/Ordinals/Epsilon0/T1.v

Fixpoint succ (alpha:T1) : T1 :=
match alpha with zero => 1

| ocons zero n _ => ocons zero (S n) zero
| ocons beta n gamma => ocons beta n (succ gamma)

end.

The following lemma establishes the connection between the functions succ
and is_succ.

Lemma is_succ_iff alpha (Halpha : nf alpha) :
is_succ alpha <-> exists beta : T1, nf beta /\ alpha = succ beta.

4.2.5.2 Addition and multiplication

Ordinal addition and multiplication are also defined by structural recursion over
the type T1. Please note that they use the compare function on some subterms
of their arguments.

Fixpoint plus (alpha beta : T1) : T1 :=
match alpha,beta with

| zero, y => y
| x, zero => x
| ocons a n b, ocons a' n' b' =>

../V8.9/Ordinals/Epsilon0/T1.v
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(match compare a a' with
| Lt => ocons a' n' b'
| Gt => (ocons a n (plus b (ocons a' n' b')))
| Eq => (ocons a (S(n+n')) b')
end)

end
where "alpha + beta" := (plus alpha beta) : t1_scope.

Fixpoint mult (alpha beta : T1) :T1 :=
match alpha,beta with
| zero, y => zero
| x, zero => zero
| ocons zero n _, ocons zero n' _ =>

ocons zero (Peano.pred((S n) * (S n'))) zero
| ocons a n b, ocons zero n' b' =>

ocons a (Peano.pred((S n) * (S n'))) b
| ocons a n b, ocons a' n' b' =>

ocons (a + a') n' ((ocons a n b) * b')
end
where "alpha * beta" := (mult alpha beta) : t1_scope.

4.2.5.3 Examples

The following examples are instances of proofs by computation. Please note
that addition and multiplication on T1 are not commutative. Moreover, both
operations fail to be strictly monotonous in their first argument.

Example e2 : 6 + omega = omega.
Proof. reflexivity. Qed.

Example e'2 : omega < omega + 6.
Proof. now compute. Qed.

Example e''2 : 6 * omega = omega.
Proof. reflexivity. Qed.

Example e'''2 : omega < omega * 6.
Proof. now compute. Qed.

Lemma plus_not_monotonous : exists alpha beta gamma : T1,
alpha < beta /\ alpha + gamma = beta + gamma.

Proof.
exists 3, 5, omega; now compute.

Qed.

Lemma mult_not_monotonous : exists alpha beta gamma : T1,
alpha < beta /\ alpha * gamma = beta * gamma.

Proof.
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exists 3, 5, omega; now compute.
Qed.

4.2.6 Pretty printing Ordinals in Cantor normal Form
Let us consider again the ordinal α0 defined in section 4.2.1.1 on page 124

If we ask Coq to print the normal form of alpha_0, we get a hardly readable
term of type T1.

Compute alpha_0.

= ocons omega 0 (ocons (FS 2) 4 (FS 1))
: T1

The function pp: T1 -> ppT1 converts any closed term of type T1 into a
more readable expression.

Compute pp alpha_0.

= (omega ^ omega + omega ^ 3 * 5 + 2)%pT1
: ppT1

4.3 Well-foundedness and transfinite induction
4.3.1 About well-foundedness
In order to use T1 for proving termination results, we need to prove that our
representation of ordinals less than ε0 makes our order < well-founded. Then
we will get transfinite induction for free.

The proof of well-foundedness of the strict order < on Cantor normal forms
is already available in the Cantor contribution by Castéran and Contéjean [14].
That proof relies on a library on recursive path orderings written by E. Conté-
jean. We present also a direct proof of the same result, which does not require
any knowledge on r.p.o.s.

Exercice 4.1 Prove that the total order lt on T1 is not well-founded. Hint:
You will have to build a counter-example with terms of type T1 which are not
in Cantor normal form.

4.3.1.1 A first attempt

It is natural to try to prove by structural induction over T1 that every term in
normal form is accessible through LT.

Unfortunately, it won’t work. Let us consider some well-formed term α =
ocons β n γ, and assume that β and γ are accessible through LT. For proving
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the accessibility of α, we have to consider any well formed term δ such that
δ < α. But nothing guarantees that δ is less than β nor γ, and we cannot use
the induction hypotheses on β nor γ.

Section First_attempt.

Lemma wf_LT : forall alpha, nf alpha -> Acc LT alpha.
Proof.
induction alpha as [| beta IHbeta n gamma IHgamma].
- split.

inversion 1.
destruct H2 as [H3 _];not_neg H3.

- split; intros delta Hdelta.

1 subgoal (ID 560)

beta : T1
n : nat
gamma : T1
IHbeta : nf beta -> Acc LT beta
IHgamma : nf gamma -> Acc LT gamma
H : nf (ocons beta n gamma)
delta : T1
Hdelta : delta < ocons beta n gamma
============================
Acc LT delta

Abort.

The problem comes from that δ may be bigger that β or γ; for instance
δ may be of the form ocons β′ p′ γ′, where β′ ≤ β and p′ < n. Thus, the
induction hypotheses IHbeta and IHgamma are useless for finishing our proof.

4.3.1.2 Using a stronger inductive predicate.

Instead of trying to prove directly that any ordinal term α in normal form is
accessible through LT, we propose to show first that any well formed term of
the form ωα × (n+ 1) + β is accessible (which is a stronger result).

Let Acc_strong (alpha:T1) :=
forall n beta,
nf (ocons alpha n beta) -> Acc LT (ocons alpha n beta).

The following lemma is an application of the strict inequality α < ωα . If
ωα is accessible, then α is a fortori accessible.
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Lemma Acc_strong_stronger : forall alpha,
nf alpha -> Acc_strong alpha -> Acc LT alpha.

Proof.
intros alpha H H0; apply acc_imp with (phi0 alpha).
- repeat split; trivial.
+ now apply lt_a_phi0_a.

- apply H0; now apply single_nf.
Qed.

Thus, it remains to prove that every ordinal less than ε0 is strongly acces-
sible.

4.3.1.2.1 A helper First, we prove that, for any LT-accessible term α , any
well formed term ocons α n β is also accessible:

Lemma Acc_implies_Acc_strong :
forall alpha, Acc LT alpha -> Acc_strong alpha.

The proof is structured as an induction on α ’s accessibility. Let us consider
an accessible term α.

subgoal 1

alpha : T1
Aalpha : forall y : T1, y < alpha -> Acc LT y
IHalpha : forall y : T1,

LT y alpha ->
forall (n : nat) (beta : T1),
nf (ocons y n beta) -> Acc LT (ocons y n beta)

============================
forall (n : nat) (beta : T1),
nf (ocons alpha n beta) -> Acc LT (ocons alpha n beta)

Let n:nat and beta:T1 such that ocons alpha n beta is in normal form.
We prove first that beta is accessible, then we can prove by well-founded in-
duction on beta, and natural induction on n, that ocons alpha n beta is
accessible. The proof, quite long, can be consulted in ../V8.9/Epsilon0/T1.v

4.3.1.2.2 Accessibility of any well-formed ordinal term Our goal is
still to prove accessibility of any well formed ordinal term. Thanks to our
previous lemmas, we are almost done.

(* A (last) structural induction *)

Theorem nf_Acc : forall alpha, nf alpha -> Acc LT alpha.
Proof.

../V8.9/Epsilon0/T1.v
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induction alpha.
- intro; apply Acc_zero.
- intros; eapply Acc_implies_Acc_strong;auto.

apply IHalpha1;eauto.
apply nf_inv1 in H; auto.

Defined.

Corollary T1_wf : well_founded LT.

And we have now our transfinite recursor:

Definition transfinite_recursor :
forall (P:T1 -> Type),

(forall x:T1,
(forall y:T1, nf x -> nf y -> lt y x -> P y) -> P x) ->
forall alpha:T1, P alpha.

Proof.
intros; apply well_founded_induction_type with LT.
- exact T1_wf;auto.
- intros. apply X. intros; apply X0. repeat split;auto.

Defined.

We are now able to define a tactic for doing transfinite induction on any
ordinal α < ε0 .

Ltac transfinite_induction alpha :=
pattern alpha; apply transfinite_recursor;[ | try assumption].

Remark 4.2 The proof of well-foundedness using Évelyne Contejean’s work on
recursive path ordering is available in the module Epsilon0rpo.

4.4 A variant for hydra battles
4.4.1 Natural sum (a.k.a. Hessenberg’s sum)
Natural sum (Hessenberg’s sum) is a commutative and monotonous variant of
addition. It is used as an auxiliary operation for defining variants for hydra
battles, where Hercules is allowed to chop off any head of the hydra.

In the litterature, the natural sum of ordinals α and β is often denoted by
α#β or α⊕ β. Thus we called oplus the associated Coq function.

4.4.1.1 Definition of oplus

The definition of oplus should be recursive in both of its arguments, which
makes a structural recursive definition a little complex. We used the same
pattern as for the merge function on lists of library Coq.Sorting.Mergesort.

../V8.9/html/teaser.Ordinals.Epsilon0.Epsilon0rpo.html
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1. Define a nested recursive function, using the Fix construct

2. Build a principle of induction dedicated to oplus

3. Establish equations associated to each case of the definition.

4.4.1.1.1 The nested recursive definition The following definition is com-
posed of

• A main function oplus, structurally recursive in its first argument alpha

• An auxiliary function oplus_aux within the scope of alpha, structurally
recursive in its argument beta; oplus_aux beta is supposed to compute
oplus alpha beta.

Fixpoint oplus (alpha beta : T1) : T1 :=
let fix oplus_aux beta {struct beta} :=

match alpha, beta with
| zero, _ => beta
| _, zero => alpha
| ocons a1 n1 b1, ocons a2 n2 b2 =>
match compare a1 a2 with
| Gt => ocons a1 n1 (oplus b1 beta)
| Lt => ocons a2 n2 (oplus_aux b2)
| Eq => ocons a1 (S (n1 + n2)%nat) (oplus b1 b2)

end
end

in oplus_aux beta.

Infix "o+" := oplus (at level 50, left associativity).

The reader will note that each recursive call of the functions oplus and
oplus_aux satisfies Coq’s constraint on recursive definitions. The function
oplus is recursively called on a sub-term of its first argument, and oplus_aux
on a sub-term of its unique argument. Thus, oplus’s definition is accepted by
Coq as a structurally recursive function.

4.4.1.2 Rewriting lemmas

Coq’s constraints on recursive definitions resulted in the quite complex form of
oplus’s definition. For making easier proof of properties of this function, it is
helpful to derive lemmas that will help to simplify expressions of the form oplus
a b.

A first set of lemmas correspond to the various cases of oplus’s definition.
They can be proved almost immediately, using cbn and rewrite tactics.

Lemma oplus_alpha_0 : forall alpha, alpha o+ T1.zero = alpha.
Proof.
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destruct a; reflexivity.
Qed.

Lemma oplus_0_b : forall b, zero o+ b = b.
Proof.
destruct b;reflexivity.

Qed.

Lemma oplus_eqn :
forall a b,
oplus a b =
match a, b with

zero, _ => b
| _, zero => a
| ocons a1 n1 b1, ocons a2 n2 b2 =>

match compare a1 a2 with
Gt => ocons a1 n1 (oplus b1 b)

| Eq => ocons a1 (S (n1 + n2)%nat) (oplus b1 b2)
| Lt => ocons a2 n2 (oplus a b2)

end
end.

Proof.
destruct a, b; now cbn.

Qed.

4.4.1.2.1 A hand-made induction principle Coq contains a command
Functional Scheme that generates induction principles which correspond to
recursive functions. Unfortunately, the current version ( 8.9.1 ) doesn’t work
on oplus, probably because of the inner Fix.

Functional Scheme oplus_ind := Induction for oplus Sort Prop.

Error: Anomaly "todo." Please report at http://coq.inria.fr/bugs/.

Fortunately, it’s a good exercise for a semi-experienced user, to write her/him-
self induction principles similar to the ones returned by Functional Scheme.

• First, we chose to write a version for sort Type, since versions for sorts
Prop and Set can be easily derived from the former one. According to
Coq’s naming politics, we will call our principle oplus_rect

• The conclusion of oplus_rect will be P a b (oplus a b), where P is an
arbitrary function of type T1 -> T1 -> T1 -> Type

• The premises of oplus_rect will describe how to build an induction on
the graph of oplus.
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We are now ready to state and prove oplus_rect, and the reader will note
that the statement is longer than the proof scrit itself, which is a standard proof
by induction, simplification and case-analysis that follows oplus’s definition.

We associate also a tactic to the application of oplus_rect.

Lemma oplus_rect:
forall P: T1 -> T1 -> T1 -> Type,

(forall a:T1, P zero a a) ->
(forall a: T1, P a zero a) ->
(forall a1 n1 b1 a2 n2 b2 o,

compare a1 a2 = Gt ->
P b1 (ocons a2 n2 b2) o ->
P (ocons a1 n1 b1) (ocons a2 n2 b2)

(ocons a1 n1 o)) ->
(forall a1 n1 b1 a2 n2 b2 o,

compare a1 a2 = Lt ->
P (ocons a1 n1 b1) b2 o ->
P (ocons a1 n1 b1) (ocons a2 n2 b2)
(ocons a2 n2 o)) ->

(forall a1 n1 b1 a2 n2 b2 o,
compare a1 a2 = Eq ->
P b1 b2 o ->

P (ocons a1 n1 b1) (ocons a2 n2 b2)
(ocons a1 (S (n1 + n2)%nat) o)) ->

forall a b, P a b (oplus a b).
Proof with auto.

induction a.
- intro; simpl; destruct b;auto.
- induction b.

+ apply X0.
+ case_eq (compare a1 b1).

* intro Comp; unfold oplus; rewrite Comp.
cbn; apply X3 ...

* intro Comp; cbn; rewrite Comp; apply X2...
* intro Comp; cbn; rewrite Comp ...

Defined.

Ltac oplus_induction a b:= pattern (oplus a b); apply oplus_rect.

4.4.2 More theorems on Hessenberg’s sum
We need to prove some properties of ⊕, particularly about its relation with the
order < on T1.

4.4.2.1 Boundedness

If α and β are both less than ωγ , then so is their natural sum α⊕β. This result
can be proved by structural induction on α.
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Lemma lt_phi0_oplus : forall gamma alpha beta,
lt_phi0 alpha gamma ->
lt_phi0 beta gamma ->
lt_phi0 (alpha o+ beta) gamma.

Proof with auto.
induction gamma; destruct alpha, beta.

(* Rest of proof omitted *)

4.4.2.2 Commutativity, associativity

We prove the commutativity of ⊕ in two steps.
First, we prove by transfinite induction on α that the restriction of ⊕ to the

interval [0..α[ is commutative.

Lemma oplus_comm_0 : forall alpha, nf alpha ->
forall a b, nf a -> nf b ->

lt a alpha ->
lt b alpha ->
a o+ b = b o+ a.

Proof with eauto with T1.
intros alpha Halph; transfinite_induction alpha.

(* rest of proof omitted *)

Then, we infer⊕’s commutativity for any pair of ordinals: Let α and β be two
ordinals less than ε0. Both ordinals α and β are strictly less than max(α, β)+1.

Thus, we have just to apply the lemma oplus_comm_0.

Lemma oplus_comm : forall alpha beta,
nf alpha -> nf beta ->
alpha o+ beta = beta o+ alpha.

Proof with eauto with T1.
intros alpha beta Halpha Hbeta;
apply oplus_comm_0 with (succ (max alpha beta)) ...

(* rest of proof omitted *)

The associativity of Hessenberg’s sum is proved the same way.

Lemma oplus_assoc_0 :
forall alpha,

nf alpha ->
forall a b c, nf a -> nf b -> nf c ->

lt a alpha ->
lt b alpha -> lt c alpha ->
a o+ (b o+ c) = (a o+ b) o+ c.

Proof with eauto with T1.
intros alpha Halpha.
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transfinite_induction alpha.
(* rest of proof omitted *)

Lemma oplus_assoc : forall alpha beta gamma,
nf alpha -> nf beta -> nf gamma ->

alpha o+ (beta o+ gamma) =
alpha o+ beta o+ gamma.

Proof with eauto with T1.
intros;
apply oplus_assoc_0 with (succ (max alpha (max beta gamma))) ...

(* rest of proof omitted *)

4.4.2.3 Monotonicity

At last, we prove that ⊕ is strictly monotonous in both of its arguments.

Lemma oplus_strict_mono_LT_l (alpha beta gamma : T1) :
nf gamma -> alpha < beta ->
alpha o+ gamma < beta o+ gamma.

(* Proof skipped *)

Lemma oplus_strict_mono_LT_r (alpha beta gamma : T1) :
nf alpha -> beta < gamma ->
alpha o+ beta < alpha o+ gamma.

* Proof skipped *)

4.5 A variant for hydra battles
Let us define a measure from type Hydra into T1.

From ../V8.9/Ordinals/Hydra/Hydra_Termination.v

Fixpoint m (h:Hydra) : T1 :=
match h with head => zero

| node hs => ms hs
end
with ms (s:Hydrae) : T1 :=

match s with hnil => zero
| hcons h s' => phi0 (m h) o+ ms s'

end.

First, we prove that the measurem(h) of any hydra h is a well-formed ordinal
term of type T1.

Theorem m_nf : forall h, nf (m h).
Proof.
intro h; elim h using Hydra_rect2

../V8.9/Ordinals/Hydra/Hydra_Termination.v
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with (P0 := fun s => nf (ms s)).
- destruct h0; simpl; auto.
- constructor.
- intros; rewrite ms_eqn2; apply oplus_nf.
+ now apply nf_phi0.
+ assumption.

Qed.

Theorem ms_nf : forall s, nf (ms s).
Proof with auto with T1.
induction s...
rewrite ms_eqn2...
apply oplus_nf...
apply nf_phi0; now apply m_nf.

Qed.

For proving the termination of all hydra battles, we have to prove that m is
a variant. First, a few technical lemmas follow the decomposition of round into
several relations. Then the lemma round_decr gathers all the cases.

Lemma S0_decr :
forall s s', S0 s s' -> ms s' < ms s.

Lemma R1_decr : forall h h',
R1 h h' -> m h' < m h.

Lemma S1_decr n:
forall s s', S1 n s s' -> ms s' < ms s.

Lemma R2_decr n : forall h h', R2 n h h' -> m h' < m h.

Lemma round_decr : forall h h', h -1-> h' -> m h' < m h.
Proof.
destruct 1 as [n H]; destruct H.
- now apply R1_decr.
- now apply R2_decr with n.
Qed.

Finally, we proved the termination of all (free) battles.

Global Instance HVariant : Hvariant lt_wf free var.
Proof.
split; intros; eapply round_decr; eauto.
Qed.

Theorem every_battle_terminates : Termination.
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Proof.
red; apply Inclusion.wf_incl with

(R2 := fun h h' => m h < m h').
red; intros; now apply round_decr.
apply Inverse_Image.wf_inverse_image, T1_wf.

Qed.

Conclusion
Let us recall three results we have proved so far.

• There exists a strictly decreasing variant mapping Hydra into [0, ε0[ for
proving the termination of any hydra battle

• There exists no such variant from Hydra into [0, ω2[ and a fortiori into
[0, ω[.

So, a natural question is “ Does there exist any strictly decreasing variant
mapping type Hydra into some interval [0, α[ (where α < ε0) for proving the
termination of all hydra battles” ?

A non-trivial variant of this question is the following one: “ Does there exist
any strictly decreasing variant mapping type Hydra into some interval [0, µ[
(where µ < ε0) for proving the termination of all standard hydra battles” ?

The next chapter is dedicated to the proof that both question have a negative
answer.



Chapter 5

Inside ε0: The
Ketonen-Solovay machinery

5.1 Introduction
The reader may think that our proof of termination in the previous chapter
requires a lot of mathematical tools and may be too complex. So, the question
is “is there any simpler proof” ?

In their article [28], Kirby and Paris show that this result cannot be proved
in Peano arithmetic. Their proof uses some knowledge about model theory and
non-standard models of Peano arithmetic.

In this chapter, we focus on a specific class of proofs of termination of hydra
battles: construction of some variant mapping the type Hydra into some segment
of ordinals.

Let sum up the main results proved in the previous chapter, about the
termination of all hydra battles.

• There is no variant mapping the type Hydra into the interval [0, ω2[ (sec-
tion 3.7.1.3 on page 114), and a fortiori [0, ω[

• There is a variant that maps the type Hydra into the interval [0, ε0[ (the-
orem every_battle_terminates, in section 4.5 on page 140).

Thus, a very natural question is the following one:

“ Is there any variant from Hydra into some interval [0, µ[, where
µ < ε0, for proving the termination of all hydra battles ?”

In this chapter, we prove in Coq the following results:

There is no variant for proving the termination of all hydra battles
from Hydra into the interval [0..µ[, where µ < ε0.
The same impossibility holds even if we consider only standard bat-
tles (with the successive replication factors 0, 1, 2, . . . , t, t+ 1, . . . ).
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Our proofs are constructive and require no axioms. They are closed terms
of the CIC. They share much material with Kirby and Paris’ , although they do
not use any knowledge about Peano arithmetic nor model theory. It it written
in plain CIC, and is mainly composed on function definitions and proofs of
properties of these functions. Nevertheless, all the tools we use come from an
article by J. Ketonen and R. Solovay [27], already cited in the work by L. Kirby
et J. Paris on the termination of Goodstein sequences and hydra battles [28].
Section 2 of this article: ”A hierarchy of probably recursive functions”, contains
a systematic study of canonical sequences, which are closely related to rounds
of hydra battles.

5.2 Canonical Sequences
Canonical sequences are functions that associate an ordinal {α}(i) to every
ordinal α < ε0 and positive integer i. They satisfy nice properties :

• If α 6= 0, then {α}(i) < α. Thus canonical sequences can be used for proofs
by transfinite induction or function definition by transfinite recursion

• If λ is a limit ordinal, then λ is the least upper bound of the set of
{λ}(i) (i ∈ N1)

• If β < α < ε0, then there is a “path” from α to β, i.e. a sequence
α0 = α, α1, . . . , αn = β, where for every k < n, there exists some ik such
that αk+1 = {αk}(ik)

• Canonical sequences correspond tightly to rounds of hydra battles: if α 6=
0, then ι(α) is transformed into ι({α}(i) in one round with the replication
factor i

• From the two previous properties, we infer that whenever β < α < ε0,
there exists a (free) fight from ι(α) to ι(β).

5.2.0.0.1 Remark In [27], canonical sequences are defined for any ordinal
α < ε0, by stating that if α is a successor ordinal, the sequence associated with
α is simply the constant sequence whose terms are equal to the predecessor of
α. Likewise, we define the canonical sequence of 0 as the sequence whose all
terms are equal to 0.

This convention allows us to make total the function that maps any ordinal
α and natural number i to the i-th item of the canonical sequence associated
with α.

Firs, let us recall how canonical sequences are defined in [27]. For efficiency’s,
we decided not to implement directly K.&S’s definitions, but to define in Gallina
simply typed structurally recursive functions which the same abstract proper-
ties.
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5.2.0.1 Mathematical definition of canonical sequences

In [27] the definition of {α}(i) is based on the following remark:

Any non-zero ordinal α can be decomposed in a unique way as the
product ωβ × (γ + 1).

Thus the {α}(i) s are defined in terms of this decomposition:

Definition 5.1 (Canonical sequences: mathematical definition)

• Let λ < ε0 be a limit ordinal

– If λ = ωα+1 × (β + 1), then {λ}(i) = ωα+1 × β + ωα × i

– If λ = ωγ×(β+1), where γ < λ is a limit ordinal, then {λ}(i) =
ωγ × β + ω{γ}(i)

• For successor ordinals, we have {α+ 1}(i) = α

• Finally, {0}(i) = α.

5.2.0.2 Canonical sequences in Coq

Our definition may look more complex than the mathematical one, but uses
plain structural recursion over the type T1. Thus, tactics like cbn, simpl, etc.,
are available. For simplicity’s sake, we used an auxiliary function canonS of
type nat -> T1 -> T1 such that canonS i α is equal to {α}(i+ 1).

Fixpoint canonS (i:nat) alpha :=
match alpha with

zero => zero
| ocons zero 0 zero => zero
| ocons zero (S k) zero => FS k
| ocons gamma 0 zero =>

match pred gamma with
Some gamma' => ocons gamma' i zero

| None => ocons (canonS i gamma) 0 zero
end

| ocons gamma (S n) zero =>
match pred gamma with

Some gamma' => ocons gamma n (ocons gamma' i zero)
| None => ocons gamma n (ocons (canonS i gamma) 0 zero)

end
| ocons alpha n beta => ocons alpha n (canonS i beta)

end.

The following function computes {α}(i), except for the case i = 0, where it
simply returns 0.
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Definition canonseq i alpha :=
match i with 0 => zero | S j => canonS j alpha end.

For instance Coq’s computing facilities allow us to verify the equalities
{ωω}(3) = ω3 and {ωω ∗ 3}(42) = ωω ∗ 2 + ω42 .

Compute (canonseq 3 (omega ^ omega)).

= phi0 (FS 2) : T1

Example canonseq3 : canonseq 3 (omega ^ omega) = omega ^ 3.
Proof. reflexivity. Qed.

Compute pp (canonseq 42 (omega ^ omega * 3)).

= (omega ^ omega * 2 + omega ^ 42)%pT1
: ppT1

5.2.1 Basic properties of canonical sequences
We did not try to prove that our definition really implements Ketonen and
Solovay’s [27]’s canonical sequences. The most important is that we are able to
prove the abstract properties of canonical sequences that are really used in our
proof. The complete proofs are in the module ../V8.9/Ordinals/Epsilon0/
KS.v.

Our definition of function canonS makes the following verification trivial.

Lemma canonS_zero : forall i, canonS i zero = zero.
Proof. reflexivity. Qed.

On the other hand, proving the equality {α+ 1}(i) = α is not as simple as
suggested by the equations of definition 5.1 . Nevertheless, we could prove it by
structural induction on α.

Lemma canonS_succ i alpha :
nf alpha -> canonS i (T1.succ alpha) = alpha.

Proof.
induction alpha.
(* rest of proof omitted *)

../V8.9/Ordinals/Epsilon0/KS.v
../V8.9/Ordinals/Epsilon0/KS.v
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5.2.1.1 Canonical sequences and the order <

First, we prove by transfinite induction over α that {α}(i+ 1) is an ordinal
strictly less than α (provided α 6= 0 ). This property allows us to use the
function canonS and its derivates in function definitions by transfinite recursion.

From ../V8.9/Ordinals/Epsilon0/KS.v

Lemma canonS_LT : forall i alpha, nf alpha -> alpha <> T1.zero ->
(canonS i alpha < alpha)%t1.

5.2.1.2 Limit ordinals are really limits

The following theorem states that any limit ordinal λ < ε0 is the limit of the
sequence {λ}(i) (1 ≤ i) .

Note the use of Coq’s sig type in the theorem’s statement, which relates
the boolean function is_limit defined on the T1 data-type with a constructive
view of the limit of a sequence: for any β < λ, we can compute an item of the
canonical sequence of λ which is greater than β.

From ../V8.9/Ordinals/Epsilon0/KS.v

Lemma canonS_limit_strong (lambda : T1) :
nf lambda ->
is_limit lambda ->
forall beta, beta < lambda ->

{i:nat | beta < canonS i lambda}.

Proof.
transfinite_induction_LT lambda.
(* rest of proof omitted *)

Defined.

Lemma canonS_limit : forall lambda, nf lambda -> is_limit lambda ->
strict_lub (fun i => canonS i lambda) lambda.

Exercice 5.1 Instead of using the sig type, define a simply typed function
that, given two ordinals α and β, returns a natural number i such that, if α is a
limit ordinal and β < α, then β < {α}(i+ 1). Of course, you will have to prove
the correctness of your function.

5.2.1.3 Paths inside ε0

Let us consider the transitive closure of the relation associated to the function
canonS. We will call a path from α to β any sequence of steps, each step being
a pair (α, {α}(i)) for some integer i > 0.

../V8.9/Ordinals/Epsilon0/KS.v
../V8.9/Ordinals/Epsilon0/KS.v
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Definition small_step : relation T1 :=
fun alpha beta => exists i, beta = canonS i alpha.

Definition path := clos_trans_1n T1 small_step.

From the lemma canonS_LT, we convert any path into an inequality on
ordinals (by induction on transitive closures).

From teaser.Ordinals.Epsilon0.KS

Lemma path_LT (alpha beta : T1) :
path alpha beta ->
beta <> zero -> nf alpha -> nf beta ->
beta < alpha.

Proof.
induction 1.
(* rest of the proof skipped *)

The proof of the converse lemma is a little more complex: it is mainly a
transfinite induction, using the lemma canonS_limit_strong. We advise the
reader to replay the proof in order to better undersstand its structure and the
use of the sig type in Coq.

Lemma LT_path (alpha beta : T1) :
beta < alpha -> path alpha beta.

Proof.
transfinite_induction alpha;

(* rest of proof skipped *)

Let us look at the handling of limit ordinals in this proof.

beta, alpha : T1
IHalpha : forall y : T1, y < alpha -> beta < y -> path y beta
H : beta < alpha
H0 : nf beta
H1 : nf alpha
Hlimit : is_limit alpha
============================
path alpha beta

Since α is a limit, there exists some j such that β < {α}(j + 1).

destruct (canonS_limit_strong H1 Hlimit H) as [j Hj];
apply path_trans with (canonS j alpha).

The first subgoal is trivial.

../V8.9/html/teaser.Ordinals.Epsilon0.KS.html
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2 subgoals (ID 187)

beta, alpha : T1
IHalpha : forall y : T1, y < alpha -> beta < y -> path y beta
H : beta < alpha
H0 : nf beta
H1 : nf alpha
Hlimit : is_limit alpha
j : nat
Hj : beta < canonS j alpha
============================
path alpha (canonS j alpha)

left; now exists j.

The second subgoal is just an application of the induction hypothesis IHalpha.

beta, alpha : T1
IHalpha : forall y : T1, y < alpha ->

beta < y -> path y beta
H : beta < alpha
H0 : nf beta
H1 : nf alpha
Hlimit : is_limit alpha
j : nat
Hj : beta < canonS j alpha
============================
path (canonS j alpha) beta

apply IHalpha; auto.
{ apply canonS_LT; auto.

apply is_limit_not_zero;auto. }

Thus, canonical sequences are a way to decompose any inequality β < α < ε0
into a finite sequence of elementary – successor or limit – steps.

5.2.2 Canonical sequences and hydra battles
In order to apply our knowledge about ordinal numbers (less than ε0) to the
sudy of hydra battles, we define an injection from the interval [0, ε0[ into the
type Hydra.

Fixpoint iota (alpha : T1) : Hydra :=
match alpha with
| T1.zero => head
| ocons gamma n beta => node (hcons_mult (iota gamma) (S n)
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(iotas beta))
end

with iotas (alpha : T1) : Hydrae :=
match alpha with
| T1.zero => hnil
| ocons alpha0 n beta =>

hcons_mult (iota alpha0) (S n)
(iotas beta)

end.

For instance Fig. 5.1 shows the image by ι of the ordinal ωω+2+ωω×2+ω+1

•
• •• •

• • •

Figure 5.1: The hydra ι(ωω+2 + ωω × 2 + ω + 1)

The following lemma (proved in Ordinals.Hydra.O2H.v) maps the binary
relation associated to canonical sequences to rounds of hydra battles.

Lemma canonS_iota i alpha :
nf alpha -> alpha <> 0 ->
iota alpha -1-> iota (canonS i alpha).

The next step of our development is to extend this relationship to the order
< on [0, ε0[ on one side, and hydra fights on the other side.

Lemma path_to_fight alpha beta :
nf alpha -> nf beta -> alpha <> 0 ->
path alpha beta -> iota alpha -+-> iota beta.

As a corollary, we are now able to transform any inequality β < α < ε0 into
a (free) fight.

Lemma LT_to_fight alpha beta :
beta < alpha -> iota alpha -+-> iota beta.

5.3 A first proof of impossibility
We have now got all the tools for proving there is no variant bounded by some
µ < ε0 for proving the termination of all battles. The proof we are going to

../V8.9/html/teaser.Ordinals.Hydra.O2H.html
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show is a proof by contradiction. It may be considered as a generalization of
the proofs described in sections 3.7.1.2 on page 112 and 3.7.1.3 on page 114. We
advise the reader to compare the three proofs step by step, lemma by lemma.

In the module Hydra.Epsilon0_Needed_Generic, we assume there exists
some variant m bounded by some ordinal µ < ε0. This part of the development
is parameterized by some class B of battles, which will be instantiated later to
free or standard.

Class BoundedVariant (B:Battle) :=
{

mu:T1 ;
m: Hydra -> T1;
mu_nf : nf mu;
Hvar : Hvariant T1_wf B m;
m_bounded : forall h, m h < mu

}.

Let us assume there exists such a variant:

Section Bounded.
Context (B: Battle)

(Hy : BoundedVariant B).

The following property is not provable for any instance of B : Battle. Nev-
ertheless, it is satisfied by the instances free and standard of class Battle. In
order to “factorize” some proofs about these instances, we assume this property
as an hypothesis of the current section.

Hypothesis m_decrease : forall i h h',
round_n i h h' -> m h' < m h.

First, we prove by transfinite induction over α a minoration of the measure
of the hydra ι(α).

Lemma m_ge alpha: nf alpha -> alpha <= m (iota alpha).
Proof.

• If α = 0, the inequality trivially holds

• If α is the successor of some ordinal β, the inequality β ≤ m(ι(β)) holds
(by induction hypothesis). But the hydra ι(α) is transformed in one round
into ι(β), thus m(ι(β)) < m(ι(α)). Hence β < m(ι(α)), which implies
α ≤ m(ι(α))

• If α is a limit ordinal, then α is the least upper bound of the set of all the
{α}(i). Thus, we have just to prove that {α}(i) < m(ι(α)) for any i.

../V8.9/html/teaser.Ordinals.Hydra.Epsilon0_Needed_Generic.html
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– Let i be some natural number. By the induction hypothesis, we
have {α}(i) ≤ m(ι({α}(i))). But the hydra ι(α) is transformed into
ι({α}(i)) in one round, thus m(ι({α}(i))) < m(ι(α)), by our hypoth-
esis m_decrease.

Please note that the impossibility proofs of sections 3.7.1.2 on page 112
and 3.7.1.3 on page 114 contain a similar lemma, also called m_ge. We are now
able to build a counter-example.

Definition big_h := iota mu.
Definition beta_h := m big_h.
Definition small_h := iota beta_h.

From Lemma m_ge we infer the following inequality :

Corollary m_ge_generic : m big_h <= m small_h.

The (big) rest of the proof is dedicated to prove formally the converse in-
equality m small_h < m big_h.

5.3.1 The case of free battles
Let us now consider that B is instantiated to free (which means that we are con-
sidering proofs of termination of all battles). The following lemmas are proved
in Hydra.Epsilon0_Needed_Free. The case B = standard will be studied in
section 5.4 on the next page.

Section Impossibility_Proof.

Context (Var : BoundedVariant free ).

1. The following lemma is an application of m_ge_generic, since free sat-
isfies trivially the hypothesis m_decrease.

Lemma m_ge : m big_h <= m small_h.
Proof.

apply m_ge_generic.
intros; generalize Hvar ; destruct 1.
apply variant_decr with i.
intro ; subst; now apply (head_no_round_n _ _ H).
exists i; apply H.

Qed.

2. From the hypothesis m_bounded, we have m big_h < mu

3. By Lemma LT_to_fight, we get a (free) battle from big_h = iota mu
to small_h = iota (m big_h).

../V8.9/html/teaser.Ordinals.Hydra.Epsilon0_Needed_Free.html
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Lemma big_to_small : big_h -+-> small_h.

4. From the hypotheses on m, we infer:

Lemma m_lt : m small_h < m big_h.

5. From lemmas m_ge and m_lt, and the irreflexivity of <, we get a contra-
diction.

Theorem Impossibility_free : False.
Proof. apply (LT_irrefl self_lt_free). Qed.

End Impossibility_Proof.

We have now proved there exists no bounded variant for the class of free
battles.

Check Impossibility_free.

Impossibility_free
: BoundedVariant free -> False

5.4 The case of standard battles
One may wonder if our theorem holds also in the framework of standard battles.
Unfortunately, its proof relies on the lemma LT_to_fight, which builds a battle
out of any inequality β < α. This lemma is a straightforward application of
LT_path: every approximant {α}(j + 1) built when α is a limit ordinal gives a
round with j as the replication factor. Since j depends on β, we cannot be sure
that the generated battle is a genuine standard battle.

The tool we need to use is once again in Ketonen and Solovay’s article [27].
Instead of considering plain paths, i.e. sequences α0 = α, α1, . . . , αk = β where
αj+1 is equal to {αj}(ij) for some ij , we will consider various constraints on
these sequences. Please note that the vocabulary on paths is ours, but all the
concepts come really from [27].

Such a path is called standard if ij+1 = ij+1 for every j < k. It corresponds
to a “segment” of some standard battles. In Coq, standard paths can be defined
as follows.

(** standard path from (i, alpha) to (j, beta) *)

Inductive standard_pathR(j:nat)( beta:T1): nat -> T1 -> Prop :=
std_1 : forall i alpha, beta = canonseq i alpha -> j = S i ->

standard_pathR j beta i alpha
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| std_S : forall i alpha,
standard_pathR j beta (S i) (canonseq i alpha) ->
standard_pathR j beta i alpha.

Definition standard_path i alpha j beta :=
standard_pathR j beta i alpha.

Inside the mathematical text and figures, we shall use the notation α −→
i,j

β

for the proposition standard_path i α j β.
In [27] the notation is α ∗−→

i
β for the proposition ∃j, i < j ∧ α −→

i,j
β.

It would be nice to transform any inequality β < α < ε0 into a standard path
α −−→

0,j
β for some j, then into a standard battle from ι(α) to ι(β). Following [27],

we simulate plain (free) paths from α to β with paths made of steps (γ, {γ}(n)),
with the same n all along the path, then to a standard path.

5.4.1 Paths with constant index
Happily, the aforementionned article contains a combinatorial study of paths.
First of all, paths with a constant index enjoy nice properties. They are defined
as paths where all the ij are equal to the same natural number i, for some i.

Like in [27], we shall use the notation α −→
i
β for denoting such a path.

Definition const_pathS i :=
clos_trans_1n T1 (fun alpha beta => beta = canonS i alpha).

Definition const_path i alpha beta :=
match i with
0 => False

| S j => const_pathS j alpha beta
end.

Please note that the relation const_path is functional: given i, α and l, the
following function returns the ordinal β such that there exists a path α −−→

i+1
β

of length l.

Fixpoint const_funS (i:nat)(alpha : T1)(l:nat): T1 :=
match l
with
| 0 => alpha
| S m => const_funS i (canonS i alpha) m
end.

The following computations show applications of constS_fun to the ordinal
ωω, with various values of i and l.
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Compute (const_funS 2 (omega ^omega) 55).

= zero
: T1

Compute pp (const_funS 2 (omega ^omega) 15).

= (omega ^ 2 * 2)%pT1
: ppT1

Compute pp (const_funS 4 (omega^omega) 100).

= (omega ^ 4 * 4 + omega ^ 3 * 4 + omega ^ 2 + omega * 4 + 4)%pT1
: ppT1

A most interesting property of such paths is that we can “upgrade” their
index, as stated by K.&S.’s Corollary 12.

Corollary C12 (alpha : T1) : nf alpha ->
forall beta i n, beta < alpha ->

(i < n)%nat ->
const_pathS i alpha beta ->
const_pathS n alpha beta.

Proof.
transfinite_induction_lt alpha.
(* (long) proof skipped *)

We shall often use a version of C12 with large inequalities.

Corollary C12' (alpha : T1) : nf alpha ->
forall beta i n, (beta < alpha)%t1 ->

(i <= n)%nat ->
const_pathS i alpha beta ->
const_pathS n alpha beta.

5.4.1.1 Sketch of proof of C12

We prove this lemma by transfinite induction on α. Let us consider a path
α −→

i
β (i > 0). Its first step is the pair (α, {α}(i)), We have {α}(i) < α and

{α}(i) −→
i

β. Let n be any natural number such that n > i. By the induction
hypothesis, there exists a path {α}(n) −→

i
β.

• If α is a successor ordinal γ+1, then {α}(n) = {α}(i) = γ. Thus we have
a path α −→

n
γ −→

n
β
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• If α is a limit ordinal, we apply the following theorem (numbered 2.4 in
Ketonen and Solovay’s article).

Theorem Theorem_2_4 (lambda : T1) :
nf lambda ->
is_limit lambda ->
forall i j, (i < j)%nat ->

const_pathS 0 (canonS j lambda)
(canonS i lambda).

We build the following paths :

1. α
n−→ {α}(n)

2. {α}(n) −→
1

{α}(i) (by Theorem_2_4),

3. {α}(n) −→
n

{α}(i) (applying the induction hypothesis to the preceding
path);

4. {α}(i) −→
n

β (applying the induction hypothesis)

5. α −→
n

β (by composition of 1, 3, and 4).

Remark 5.1 C12 “casts” i-paths into n-paths for any n > i. But the obtained
n-path can be much longer than the original i-path. The following exercise will
give an idea of this increase.

Exercice 5.2 Prove that the length of the i+1-path from ωω to ωi is 1+ (i+
1)(i+1), for any i. Note that the i-path from ωω to ωi is only one step long.

Why is C12 so useful? Let us consider two ordinals β < α < ε0. By induction
on α, we decompose any inequality β < α into β < {α}(i) < α, where i is some
integer. Applying collorary C12' we build a n-path from β to α, where n is the
maximum of the indices i met in the induction.

Lemma 1, Section 2.6 of [27] is naturally expressed in terms of Coq’s sig
construct.

Lemma L2_6_1 (alpha : T1) :
nf alpha ->
forall beta, beta < alpha ->

{n:nat | const_pathS n alpha beta}.
Proof.

transfinite_induction alpha.
(* rest of proof skipped *)

Intuitively, lemma L2_6_1 shows that if β < α < ε0, then there exists a
battle from ι(α) to ι(β) where the replication factor is constant, although large
enough.
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5.4.2 Casting paths with constant index into standard paths
The article [27] contains the following lemma, the proof of which is quite com-
plex, which allows to simulate i-paths by [i+1, j]-paths, where j is large enough.

(* Lemma 1 page 300 of [KS] *)

Lemma constant_to_standard_path
(alpha beta : T1) (i : nat):
nf alpha -> const_pathS i alpha beta -> zero < alpha ->
{l:nat | standard_path (S i) alpha j beta}.

5.4.2.1 Sketch of proof of constant_to_standard_path

Our proof follows the proof by Ketonen and Solovay, including its organization
as a sequence of lemma. Since it is a non-trivial proof, we will comment its
main steps below.

Préliminaries

Please note that, given an ordinal α : T1, and two natural numbers i and l, there
exists at most a standard path α

∗−−−→
i,i+l

β. The following function computes β

from α, i and l.

Fixpoint standard_fun (i:nat)(alpha : T1)(l:nat): T1 :=
match l
with
| 0 => alpha
| S m => standard_fun (S i) (d i alpha) m
end.

Compute standard_fun 2 omega 15.
(* = zero

: T1 *)
Compute pp (standard_fun 2 (omega^omega) 10).
(*
= (omega + 7)%pT1

: ppT1
*)
Compute pp (standard_fun 4 (omega^omega) 100).
(*
= (omega ^ 3 * 4 + omega ^ 2 * 5 + omega * 3 + 39)%pT1

: ppT1 *)

By transfinite induction over α, one prove that the ordinal 0 is reachable
from any ordinal α < ε0 by some standard path.
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Lemma standard_path_to_zero :
forall alpha i, nf alpha ->

{j: nat | standard_path (S i) alpha j zero}.

Let us consider two ordinals β < α < ε0. Let p be some (n+ 1)-path from α
to β.

Section Constant_to_standard_Proof.

Variables (alpha beta: T1) (n : nat).
Hypotheses (Halpha: nf alpha) (Hpos : zero < beta)

(p : const_pathS n alpha beta).

Applying standard_path_to_zero, 0 is reachable from α by some standard
path (see figure 5.2).

α β
n+ 1

+
0

n
+
1

n+ 2 n+ 3
. . .

n+ p+ 1

Figure 5.2: la belle-preuve (1)

Since comparison on T1 is decidable, one can compute the last step γ of the
standard path from (α, n+ 1) such that β ≤ γ. Let l be the length of the path
from α to γ.

This step of the proof is illustrated in figure 5.3.

α β

. . .

γ δ
n+

1
n+ 2

n
+

l

n+ l + 1

n+ 1

+

≥ >

Figure 5.3: la belle preuve (2)

• If β = γ, its OK ! We have got a standard path from α to β with successive
indices n+ 1, n+ 2, . . . , n+ l + 1
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• Otherwise, β < γ. Let us consider δ = {γ}(n+ l + 2). By applying
several times lemma C12, one converts all paths into n+ l + 1-paths (see
figure 5.4).

But γ is on the n+ l + 1-path from α to β. As shown by figure 5.5), the
ordinal δ, reachable from γ in one single step, must be greater or equal
than β, which contradicts our hypothesis β < γ.

The only remaining case is β = γ, thus we have got a standard path from α to
β.

Lemma constant_to_standard_0 :
{l : nat | standard_fun (S n) alpha l = beta}.

End Constant_to_standard_Proof.

Lemma constant_to_standard_path
(alpha beta : T1) (i : nat):
nf alpha -> const_pathS i alpha beta -> zero < alpha ->
{j:nat | standard_path (S i) alpha j beta}.

α β

. . .

γ δ
n
+

l
+

1+

n + l + 1

+

n
+

l
+

1

+
n + l + 1

1

n+ l + 1

+

> >

Figure 5.4: la belle preuve (3)

α β

. . .

γ δ
n
+

l
+

1+

n + l + 1

+

n
+

l +
1

+

n+ l + 1

1

n+ l + 1

+

n + l + 1

+ >

Figure 5.5: fin de la belle preuve
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Applying L2_6_1 and constant_to_standard_path, we get the following
corollary.

Corollary LT_to_standard_path
(alpha beta : T1) :

beta < alpha ->
{n : nat & {j:nat | standard_path (S n) alpha j beta}}.

5.4.3 Back to hydras
We are now able to complete our proof that there exists no bounded variant
for proving the termination of standard hydra battles. The proof we are going
to comment can be consulted in the module ../V8.9/html/teaser.Ordinals.
Hydra.Epsilon0_Needed_Std.html. Please note that it has the same global
structure as in section5.3.1

Applying the lemmas L2_6_1 of the module L2_6_1 and constant_to_standard_path,
we can convert any inequality β < α < ε0 into a standard path from α to β,
then into a fragment of a standard battle from ι(α) to ι(β).

Lemma lt_to_standard_battle :
forall alpha beta,

beta < alpha ->
exists n i, fight standard n (iota alpha) i (iota beta).

Next, please consider the following context:

Section Impossibility_Proof.

Context (Var : BoundedVariant standard).

In the same way as for free battles, we import a large inequality from the
module ../V8.9/html/teaser.Ordinals.Hydra.Epsilon0_Needed_Generic.
html .

Lemma m_ge : m big_h <= m small_h.

If remains to prove the following strict inequality, in order to have a contra-
diction.

Lemma m_lt : m small_h < m big_h.

Proof: Let us recall that big_h = ι(µ) and small_h = ι(m(big_h)).
Since m(big_h ) < µ, there exists a standard path from µ to m(big_h),

hence a standard battle from ι(µ) to ι(m(big_h)), i.e. from big_h to small_h.
Since m is assumed to be a variant for standard battles, we get the inequality

m(small_h) < m(big_h).

../V8.9/html/teaser.Ordinals.Hydra.Epsilon0_Needed_Std.html
../V8.9/html/teaser.Ordinals.Hydra.Epsilon0_Needed_Std.html
../V8.9/html/teaser.Ordinals.Epsilon0.KS.html#L2_6_1
../V8.9/html/teaser.Ordinals.Epsilon0.KS.html#constant_to_standard_path
../V8.9/html/teaser.Ordinals.Hydra.Epsilon0_Needed_Generic.html
../V8.9/html/teaser.Ordinals.Hydra.Epsilon0_Needed_Generic.html
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5.4.4 Remarks
We thank J. Ketonen and R. Solovay for the high quality of their explanations
and proof details. Our proof follows tightly the sequence of lemmas in their
article, with a focus on constructive aspects. Roughly steaking, our implemen-
tation builds, out of a hypothetic variant m, bounded by some ordinal µ < ε0,
a hydra big_h which verifies the impossible inequality m(big_h) < m(big_h).

On may ask whether the preceding results are not too restrictive, since
they refer to a particular data type T1. In fact, our representation of ordi-
nals strictly less than ε0 is faithful to their mathematical definition, at least
Kurt Schütte’s [34], as proved in Chapter 6 on page 163. (please see also le
module Ordinals.Schutte.Injection_E0).

Thus, we can infer that our theorems can be applied to any well order.

Project 5.1 Study a possible modification of the definition of a variant (for
standard battles).

• The variant is assumed to be strictly decreasing on configurations reachable
from some initial configuration where the replication factor is equal to 0

• The variant may depend on the number of the current round.

In other words, its type should be nat -> Hydra -> T1, and it must verify
the inequality m (S i)h′ < mih whenever the configuration (i, h) is reachable
from some initial configuration (0, h0) and h is transformed into h' in the con-
sidered round.

Can we still prove the theorems of section 5.4 with this new definition?

../V8.9/html/teaser.Ordinals.Schutte.Injection_E0.html
../V8.9/html/teaser.Ordinals.Schutte.Injection_E0.html
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Chapter 6

Kurt Schütte’s axiomatic
Definition of countable
Ordinals

In the present chapter, we compare our implementation of the segment [0, ε0[
with a mathematical text in order to “validate” our constructions.

We chosed as reference an axiomatic definition of the set of countable ordi-
nals, from Kurt Schütte’s book ” Proof Theory ” [34].

Remark 6.1 In all this chapter, the word “ordinal” will be considered as a
synonymous of “countable ordinal”

Schütte’s definition of countable ordinal relies on the following three axioms.

1. There exists a well-ordered set (O, <)

2. Every bounded subset of O is countable

3. Every countable subset of O is bounded.

Starting with these three axioms, Schütte re-defines the vocabulary about
ordinal numbers: the null ordinal 0, limits and successors, the addition of ordi-
nals, the infinite ordinals ω, ε0, Γ0, etc.

This chapter describes an adaptation to Coq of Schütte’s axiomatization of
countable ordinals. Unlike the rest of our libraries, the library Ordinals.Axiomatic
is not constructive, and relies on various axioms.

• First, note that the set of countable ordinals is not countable. Thus,
we cannot hope to represent all countable ordinals as finite terms of an
inductive type, which was possible withe the set of ordinals strictly less
than ε0 (resp. Γ0)

163
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• We tried to be as close as possible to K. Schütte’s text, which uses “classi-
cal” mathematics : excluded middle and Hilbert’s ε (choice) and Russel’s
ι (definite description) operators. Both operators allowus to write defi-
nitions close to the natural mathematical language, such as “succ is the
least ordinal strictly greater than α”

• Please note that only the sub-library Schutte/ is “contaminated” by vari-
ous axioms, and the rest of our libraries remains constructive.

6.1 Declarations and Axioms
Let us declare a type ON for representing countable ordinals, and a binary rela-
tion lt. Note that, in our development, ON is a type, while the set of countable
ordinals (called O by Schütte) is the full set over the type ON.

From Schutte_basics.v

Parameter ON : Type.
Parameter lt : relation ON.
Notation "a < b" := (lt a b): schutte_scope.

Definition ordinal := Full_set ON.

Schütte’s first axiom tells that lt is a well order on the set ordinal (The
class WO is defined in Well_Orders.v).

Variables (M:Type)
(Lt : relation M).

Class WO : Type:=
{

Lt_trans : Transitive Lt;
Lt_irreflexive : forall a:M, ~ (Lt a a);
well_order : forall (X:Ensemble M)(a:M),

In X a ->
exists a0:M, least_member X a0

}.

Axiom AX1 : WO lt ordinal.

The second and third axioms say that a subset X of O is (strictly) bounded
iff it is countable. We use Florian Hatat’s library on countable sets, written as
he was a student of École Normale Supérieure de Lyon.

Axiom AX2 : forall X: Ensemble ON,
(exists a, (forall y, X y -> y < a)) ->
countable X.

../V8.9/html/teaser.Ordinals.Axiomatic.Schutte.html
../V8.9/html/teaser.Ordinals.Axiomatic.Schutte_basics.html
../V8.9/html/teaser.Ordinals.Axiomatic.Well_Orders.html
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Axiom AX3 : forall X : Ensemble ON,
countable X ->
exists a, forall y, In X y -> y < a.

AX2 and AX3 could have been replaced by a single axiom (using the iff
connector), but we decide to respect asmost as possible the structure of Schütte’s
definitions.

Besides Schütte’s axioms, we needed to admit that the type ON is not empty:

Axiom inh_ON : inhabited ON.

6.1.1 Additional axioms
The adaptation of Schütte’s mathematical discourse to Coq led us to import
a few axioms from the standard library. We encourage the reader to consult
Coq’s FAQ about the safe use of axioms https://github.com/coq/coq/wiki/
The-Logic-of-Coq#axioms.

6.1.1.1 Classical logic

In order to work with classical logic, we import the module Coq.Logic.Classical
of Coq’s standard library, specifially the following axiom:

Axiom classic : forall P:Prop, P \/ ~P.

6.1.1.2 Description operators

In order to respect Schütte’s style, we imported also the library Coq.Logic.Epsilon.
The rest of this section presents a few examples of how Hilbert’s choice operator
and Church’s definite description allow us to write understandable definitions
(close to the mathematical natural language).

6.1.1.3 The definition of zero

According to the definition of a well order, every non-empty subset of ON has a
least element. Furthermore, this least element is unique.

Remark R : exists! z : ON, least_member lt ordinal z.
Proof.
destruct inh_ON as [a]; apply (well_order (WO:=AX1)) with a .
split.

Qed.

Assume we want to call this element zero.

https://github.com/coq/coq/wiki/The-Logic-of-Coq#axioms
https://github.com/coq/coq/wiki/The-Logic-of-Coq#axioms
https://coq.inria.fr/distrib/current/stdlib/Coq.Logic.Classical.html
https://coq.inria.fr/distrib/current/stdlib/Coq.Logic.Epsilon.html
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Definition zero : ON.
Proof.

Fail destruct R.

The command has indeed failed with message:
Case analysis on sort Type is not allowed for inductive
definition ex.

Indeed, the basic logic of Coq does not allow us to eliminate a proof of a
proposition ∃x : A, P (x) for building a term whose type lies in the sort Type.
The reasons for this impossibility are explained in many documents [5, 17, 21].

Let us import the library Coq.Logic.Epsilon, which contains the following
axiom.

Axiom epsilon_statement :
forall (A : Type) (P : A->Prop), inhabited A ->
{ x : A | (exists x, P x) -> P x }.

Hilbert’s ε operator is derived from this axiom.

Definition epsilon (A : Type) (i:inhabited A) (P : A->Prop) : A
:= proj1_sig (epsilon_statement P i).

Lemma constructive_indefinite_description :
forall (A : Type) (P : A->Prop),
(exists x, P x) -> { x : A | P x }.

If we consider the unique existential quantifier ∃!, we obtain Church’s definite
description operator.

Definition iota (A : Type) (i:inhabited A) (P : A->Prop) : A
:= proj1_sig (iota_statement P i).

Lemma constructive_definite_description :
forall (A : Type) (P : A->Prop),
(exists! x, P x) -> { x : A | P x }.

Definition iota_spec (A : Type) (i:inhabited A) (P : A->Prop) :
(exists! x:A, P x) -> P (iota i P)
:= proj2_sig (iota_statement P i).

Indeed, the operators epsilon and iota allowed us to make our definitions
quite close to Schütte’s text. Our libraries MoreEpsilonIota and PartialFun
are extensions of Coq.logic.Epsilon for making easier such definitions. See
also an article in french [13].

../V8.9/html/teaser.Ordinals.Axiomatic.MoreEpsilonIota.html
../V8.9/html/teaser.Ordinals.Axiomatic.PartialFun.html
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Class InH (A: Type) : Prop :=
InHWit : inhabited A.

Definition some {A:Type} {H : InH A} (P: A -> Prop) :=
epsilon (@InHWit A H) P.

Definition the {A:Type} {H : InH A} (P: A -> Prop) :=
iota (@InHWit A H) P.

We are now able de define zero as the least ordinal. For this purpose, we
define a function returning the least element of any [non-empty] set.

Definition the_least {M: Type} {Lt}
{inh : InH M} {WO: WO Lt} (X: Ensemble M) : M :=

the (least_member Lt X ).

From Schutte_basics

Definition zero: ON :=the_least ordinal.

We want to prove now that zero is less or equal than any ordinal number.

Lemma zero_le (alpha : ON) : zero <= alpha.
Proof.
unfold zero, the_least, the; apply iota_ind.

According to the use of the description operator iota, we have to solve two
trivial sub-goals.

1. Prove that there exists a unique least member of ON

2. Prove that being a least member of ON entails the announced inequality

2 subgoals (ID 155)

alpha : ON
============================
exists ! x : ON, least_member lt ordinal x

subgoal 2 (ID 156) is:
forall a : ON, unique (least_member lt ordinal) a ->

a <= alpha

- apply the_least_unicity, Inh_ord.
- destruct 1 as [[_ H1] _]; apply H1; split.

Qed.

../V8.9/html/teaser.Ordinals.Axiomatic.Schutte_basics.html
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6.1.1.4 Remarks on epsilon and iota

What would happen in case of a misuse of epsilon or iota ? For instance, one
could give a unsatisfiable specification to epsilon or a specification for iota
that admits several realizations.

Let us consider an example:

Module Bad.

Definition bottom := the_least (Empty_set ON).

bottom is defined

Since we won’t be able to prove the proposition
{exists! a: ON, least_member (Empty_set ON) a, the only properties we
would be able to prove about bottom would be trivial properties, i.e. satisfied
by any element of ON, like for instance bottom = bottom, or zero <= bottom.

Lemma le_zero_bottom : zero <= bottom.
Proof. apply zero_le. Qed.

Lemma bottom_eq : bottom = bottom.
Proof. trivial. Qed.

Lemma le_bottom_zero : bottom <= zero.
Proof.

unfold bottom, the_least, the; apply iota_ind.

2 subgoals (ID 413)

============================
exists ! x : ON, least_member lt (Empty_set ON) x

subgoal 2 (ID 414) is:
forall a : ON, unique (least_member lt (Empty_set ON)) a ->

a <= zero

Abort.
End Bad.

In short, using epsilon and iota in our implementation of countable ordi-
nals after Schütte has two main advantages.

• It allows us to give a name (using Definition) two witnesses of existential
quantifiers (let us recall that, in classical logic, one may consider non-
constructive proofs of existential statements)
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• By separating definitions from proofs of [unique] existence, one may make
the former more concise and readable. The reader will admit this fact by
considering the definitions of zero, succ, plus, etc. in the rest of this
chapter.

6.1.2 The successor function
The definition of the function succ:ON -> ON is very concise. The successor of
any ordinal α is the smallest ordinal strictly greater than α.

Definition succ (alpha : ON) := the_least (fun beta => alpha < beta).

Using succ, we define the folloing predicates.

Definition is_succ (alpha:ON) := exists beta, alpha = succ beta.

Definition is_limit (alpha:ON) := alpha <> zero /\ ~ is_succ alpha.

It is also easy to define recursively the finite ordinals.

Reserved Notation "'F' n" (at level 29) .

Fixpoint finite (i:nat) : ON :=
match i with

| 0 => zero
| S i => succ (F i)

end
where "'F' i" := (finite i) : schutte_scope.

Coercion finite : nat >-> ON.

How do we prove properties of the successor function? First, we make its
specification explicit.

Definition succ_spec (alpha:ON) :=
least_member lt (fun z => alpha < z).

Then, we prove that our function succ meets this specification.

Lemma succ_ok : forall alpha, succ_spec alpha (succ alpha).
Proof.
intros; unfold succ, the_least, the; apply iota_spec.

1 subgoal (ID 172)

alpha : ON
============================
exists ! x : ON, succ_spec alpha x
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We have to prove that the set of all ordinals strictly greater than α has a
unique least element. But the singleton set {α} is countable, thus bounded (by
the axiom AX3). Hence; the set {β ∈ O|α < β} is not empty and therefore has
a unique least element.

The Coq proof script is quite short.

destruct (@AX3 (Singleton _ alpha)).
- apply countable_singleton.
- unfold succ_spec; apply the_least_unicity; exists x; intuition.

Qed.

We can“uncap” the description operator for proving properties of the succ
function.

Lemma lt_succ (alpha : ON) : alpha < succ alpha.
Proof.

destruct (succ_ok alpha); tauto.
Qed.

Hint Resolve lt_succ : schutte.

Lemma lt_succ_le (alpha beta : ON):
alpha < beta -> succ alpha <= beta.

Proof with eauto with schutte.
intros H; pattern (succ alpha); apply the_least_ok ...
exists (succ alpha); red;apply lt_succ ...

Qed.

Lemma lt_succ_le_2 (alpha beta : ON):
alpha < succ beta -> alpha <= beta.

Lemma succ_mono (alpha beta : ON):
alpha < beta -> succ alpha < succ beta.

Lemma succ_monoR (alpha beta : ON) :
succ alpha < succ beta -> alpha < beta.

Lemma lt_succ_lt (alpha beta : ON) :
is_limit beta -> alpha < beta -> succ alpha < beta.

6.1.3 The definition of omega

In order to define ω, the first infinite ordinal, we use an operator which “returns”
the least upper bound (if it exists) of a subset X ⊆ O. For that purpose, we
first use a predicate: (is_lub D lt X a) if a belongs to D and a is the least
upper bound of X.
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Definition is_lub (M:Type)
(D : Ensemble M)
(lt : relation M)
(X:Ensemble M)
(a:M) :=

In _ D a /\ upper_bound D lt X a /\
(forall y, In _ D y -> upper_bound D lt X y ->

y = a \/ lt a y).

Definition sup_spec X lambda := is_lub ordinal lt X lambda.

Definition sup (X: Ensemble ON) : ON := the (sup_spec X).

Notation "'|_|' X" := (sup X) (at level 29) : schutte_scope.

Then, we define the function omega_limit which returns the least upper
bound of the (denumerable) range of any sequence s: nat -> ON. By AX3 this
range is bounded, hence the set of its upper bounds is not empty and has a least
element.

Definition omega_limit (s:nat->ON) : ON
:= |_| (seq_range s).

Then we define omega as the limit of the sequence of finite ordinals.

Definition omega := omega_limit finite.

Among the numerous properties of the ordinal ω, les us quote the following
ones (proved in Schutte_basics ).

Lemma finite_lt_omega : forall i: nat, i < omega.

Lemma lt_omega_finite alpha : ON) :
alpha < omega -> exists i:nat, alpha = i.

Lemma is_limit_omega : is_limit omega.

6.1.4 Ordering functions
After having defined the finite ordinals and the infinite ordinal ω, we define the
sum α+β of two countable ordinals. Schütte’s definition looks like the following
one:

“α+ β is the β-th ordinal greater or equal than α”

../V8.9/html/teaser.Ordinals.Axiomatic.Schutte_basics.html
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The purpose of this section is to give a meaning to the construction “the
α-th element of X” where X is a non empty subset of O. We follow Schütte’s
approcah, by defining the notion of ordering functions, a way to associate a
unique ordinal to each element of a given subset of O. Complete definitions and
proofs can be found in the module Ordering_Functions ).

6.1.4.1 Definitions

A segment is a set A of ordinals such that, whenever α ∈ A and β < α, then
β ∈ A; a segment is proper if it strictly included in O.

Definition segment (A: Ensemble ON) :=
forall alpha beta, In A alpha -> beta < alpha -> In A beta.

Definition proper_segment (A: Ensemble ON) :=
segment A /\ ~ Same_set A ordinal.

Let A be a segment, and B a subset of O : an ordering function for A and B
is a strictly increasing bijection from A to B. The set B is sait to be an ordering
segment of A. Our definition in Coq is a direct translation of the mathematical
text of [34].

Definition ordering_function (f : ON -> ON)(A B : Ensemble ON) :=
segment A /\
(forall a, In A a -> In B (f a)) /\
(forall b, B b -> exists a, In A a /\ f a = b) /\
forall a b, In A a -> In A b -> a < b -> f a < f b.

Definition ordering_segment (A B : Ensemble ON) :=
exists f : ON -> ON, ordering_function f A B.

We are now able to associate with any subset B of O its ordering segment
and ordering function.

Definition the_ordering_segment (B : Ensemble ON) :=
the (fun x => ordering_segment x B).

Definition ord (B : Ensemble ON) :=
some (fun f => ordering_function f (the_ordering_segment B) B).

Thus (ord B α) is the α-th element of B. Please note that the last definition
uses the epsilon-based operator some and not the. This is due to the fact that we
cannot prove the unicity (w.r.t. Leibniz’ equality) of the ordering function of a
given set. By contrast, we admit the axiom Extensionality_Ensembles, from
the library Coq.Sets.Ensembles, so we use the operator the in the definition of
the_ordering_segment.

One of the main theorems of Ordering_Functions associates a unique seg-
ment and a unique ordering function to every subset of O.

../V8.9/html/teaser.Ordinals.Axiomatic.Ordering_Functions.html
https://coq.inria.fr/distrib/current/stdlib/Coq.Sets.Ensembles.html
../V8.9/html/teaser.Ordinals.Axiomatic.Ordering_Functions.html
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About ordering_function_ex.

forall B : Ensemble ON,
exists ! AB : Ensemble ON,

exists f : ON -> ON, ordering_function f AB B

Moreover, the following theorem tells us that two ordering functions of the
same set are extentionally equal, which makes our function ord non-ambiguous.

ordering_function_unicity :
forall (B A1 A2 : Ensemble ON) (f1 f2 : ON -> ON),
ordering_function f1 A1 B ->
ordering_function f2 A2 B -> fun_equiv f1 f2 A1 A2

Let us quote the following theorems (see Ordering_Functions for more
details).

Theorem ordering_le : forall f A B,
ordering_function f A B ->
forall alpha, In A alpha -> alpha <= f alpha.

Th_13_5_2 :
forall (A B : Ensemble ON) (f : ON -> ON),
ordering_function f A B -> closed B -> continuous f A B

6.1.5 Ordinal addition
We are now ready to define and study addition on the type ON. The following
definitions and proofs can be consulted in Addition.v.

Definition plus alpha := ord (ge alpha).
Notation "alpha + beta " := (plus alpha beta) : schutte_scope.

In other words, α+ β is the β-th ordinal greater or equal than α.
Thank to generic properties of ordering functions, we can show the following

properties of addition on O. First, we prove a useful lemma:

Lemma plus_elim (alpha : ON) :
forall P : (ON->ON)->Prop,

(forall f: ON->ON,
ordering_function f ordinal (ge alpha)-> P f) ->

P (plus alpha).

Lemma alpha_plus_zero (alpha: ON): alpha + zero = alpha.
Proof.
pattern (plus alpha); apply plus_elim;eauto.

../V8.9/html/teaser.Ordinals.Axiomatic.Ordering_Functions.html
../V8.9/html/teaser.Ordinals.Axiomatic.Addition.html
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1 subgoal (ID 24)

alpha : ON
============================
forall f : ON -> ON,
ordering_function f ordinal (ge alpha) ->
f zero = alpha

(* rest of proof skipped *)

The foolowing lemmas are proved the same way.

Lemma zero_plus_alpha (alpha : ON) : zero + alpha = alpha.

Lemma le_plus_l (alpha beta : ON) : alpha <= alpha + beta.

Lemma le_plus_r (alpha beta : ON) : beta <= alpha + beta.

Lemma plus_mono_r (alpha beta gamma : ON) :
beta < gamma -> alpha + beta < alpha + gamma.

Lemma plus_of_succ (alpha beta : ON) :
alpha + (succ beta) = succ (alpha + beta).

Theorem plus_assoc (alpha beta gamma : ON) :
alpha + (beta + gamma) = (alpha + beta) + gamma.

Lemma one_plus_omega : 1 + omega = omega.

Lemma finite_plus_ge_omega (n : nat) (alpha : ON) :
omega <= alpha -> n + alpha = alpha.

It isinteresting to compare the proof of these lemmas with the computational
proofs of the corresponding statements in Epsilon0.T1. For instance, the proof
of the lemma one_plus_omega uses the continuity of ordering functions (hence
(plus 1)) and compares the limit of the ω-sequences i(i∈N) and (1 + i)i(i∈N),
whereas in the library Epsilon0/T1, the equality 1+ ω = ω is just proved with
reflexivity!

6.1.5.1 Multiplication by a natural number

The multiplication of an ordinal by a natural number is defined in terms of
addition. This operation is useful for the study of Cantor normal forms.

Fixpoint mult_Sn (alpha:ON)(n:nat){struct n} :ON :=
match n with
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| 0 => alpha
| S p => mult_Sn alpha p + alpha

end.

Definition mult_n alpha n :=
match n with

0 => zero
| S p => mult_Sn alpha p

end.

Notation "alpha * n" := (mult_n alpha n) : schutte_scope.

6.1.6 The exponential of basis ω

In this section, we define the function which maps any α ∈ O to the ordinal
ωα, also written ϕ0 α. It is an opportunity to apply the definitions and results
of the preceding section. Indeed, Schütte first defines a subset of O: the set of
additive principal ordinals, and ϕ0 is just defined as the ordering function of
this set.

6.1.6.1 Additive principal ordinals

Definition 6.1 A non-zero ordinal α is said to be additive principal if, for all
β < α, β + α is equal to α. We call AP the set of additive principal ordinals.

From AP.v

Definition AP : Ensemble ON :=
fun alpha =>
zero < alpha /\
(forall beta, beta < alpha -> beta + alpha = alpha).

6.1.6.2 The function phi0

Let us call ϕ0 the ordering function of AP.

Definition phi0 := ord AP.

In the mathematical text, we shall use indifferently the notations ωα andϕ0(α).

Notation "'omega^'" := phi0 (only parsing) : schutte_scope.

6.1.7 Omega-towers and the ordinal ε0
Using ϕ0, we can define recursively the set of finite omega-towers.

../V8.9/html/teaser.Ordinals.Axiomatic.AP.html
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Fixpoint omega_tower (i : nat) : ON :=
match i with
0 => 1

| S j => phi0 (omega_tower j)
end.

Then, the ordinal ε0 is defined as the limit of the sequence of all finite towers
(a kind of infinite tower).

Definition epsilon0 := omega_limit omega_tower.

The rest of our library AP is devoted to the proof of properties of additive
principal ordinals, hence of the ordering function ϕ0 and the ordinal ε0 (which
we could not express within the type T1).

6.1.8 Properties of the set AP

The set of additive principal ordinals is not empty: it contains at least the
ordinals 1 and ω.

Lemma AP_one : In AP 1.

Lemma AP_omega : In AP omega.

Moreover, 1 is the least principal ordinal and ω is the second element of AP.

Lemma least_AP: least_member lt AP 1.

Lemma omega_second_AP :
least_member lt

(fun alpha => 1 < alpha /\ In AP alpha)
omega.

The set AP is closed under addition, and unbounded.

Lemma AP_plus_closed (alpha beta gamma : ON):
In AP alpha -> beta < alpha -> gamma < alpha -> beta + gamma < alpha.

Theorem AP_unbounded : Unbounded AP.

Finally, AP is closed and ordered by the segment of all countable ordinals.

Theorem AP_closed : closed AP.

Lemma AP_o_segment : the_ordering_segment AP = ordinal.
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6.1.8.1 Properties of the function ϕ0

The ordering function of the set AP is defined on the full set O and is continuous
(Schütte says that this function is normal).

Theorem normal_phi0 : normal phi0 AP.

The following properties come from the definition of ϕ0 as the ordering func-
tion of AP. It may be interesting to compare these proofs with the computational
ones described in Chapter 4.

Lemma AP_phi0 (alpha : ON) : In AP (phi0 alpha).

Lemma phi0_zero : phi0 zero = 1.

Lemma phi0_mono (alpha beta : ON) :
alpha < beta -> phi0 alpha < phi0 beta.

Lemma phi0_inj (alpha beta : ON) :
phi0 alpha = phi0 beta -> alpha = beta.

Lemma phi0_sup : forall (U: Ensemble ON),
Inhabited _ U -> countable U -> phi0 (|_| U) = |_| (image U phi0).

Lemma is_limit_phi0 (alpha : ON) :
zero < alpha -> is_limit (phi0 alpha).

Lemma omega_eq : omega = phi0 1.

Lemma phi0_le (alpha : ON) : alpha <= phi0 alpha.

Please note that the lemma omega_eq above, is consistent with the inter-
pretation of the ordering function ϕ0 as the exponential of basis ω. Indeed we
could have written this lemma with our alternative notation:

Lemma omega_eq : omega = omega^ 1.

6.1.8.2 More about ε0

Let us recall that the limit ordinal ε0 cannot be written within the type T1.
Since we are now considering the set of all countable ordinals, we can now prove
some properties of this ordinal.

We prove the inequality α < ωα whenever α < ε0. Note that this condition
was implicit in the module Epsilon0.T1.

Lemma lt_phi0 (alpha : ON):
alpha < epsilon0 -> alpha < phi0 alpha.
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The proof is as follows:

1. Since α < ε0, consider the least i such that α is strictly less than the
omega-tower of height i.

2. • If i = 0, then the result is trivial (because α = 0)
• Otherwise let i = j + 1; α is greater or equal than the omega-tower

of height j. By monotonicity, ϕ0(α) is greater or equal than the
omega-tower of height j + 1, thus strictly greater than α

Moreover, ε0 is the least ordinal α that verifies the equality α = ωα, in other
words the least fixpoint of the function ϕ0.

Theorem epsilon0_lfp : least_fixpoint lt phi0 epsilon0.

6.1.8.3 Cantor normal form

The notion of Cantor normal form is defined for all countable ordinals. Never-
theless, note that contrary to the implemenation base on type T1, the Cantor
normal form of an ordinal α may contain α as a sub-term!

Let us comment the main definitions and results of our library CNF.v
A Cantor normal form is represented as a list of ordinals.

Definition cnf_t := list ON.

A given list l is a Cantor normal of a given ordinal α if it satisfies two
conditions:

• The list l is sorted (in decreasing order) w.r.t. the order ≤

• The sum of all the ωβi where the βi are the terms of l (in this order) is
equal to α.

Fixpoint eval (l : cnf_t) : ON :=
match l with nil => zero

| beta :: l' => phi0 beta + eval l'
end.

Definition sorted (l: cnf_t) :=
LocallySorted (fun alpha beta => beta <= alpha) l.

Definition is_cnf_of (alpha : ON)(l : cnf_t) : Prop :=
sorted l /\ alpha = eval l.

By transfinite induction on α, we prove that every countable ordinal α has
at least a Cantor normal form.
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Theorem cnf_exists (alpha : ON) :
exists l: cnf_t, is_cnf_of alpha l.

By structural induction on lists, we prove that this normal form is unique.

Lemma cnf_unicity : forall l alpha,
is_cnf_of alpha l ->
forall l', is_cnf_of alpha l' -> l=l'.

Proof.
induction l.
(* end of proof skipped *)
Qed.

Theorem cnf_exists_unique (alpha:ON) :
exists! l: cnf_t, is_cnf_of alpha l.

Proof.
destruct (cnf_exists alpha) as [l Hl]; exists l; split; auto.
now apply cnf_unicity.

Qed.

Finally the following two lemmas relate ε0 with Cantor normal forms.

Lemma cnf_lt_epsilon0 :
forall l alpha,

is_cnf_of alpha l ->
alpha < epsilon0 ->
Forall (fun beta => beta < alpha) l.

Lemma cnf_of_epsilon0 : is_cnf_of epsilon0 (epsilon0 :: nil).
Proof.
split.
- constructor.
- simpl; now rewrite alpha_plus_zero, epsilon0_fxp.

Qed.

6.1.9 An embedding of T1 into ON

Our library Injection_from_T1.v establishes the link between two very dif-
ferent modelizations of ordinal numbers. In other words, it “validates” a data
structure in terms of a classical mathematical discourse considered as a model.
First, we define a function from T1 into ON by structural recursion.

Fixpoint inject (t:T1) : ON :=
match t with T1.zero => zero

| T1.ocons a n b =>
AP.phi0 (inject a) * S n + inject b

end.
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This function enjoys good commutation properties with respect to the main
operations which allow us to build Cantor normal form.

Theorem inject_of_zero : inject T1.zero = zero.

Theorem inject_of_finite (n : nat):
inject (T1.fin n) = n.

Theorem inject_of_phi0 (alpha : T1):
inject (phi0 alpha) = AP.phi0 (inject alpha).

Theorem inject_plus (alpha beta : T1): nf alpha -> nf beta ->
inject (alpha + beta)%t1 = inject alpha + inject beta.

Theorem inject_mult_n (alpha : T1) :
nf alpha -> forall n:nat , inject (alpha * n)%t1 = inject alpha * n.

Theorem inject_mono (beta gamma : T1) :
T1.lt beta gamma ->
T1.nf beta -> T1.nf gamma ->
inject beta < inject gamma.

Theorem inject_injective (beta gamma : T1) : nf beta -> nf gamma ->
inject beta = inject gamma -> beta = gamma.

Finally, we prove that inject is a bijection from the set of all terms of T1
in normal form to the set members epsilon0 of the elements of ON strictly less
than ε0.

Theorem inject_lt_epsilon0 (alpha : T1):
inject alpha < epsilon0.

Theorem embedding :
fun_bijection (nf: Ensemble T1) (members epsilon0) inject.

6.1.10 Remarks
Let us recall that this library Schutte depends on five axioms and lies explicitely
in the framework of classical logic with a weak version of the axiom of choice
(please look at the documentation of Coq.Logic.ChoiceFacts). Nevertheless,
the other modules: Epsilon0, Hydra, et Gamma0 do not import any axioms and
are really constructive.

6.1.11 Related work
In [26], José Grimm establishes the consistency between or ordinal notations
(T1 and T2 (Veblen normal form) and his implementation of ordinal numbers
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after Bourbaki’s set theory.
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Chapter 7

Alpha-large sequences and
rapidly growing functions

Todo: Still very incomplete !

7.1 Introduction
Let us assume that Hercules always always chops off the rightmost among the
lowest heads. Let h = ι(α) be a hydra [configuration] where α is some ordinal
stricly less than ε0. Then a possible next configuration may be ι({α}(i)), where
i is some strictly positive natural number

Then, given some initial configuration, a battle can be determined by a finite
sequence of natural numbers s = s1, s2, . . . , sN , where, at the k-th round of the
fight, Hercules chops off the rightmost among the lowest heads, and the hydra
replies with ik as the replication number

On the ordinals’ side, given an ordinal α and a sequence s, we can compute
a sequence of ordinals α0 = α . . . , αk+1 = {αk}(sk) . . . . In [27], the last ordinal
αN is denoted by {α}〈s〉.

Todo: introduce sorted_ge: allows us to replace KS’s sets by sorted
lists and use library Coq.Sorting.Sorted

(* sorted list of natural numbers greater or equal than n *)

Inductive sorted_ge (n: nat) : list nat -> Prop :=
| sorted_ge_nil : sorted_ge n nil
| sorted_ge_one : forall p, n<=p ->

sorted_ge n (p::nil)
| sorted_ge_cons: forall p q s, n<=p -> p<q ->

sorted_ge p (q::s) ->
sorted_ge n (p::q::s).
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7.2 Gnawing ordinals

In Coq, we define a function gnaw of type list nat -> T1 -> T1, such that
gnaw s α evaluates to {α}〈s〉.

Todo: justifier le terme “gnaw”

Todo: Cite [27], and comment this adaptation to Coq, lemma by
lemma
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From teaser.Ordinals.Epsilon0.Alpha_largeS

Fixpoint gnaw (s: list nat) (alpha : T1) :=
match alpha, X with

| _, nil => alpha
| _, (0::Y) => gnaw Y alpha
| _, (S i :: s') => gnaw s' (canonS i alpha)

end.

Remark 7.1 Our definition differs slightly from [27]. Nevertheless, if s is a
strictly increasing sequence of strictly positive integers (i.e. satisfies our pred-
icate sorted_ge 1 ), then gnaw s α returns Ketonen and Solovay’s {X}〈α〉
where X is the range of s.

The following example proves the equality {ω3 + 2}〈1, 2, . . . , 303〉 = ω2+ω ∗
93 + 83

Example ex1 : gnaw (interval 1 303) (omega ^ 3 + 2) =
omega ^ 2 + omega * 93 + 83.

Proof. reflexivity. Qed.

Definition 7.1 The sequence s is said to be α-large if {α}〈s〉 = 0.

Definition largeb (alpha : T1) (s: list nat) :=
match gnaw s alpha with

| zero => true
| _ => false

end.

Definition large (alpha : T1) (s : list nat) : Prop :=
largeb alpha s.

7.2.1 Some proofs by computation
The function gnaw and its derivates largeb and large are tractable only for
small ordinals and sequnces of small integers. Let us compute some values.

7.2.1.1 n-large sequences

let us consider a finite non-zero ordinal n (with 0 < n). For any natural number
i ≥ 1, we have {n}(i) = n − 1. Thus any sequence of at least n numbers will
“gnaw” the ordinal n.

For instance:

Compute gnaw (iota 40) 42.
(* FS 1 *)

../V8.8/Ordinals/Epsilon0/Alpha_largeS.v
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Compute gnaw (iota 41) 42.
(* One *)

Compute gnaw (iota 55) 42.
(* zero *)

Goal ~large 42 (interval 100 139).
Proof. discriminate. Qed.

Goal large 42 (interval 100 141).
Proof. reflexivity. Qed.

Let us try to compute some values {α}〈i〉, for small infinite ordinals α.

Compute gnaw (interval 1 2) omega. (* zero *)

Compute gnaw (interval 10 19) omega. (* one *)

Compute gnaw (interval 100 199) omega. (* one *)

We can conjecture that, if 0 < i then 2× i is the least natural number j such
{ω}〈[i..j]〉 = 0. Before proving this statement, let us experiment on multiples
of ω.

Compute gnaw (interval 10 41) (omega + omega). (* 1 *)
Compute gnaw (interval 100 401) (omega + omega). (* 1 *)
Compute gnaw (interval 100 200) (omega + omega). (* omega *)
Compute gnaw (interval 100 805) (omega * 3). (* one *)
Compute gnaw (interval 20 (8 * 20 + 5)) (omega * 3). (* 1 *)
Compute gnaw (interval 20 (32 * 20 + 29)) (omega * 5). (* 1 *)

Like any combinatorist, we try to infer a general law from these computa-
tions. Let us propose the following one:

Conjecture 7.1 For any pair (i, j) of strictly positive integers, 2j+1 − 2 is the
least k such that the interval [i..k] is ω × i-large.

We can still use Coq for testing our conjecture.

Fixpoint exp2 (i:nat) :=
match i with

0 => 1
| S j => (2 * exp2 j)%nat

end.

Definition my_test (i j : nat) :=
gnaw (interval j (exp2 i * (j + 1) -3)%nat) (omega * i)
= 1.
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Compute my_test 4 20.

For even small values of α, it seems that testing can be very inefficient for
guessing which value of j can make the interval [i, j] α-large.

The following computation shows that {ω2}〈[2, 4444]〉 = ω × 6 + 4258.

Compute gnaw (interval 2 4444) (omega * omega * 2).
(* = ocons One 5 (FS 4257)

: T1 *)

It seems obvious that gnawing ω2 × 2 by the interval [2, 4258 + 4444] will
yield ω × 6 .

Example Ex :
gnaw (interval 2 (4444 + 4258)) (omega * omega * 2) = omega * 6.

Proof. reflexivity. Qed.

According to our conjecture, we guess that the value of j we are looking for
is 26 × (4444 + 4258 + 2)− 2 = 557054.

• {ω2}〈2..4444 + 4258〉 = ω × 6

• {ω × 6}〈8703..26 × 8704− 3〉 = 1

TO do : extraction to OCaml with binary integers
But, the numbers are too big for simple computations, and we would replace

tests by formal proofs.
Most of the following lemmas come from [27]. Let us start with some prop-

erties of {i}〈k〉 where i a finite ordinal.

7.2.2 n-large sequences
The following lemma generalizes our previous tests.

Lemma 7.1 For any natural number n and any strictly increasing sequence s
of strictly positive integers, s is n-large iff |s| ≥ n.

Lemma large_n_iff : forall X (n:nat),
sorted_ge 1 X ->
large n X <-> (n <= List.length X)%nat.

Todo: Lemmas relating sorted_ge and interval ?
This lemma corresponds to the first part of proposition 4.2 of [27].
For instance, the interval [1, i] is 42-large if and only if i ≥ 42.
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7.2.2.1 ω-large sequences

Gnawing the ordinal ω with a sequence n :: s reduces to gnaw the finite ordinal
n with the sequence s. Thus, we obtain the following lemma

Lemma 7.2 Any strictly increasing sequence n :: s of strictly positive integers
is ω-large iff |s| ≥ n.

Lemma large_omega_iff : forall s n, sorted_ge 1 (n:: s) ->
(n <= List.length s)%nat <->
large omega (n::s).

Todo: apply this lemma to an example.
This lemma corresponds to the second part of proposition 4.2 of [27].

Example omega_1_2_large : large omega (iota 2).
Proof. reflexivity. Qed.

Example omega_10_19_not_large : ~ large omega (interval 10 19).
Proof. discriminate. Qed.

This is expressed in the following lemma (first part of Proposition 4.2 of
KS [27]).

7.2.3 First Lemmas
Proposition 4.2 of KS [27] contains the following statement:

A finite set X is ω-large is and only if |X| < min X

Since we represent sets as strictly increasing sequences of natural numbers,
our statement decomposes the “set” X into a non-empty sequence n :: s, where
n is trivially the least element of X. Thus, the translation into Coq is as follows:

Lemma large_omega_iff : forall s n,
sorted_ge 1 (n::s) ->
(n <= List.length s)%nat <->
large omega (n::s).



Chapter 8

Generalities

8.1 Well-foundedness in Standard Library
Fortunately, Coq’s standard library gives us a much more direct way to handle
termination properties, based on a constructive definition of well-founded rela-
tions. Well foundedness is defined in the module Coq.Init.Wf of Coq’s standard
library. It is based on the concept of accessibility. Let us quote Coq’s source.

Section Well_founded.

Variable A : Type.
Variable R : A -> A -> Prop.

Inductive Acc (x: A) : Prop :=
Acc_intro : (forall y:A, R y x -> Acc y) -> Acc x.

According to this definition, an element x of type A is accessible wrt R iff
any antecedent of x is accessible. Due to the inductive form of Acc’s definition,
every proof of accessibility is a proof tree whose branches are finite. Then, we
define a relation R to be well-founded if every element a : A is accessible wrt R.
The advantages of this approach over the “classical” one are multiple:

• It allows to reason by well-founded induction (also called “transfinite in-
duction”). Technically, well-founded induction comes for free, since it
derives from induction over accessiblity proofs

• It is the basis of general recursion in Coq

• It entails the “classical” definition: if R is well-founded, there is no infinite
sequence ai (i ∈ N) such that ai+1 Rai for every i.

The interested reader can consult Chap. 15 of [5] and Chap 7 of [17] for more
details. It is also worth to replay with Proof General or CoqIde some proofs of
Coq.Wellfounded.
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Show the “rect” induction principle

Require Import Wellfounded.

About well_founded_induction.

well_founded_induction :
forall (A : Type) (R : A -> A -> Prop),
well_founded R ->
forall P : A -> Set,
(forall x : A, (forall y : A, R y x -> P y) -> P x) ->
forall a : A, P a

Arguments A, R are implicit
Argument scopes are [type_scope _ _ _ _ _]
well_founded_induction is transparent
Expands to: Constant Coq.Init.Wf.well_founded_induction

8.1.1 A simple direct proof of well-foundedness
The best way to feel how well-foundedness works in Coq is to look at a direct
proof of Arith.Wf_nat.lt_wf, which states that the strict order < over the set
of natural numbers is well founded.

Our strategy consists in proving by induction on n that any element n is
accessible wrt lt.

Require Import Lt.

Theorem lt_wf : well_founded lt.
Proof.

intro n; induction n as [ | p IHp].

The first subgoal consists in proving that 0 is accessible, i.e. that any element
y such that y < 0 is accessible. The tactics inversion_clear, allied to the
hypothesis y < 0 solves this subgoal immediately.

- split; inversion_clear 1.

The inductive step of the proof is as follows:

p : nat
IHp : Acc lt p
============================
Acc lt (S p)

For proving that S p is accessible, it sufices to prove that any antecedent of
S p is accessible.
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- split; intros y Hy.

p : nat
IHp : Acc lt p
y : nat
Hy : y < S p
============================
Acc lt y

But the analysis of Hy gives us two cases : either y = p, and y is accessible by
IHp, or S y <= p, in which case y < p, which implies Acc lt y by definition.

inversion_clear Hy .
+ assumption.
+ assert (y < p) by auto with arith.

destruct IHp; auto.
Qed.

8.1.2 Using operators on relations
Direct proofs of accessibility, and thus of well-foundedness can be more complex
than the previous example. One of the lemmas that entail the termination of
any hydra battle is a quite complex proof of accessibility (in Sect 4.3.1.2 on
page 134). Happily, library Coq.Wellfounded provides us with a set of tools,
adapted from L.Paulson [30], that make well-foundedness proofs easy if we can
decompose the considered relation according to some operators. In other words,
the difficult parts of the proof of accessibility are encapsulated in generic lemmas
one has “just” to apply.

Let us look at some examples.

8.1.3 Relation inclusion
First, let us prove that the relation defined by nRp iff 0 < n ∧ p = 2n is
well founded. For that purpose, we apply the theorem wf_incl of library
Coq.Wellfounded.Inclusion, which states that if a relation R is well-founded,
then any relation S such that S ⊆ R is well-founded too.

Definition R (n p :nat) := 0 < n /\ p = 2 * n.

Require Import Wellfounded.Inclusion Omega.

Lemma Rwf : well_founded R.
Proof.
apply wf_incl with lt.
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Two sub-goals remain to be solved. The first one, is proving that our relation
R is included in the strict order lt on type nat.

- intros n p [H H0].

The tactic omega solves this subgoal immediately.
The second sub-goal corresponds to proving that lt is well-founded. But

this is already proven.

1 focused subgoal
============================
well_founded lt

- apply lt_wf.
Qed.

Exercice 8.1 Try to write a direct, but simple proof of Rwf (i.e. without using
wf_incl). If this task becomes too complex, you may abort your attempt, and
consider the use of wf_incl as the best way to prove this theorem.

8.1.4 Inverse image
Let us consider another example: proving that the relation “being a strict prefix”
on finite lists, is well-founded. First, we define formally this relation:

Require Import List.
Open Scope list_scope.

Inductive strict_prefix (A:Type) : relation (list A) :=
strict_prefix_intro :

forall (a:A) l l', strict_prefix _ l (l ++ (a::l')).
Arguments strict_prefix_intro {A} _ _ _.

Our strategy is to reduce this property to a comparison of list lenghts. If l
is a strict prefix of l′, then l must be shorter than l′. We start the proof with
an application of wf_incl.

Theorem strict_prefix_wf {A:Type} : well_founded (strict_prefix A).
Proof.

apply wf_incl with (fun l l' => length l < length l').
- intros l l' H. destruct H as [a].
SearchRewrite (length (_ ++ _)).

app_length:
forall (A : Type) (l l' : list A),
length (l ++ l') = length l + length l'
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rewrite app_length;cbn; omega.

1 subgoal, subgoal 1 (ID 24)

subgoal 1 (ID 24) is:
well_founded (fun l l' : list A => length l < length l')

The theorem wf_inverse_image of library Coq.WellFounded.Inverse_Image
allows us to apply lt_wf.

wf_inverse_image :
forall (A B : Type) (R : B -> B -> Prop) (f : A -> B),
well_founded R -> well_founded (fun x y : A => R (f x) (f y))

- apply wf_inverse_image, lt_wf.
Qed.

strict_prefix_wf is defined.

Remark 8.1 The last proof uses two theorems from Coq.Wellfounded:
wf_inverse_image and wf_incl. This combination is a frequently used pat-
tern. We will often call measure a function m such that whenever R x y, S (m
x) (m y) holds. If S is well-founded, then R is well-founded too.

8.1.5 Lexicographic product
Library Coq.WellFounded.Lexicographic_Product contains a definition of de-
pendent lexicographic product, as well as a proof that well-founded relations are
closed under this operation. For simplicity’s sake we derived from that module
a non-dependent version in module Prelude.Simple_LexProd.

(** Non dependent lexicographic product *)

Section Definitions.

Variables (A B : Type)
(ltA : relation A)
(ltB : relation B).

Hypothesis wfA : well_founded ltA.
Hypothesis wfB : well_founded ltB.

Inductive lexico : relation (A * B) :=
lex_1 : forall a a' b b', ltA a a' -> lexico (a,b) (a',b')

| lex_2 : forall a b b', ltB b b' -> lexico (a,b) (a,b') .
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(** Non dependent lexicographic product *)

Section Definitions.

Variables (A B : Type)
(ltA : relation A)
(ltB : relation B).

Hypothesis wfA : well_founded ltA.
Hypothesis wfB : well_founded ltB.

Inductive lexico : relation (A * B) :=
lex_1 : forall a a' b b', ltA a a' -> lexico (a,b) (a',b')

| lex_2 : forall a b b', ltB b b' -> lexico (a,b) (a,b') .
Lemma lexico_wf : well_founded lexico.
(* proof by reduction to dependent lexicographic product (omitted) *)

It is now trivial to prove for instance that the lexicographic product on nat
* nat * nat is well-founded.

Require Import Simple_LexProd.

Theorem lt2_wf : well_founded (lexico lt (lexico lt lt)).
Proof.
repeat apply lexico_wf; apply lt_wf.
Qed.

Exercice 8.2 Consider the following relation on N×N, defined by the following
propositions (for any n and p).

(n, S p) −→ (S n, p) (8.1)
(n, 0) −→ (0, S n) (8.2)

Fig. 8.1 on the next page represents a small part of this relation. It is
closely related to Cantor’s enumeration of N × N : two pairs (n, p) and (q, r)
are related through −→ if (q, r) is the successor of (n, p) in that enumeration.
This makes well-foundedness of −→ intuitively obvious. Nevertheless we want
to write formal proofs of this property.

1. Give an inductive definition of −→

2. Give several proofs of its well foundedness:

• A direct proof, by nested induction on nat The main induction could
be on the sum n+ p, and the inner induction on the number n

• A proof using a measure m from nat*nat into nat: Prove that m
cannot be a linear function, i.e. of the form
fun p:nat * nat => a * fst p + b * snd p
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• A proof using a measure from nat*nat into nat*nat, equipped with
the standard lexicographic ordering. Hint: The measure m may be
the inverse function of the famous bijection from N× N into N.

Figure 8.1: First steps of the enumeration of N× N
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Chapter 9

Appendices

9.1 How to install the libraries
• The present distribution has been checked with version 8.9.1 of the Coq

proof assistant

• just go into the Teaser directory, and type ”make”

9.2 Contents of the main files
9.2.1 Exponentiation algorithms
9.2.1.1 Powers.Pow

Module teaser.Powers.Pow defines two polymorphic functions for computing xn:
the naïve (i.e. linear) one and the binary method, that takes less than 2×log2(n)
multiplications.

9.2.2 Hydras and Ordinal Numbers
9.2.2.1 Directory Ordinals/Epsilon0

Epsilon0.v Data structure for Cantor normal form (from the Castéran-Contejean
contribution)

Epsilon0rpo.v Proof of wellfoundness of the order on Cantor normal form
(from the “Cantor” contribution [14] )

NaturalSum.v The natural (commutative) addition on ordinals less than ε0
(a.k.a Hessenberg’s sum).

KS.v On canonical sequences of ordinals (the Ketonen-Solovay machinery)

Alpha_largeS.v On α-large sequences (still very unstable development).
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9.2.2.2 Directory Ordinals/Gamma0

This directory contains some basic definitions on Veblen normal forms.

Gamma0 Veblen normal forms (to be completed).

9.2.2.3 Directory Ordinals/Hydra

• Definition of hydra battles.

• Proof of termination of all hydra battles.

• Proof that the ε0 is the least ordinal that can be used for proving the
termination of all hydra battles (considering variants).

9.2.2.4 Directory Ordinals/Prelude

A lot of auxiliary definitions.

9.2.2.5 Directory Ordinals/rpo

Properties of the recursive path ordering (contributed by Évelyne Contejean).

9.2.2.6 Directory Ordinals/Axiomatic

This directory contains the axiomatisation of countable ordinals, after K. Schütte.
It is written in classical logic, using Hilbert’s ε operator.

Schutte.v The Axioms by Schütte; first results

Ordering_Functions.v Ordering functions

Plus.v Ordinal addition

AP.v Additive principal ordinals

CNF.v Existence and unicity of Cantor normal form

Critical.v Critical ordinals

Injection_From_T1.v Correspondance between ordinal notations and Schütte’s
ordinal (up to ε0)

9.2.2.7 Directory Ordinals/Drafts

Experimental stuff. To develop!
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