R
Simple proofs about recursive functions

Simple proofs about recursive functions

Yves Bertot

August 2009

e
Simple proofs about recursive functions

Reasoning about programs and behavior

v

Proofs by induction to cover the whole input type
Reasoning by cases on function inputs

Getting rid of inconsistent assumptions

Using the injectivity of datatype constructors

Using specialized induction principles

Simple proofs about recursive functions

LReasoning by induction

Proofs by induction

» Goal of the form C x, where x is an integer
» Tactic : induction n as [| p IHp]
» The system creates two goals corresponding to cases
» CO
» C (S p
» In the second goal, a fact IHp is added to the context
with statement C p

Simple proofs about recursive functions

LReasoning by induction

Main guideline

Reason on executions of functions
» Reason by induction when working on a recursive function

» Induction on the argument where recursion occurs

Fixpoint fact (n:nat) : nat :=
match n with

| 0 =>1
| Sp=>Spx* fact p
end.

Lemma factp : forall n, 0 < fact n.

Simple proofs about recursive functions

LReasoning by induction

Proof by induction on fact

Two cases for the input of fact : 0 or S p
» In second case, recursive call on p
Proof by induction makes the cases appear

» in step case where n = S p, induction hypothesis on p

Induction n as [| p IHp].

0 < fact O

Subgoal 2 is:
0 < fact (S p)

Simple proofs about recursive functions
|—Rea\soning by induction

Force computation of recursive functions

structure

Tactic simpl : compute the function but respect the recursive

0 < fact O
simpl.

Simple proofs about recursive functions
|—Reasoning by induction

Force computation of recursive functions

structure

Tactic simpl : compute the function but respect the recursive

0 < fact O
simpl.

0<1
omega.

e
Simple proofs about recursive functions
|—Reasoning by induction

1 subgoal
IHp :

0 < fact p

0 < fact (S p)
simpl.

e
Simple proofs about recursive functions
|—Rea\soning by induction

1 subgoal
IHp :

0 < fact p

0 < fact (S p)
simpl.

0 < fact p + p * fact p

Simple proofs about recursive functions
|—Rea\soning by induction

Completing the example

apply lt_le_trans with (fact p).

Simple proofs about recursive functions
|—Rea\soning by induction

Completing the example

IHp :

apply lt_le_trans with (fact p)

0 < fact p

0 < fact p
Subgoal 2 is:

factp <= fact p + p * fact p

Simple proofs about recursive functions
|—Reasoning by induction

Completing the example

IHp :

apply lt_le_trans with (fact p).

0 < fact p

0 < fact p
Subgoal 2 is:

factp <= fact p + p * fact p
le_plus_1

SearchPattern (7x <= ?x +

.
forall nm, n <=n + m

Simple proofs about recursive functions

I—Reasoning by induction

Completing the example

apply 1lt_le_trans with (fact p).

IHp : 0 < fact p

0 < fact p

Subgoal 2 is:

factp <= fact p + p * fact p
SearchPattern (7x <= 7x + _).
le_plus_1l : forall nm, n <=n +m
apply le_plus_1.
Qed.

u}
o)
I
i
it

Simple proofs about recursive functions

L Induction on lists

Induction on lists

Induction on lists is like induction on natural numbers

» base case : the empty list

» step case : the list with an element at the head and another
list at the tail

» the tail can be handled by recursive calls and induction
hypotheses

Simple proofs about recursive functions

L Induction on lists

An example on lists

Require Import List.

Fixpoint revl (A : Type) (11 12 : list A) :=
match 11 with

| nil => 12
| a::tl => revl A t1 (a::12)
end.

Fixpoint rev (A : Type) (1 : list A) :=
match 1 with

| nil => nil

| a::tl => rev A tl ++ a::nil

end.

Simple proofs about recursive functions
|—Induc:ticm on lists

Proof on rev

Lemma revl_rev

: forall A (11 12
revl A 11 12 =

: list A),
rev A 11 ++ 12.
intros A; induction 11 as [| a t1 IHt1].

Simple proofs about recursive functions
I—Induction on lists

Proof on rev

Lemma revl_rev

: forall A (11 12
revl A 11 12 =

: list A),
rev A 11 ++ 12.
intros A; induction 11 as [| a t1 IHt1].

forall 12, revl A nil 12

intros 12; reflexivity.

rev A nil ++

Simple proofs about recursive functions

L Induction on lists

Proof on rev

Lemma revl_rev : forall A (11
revl A 11 12 = rev A 11 ++
intros A; induction 11 as [|
forall 12, revl A nil 12

intros 12; reflexivity.
IHt1 : forall 12 : 1list A,
revl A t1 12 = rev A

forall 12 : 1list A,
revli A (a :: t1) 12

12 : list A),
12.
a t1 IHt1].

rev A nil ++ 12

tl ++ 12

rev A (a :: t1) ++ 12

Simple proofs about recursive functions
|—Inducticm on lists

Finishing the proof on rev

intros 12; simpl.

Simple proofs about recursive functions
|—Inducticm on lists

Finishing the proof on rev

intros 12; simpl.
IHt1 :

forall 12, revl A t1 12

rev A t1 ++ 12
revl A t1 (a::12) = (rev A tl1 ++ a::nil) ++ 12
Qed.

rewrite IHtl, app_ass; simpl; reflexivity.

Simple proofs about recursive functions

L Induction on lists

Reasoning by cases

» Reasoning by cases is already provided by the tactic
induction

» But induction adds induction hypotheses

» The tactics case, case_eq, destruct are more lightweight
» case e replaces all instances of e in the conclusion with
possible cases
> case_eq e the same and adds an equality to remember the
case
» destruct e replaces all instances in conclusion and
hypotheses of the goal

Simple proofs about recursive functions

L Induction on lists

Example of case, case_eq, and destruct

Definition max m n := if leb m n then n else m.

Lemma maxgel : forall m n, m <= max m n.
intros m n; unfold max.
assert (tl1 := leb_complete m n).
assert (t2 := leb_complete_conv n m).
tl : lebmn = true ->m <=n
t2 : lebmn = false -> n < m

m <= if leb m n then n else m

Simple proofs about recursive functions
I—Induction on lists

Example of case_eq

tl : lebmn
t2 : lebmn

true -> m <=

n
false -=> n < m

m <= if leb m n then n else m
case_eq (leb m n).

tl : lebmn = true -> m <= n
t2 : lebmn = false > n <m
lebmn =

true -> m <=n
intros t; apply tl; exact t.

Simple proofs about recursive functions
|—Inducticm on lists

Example of destruct

tl : lebmn
t2 : lebmn

true -> m <=

n
false -=> n < m

m <= if leb m n then n else m
destruct (leb m n)).
tl :

. true = true -> m <= n
t2 : true = false > n < m
m <= n

apply tl; reflexivity.

Simple proofs about recursive functions

[Induction on lists

Example of case

t1l :

lebmn
t2 :

leb m n

true -> m <= n
false -=> n < m

m <= if leb m
case (leb m n).
t1

n then n else m

: lebmn = true > m <=n
t2 : lebmn = false > n <m
m <=n

Abort.

N

Simple proofs about recursive functions

L Induction on lists

Controlling execution

The tactic simpl performs computation, but sometimes it goes
too far

» When you know what value to aim for use change e; with
€2

» The values e; and e, have to be obviously the same (for Coq)

» Use replace e; and e : it gives you more work, but is more
supple

» Use change C’ to change the whole goal conclusion
» Use unfold £ to only unfold the definition of £

Simple proofs about recursive functions

LGetting rid of inconsistent cases

Getting rid of inconsistent cases

a::1 =

An equality between two different constructors is an inconsistency
nil

» to be handled with discriminate or discriminate H
H :

C

discriminate.

Proof completed.

Simple proofs about recursive functions

LDecomposing equalities

Decomposing equalities of constructors

An equality between two terms with the same constructor

» Components must be equal : constructors are injective
» The tactic is injection

H:a::1=Db: 1°

injection H.
H:a::1

I
o

1

1=1"->a=>b->C

Simple proofs about recursive functions

LDecomposing equalities

Specialized induction principles

» General approach is to follow the structure of functions
» This can be expressed in a theorem
» Theorem generated by Functional Scheme

» Theorem then used by functional induction

Simple proofs about recursive functions

LDecomposing equalities

A last example

Fixpoint even (n:nat) : bool :=
match n with
| 0 => true
| 1 => false
| S (S p) =>even p
end.

Functional Scheme even_ind :=
Induction for even Sort Prop.

u}
o)
I
i
it

Simple proofs about recursive functions
LDecomposing equalities

Proof by specialized induction

Lemma even_double

exists p, n = 2 * p.

forall n, even n = true —>
intros n; functional induction even n.
3 subgoals

true = true -> exists p
subgoal 2 is:
false =

nat, 0 = 2 *x p
true -> exists p : nat, 1 =2 *x p
subgoal 3 is:

even p = true -> exists p0

nat, S (S p) =2 * p0

Simple proofs about recursive functions
LDecomposing equalities

Finishing the proof for even_double

exists 0; reflexivity.

intros; discriminate.
IHb :

even p = true -> exists p0

nat, p = 2 * p0
even p = true -> exists p0

: nat, S (S p) =2 * p0
intros t; destruct (IHb t) as [p’ qp’l; rewrite gp’.
exists (S p’); ring.

	Reasoning by induction
	Induction on lists
	Getting rid of inconsistent cases
	Decomposing equalities

