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Simple proofs about recursive functions

Reasoning about programs and behavior

v

Proofs by induction to cover the whole input type
Reasoning by cases on function inputs

Getting rid of inconsistent assumptions

Using the injectivity of datatype constructors

Using specialized induction principles
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Proofs by induction

» Goal of the form C x, where x is an integer
» Tactic : induction n as [ | p IHp]
» The system creates two goals corresponding to cases
» CO
» C (S p
» In the second goal, a fact IHp is added to the context
with statement C p
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Main guideline

Reason on executions of functions
» Reason by induction when working on a recursive function

» Induction on the argument where recursion occurs

Fixpoint fact (n:nat) : nat :=
match n with

| 0 =>1
| Sp=>Spx* fact p
end.

Lemma factp : forall n, 0 < fact n.
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Proof by induction on fact

Two cases for the input of fact : 0 or S p
» In second case, recursive call on p
Proof by induction makes the cases appear

» in step case where n = S p, induction hypothesis on p

Induction n as [ | p IHp].

0 < fact O

Subgoal 2 is:
0 < fact (S p)
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Force computation of recursive functions

structure

Tactic simpl : compute the function but respect the recursive

0 < fact O
simpl.



Simple proofs about recursive functions
|—Reasoning by induction

Force computation of recursive functions

structure

Tactic simpl : compute the function but respect the recursive

0 < fact O
simpl.

0<1
omega.
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1 subgoal
IHp :

0 < fact p

0 < fact (S p)
simpl.
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1 subgoal
IHp :

0 < fact p

0 < fact (S p)
simpl.

0 < fact p + p * fact p
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Completing the example

apply lt_le_trans with (fact p).
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Completing the example

IHp :

apply lt_le_trans with (fact p)

0 < fact p

0 < fact p
Subgoal 2 is:

factp <= fact p + p * fact p
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Completing the example

IHp :

apply lt_le_trans with (fact p).

0 < fact p

0 < fact p
Subgoal 2 is:

factp <= fact p + p * fact p
le_plus_1

SearchPattern (7x <= ?x +

.
forall nm, n <=n + m
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Completing the example

apply 1lt_le_trans with (fact p).

IHp : 0 < fact p

0 < fact p

Subgoal 2 is:

factp <= fact p + p * fact p
SearchPattern (7x <= 7x + _).
le_plus_1l : forall nm, n <=n +m
apply le_plus_1.
Qed.
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Induction on lists

Induction on lists is like induction on natural numbers

» base case : the empty list

» step case : the list with an element at the head and another
list at the tail

» the tail can be handled by recursive calls and induction
hypotheses
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An example on lists

Require Import List.

Fixpoint revl (A : Type) (11 12 : list A) :=
match 11 with

| nil => 12
| a::tl => revl A t1 (a::12)
end.

Fixpoint rev (A : Type) (1 : list A) :=
match 1 with

| nil => nil

| a::tl => rev A tl ++ a::nil

end.
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Proof on rev

Lemma revl_rev

: forall A (11 12
revl A 11 12 =

: list A),
rev A 11 ++ 12.
intros A; induction 11 as [ | a t1 IHt1].
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Proof on rev

Lemma revl_rev

: forall A (11 12
revl A 11 12 =

: list A),
rev A 11 ++ 12.
intros A; induction 11 as [ | a t1 IHt1].

forall 12, revl A nil 12

intros 12; reflexivity.

rev A nil ++
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Proof on rev

Lemma revl_rev : forall A (11
revl A 11 12 = rev A 11 ++
intros A; induction 11 as [ |
forall 12, revl A nil 12

intros 12; reflexivity.
IHt1 : forall 12 : 1list A,
revl A t1 12 = rev A

forall 12 : 1list A,
revli A (a :: t1) 12

12 : list A),
12.
a t1 IHt1].

rev A nil ++ 12

tl ++ 12

rev A (a :: t1) ++ 12
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Finishing the proof on rev

intros 12; simpl.
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Finishing the proof on rev

intros 12; simpl.
IHt1 :

forall 12, revl A t1 12

rev A t1 ++ 12
revl A t1 (a::12) = (rev A tl1 ++ a::nil) ++ 12
Qed.

rewrite IHtl, app_ass; simpl; reflexivity.
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Reasoning by cases

» Reasoning by cases is already provided by the tactic
induction

» But induction adds induction hypotheses

» The tactics case, case_eq, destruct are more lightweight
» case e replaces all instances of e in the conclusion with
possible cases
> case_eq e the same and adds an equality to remember the
case
» destruct e replaces all instances in conclusion and
hypotheses of the goal
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Example of case, case_eq, and destruct

Definition max m n := if leb m n then n else m.

Lemma maxgel : forall m n, m <= max m n.
intros m n; unfold max.
assert (tl1 := leb_complete m n).
assert (t2 := leb_complete_conv n m).
tl : lebmn = true ->m <=n
t2 : lebmn = false -> n < m

m <= if leb m n then n else m
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Example of case_eq

tl : lebmn
t2 : lebmn

true -> m <=

n
false -=> n < m

m <= if leb m n then n else m
case_eq (leb m n).

tl : lebmn = true -> m <= n
t2 : lebmn = false > n <m
lebmn =

true -> m <=n
intros t; apply tl; exact t.
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Example of destruct

tl : lebmn
t2 : lebmn

true -> m <=

n
false -=> n < m

m <= if leb m n then n else m
destruct (leb m n)).
tl :

. true = true -> m <= n
t2 : true = false > n < m
m <= n

apply tl; reflexivity.
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Example of case

t1l :

lebmn
t2 :

leb m n

true -> m <= n
false -=> n < m

m <= if leb m
case (leb m n).
t1

n then n else m

: lebmn = true > m <=n
t2 : lebmn = false > n <m
m <=n

Abort.

N
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Controlling execution

The tactic simpl performs computation, but sometimes it goes
too far

» When you know what value to aim for use change e; with
€2

» The values e; and e, have to be obviously the same (for Coq)

» Use replace e; and e : it gives you more work, but is more
supple

» Use change C’ to change the whole goal conclusion
» Use unfold £ to only unfold the definition of £
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Getting rid of inconsistent cases

a::1 =

An equality between two different constructors is an inconsistency
nil

» to be handled with discriminate or discriminate H
H :

C

discriminate.

Proof completed.
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Decomposing equalities of constructors

An equality between two terms with the same constructor

» Components must be equal : constructors are injective
» The tactic is injection

H:a::1=Db: 1°

injection H.
H:a::1

I
o

1

1=1"->a=>b->C
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LDecomposing equalities

Specialized induction principles

» General approach is to follow the structure of functions
» This can be expressed in a theorem
» Theorem generated by Functional Scheme

» Theorem then used by functional induction
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A last example

Fixpoint even (n:nat) : bool :=
match n with
| 0 => true
| 1 => false
| S (S p) =>even p
end.

Functional Scheme even_ind :=
Induction for even Sort Prop.
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Proof by specialized induction

Lemma even_double

exists p, n = 2 * p.

forall n, even n = true —>
intros n; functional induction even n.
3 subgoals

true = true -> exists p
subgoal 2 is:
false =

nat, 0 = 2 *x p
true -> exists p : nat, 1 =2 *x p
subgoal 3 is:

even p = true -> exists p0

nat, S (S p) =2 * p0
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Finishing the proof for even_double

exists 0; reflexivity.

intros; discriminate.
IHb :

even p = true -> exists p0

nat, p = 2 * p0
even p = true -> exists p0

: nat, S (S p) =2 * p0
intros t; destruct (IHb t) as [p’ qp’l; rewrite gp’.
exists (S p’); ring.
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