
Logique

Logique

Pierre Castéran, Géraud Sénizergues

Septembre-Décembre 2011



Logique

I A : Proof theory, by Géraud Sénizergues

I BA : Introduction to proof assistants, using the Coq system,
by Pierre Castéran



Logique

A : Introduction to proof assistants, using the Coq system

This part shows some implementation principles of the Coq proof
assistant, based on typed lambda-calculus. This tool is mainly used
for proving program correctness and/or representing mathematical
concepts and proving theorems about these concepts.
Slides from summer schools held in Beijing, Suzhou (China) and
Paris (France) by Yves Bertot, Pierre Castéran, Assia Mabhoubi
and Pierre Letouzey will be available. Lab sessions will be
organized on computer.



Logique

I What is Coq ?
I A programming language
I A proof development tool
I This tool is based on a typed λ-calculus called The Calculus of

Inductive Constructions.

I Why do we use Coq ?
I To develop software with few errors
I To use the computer to verify that all details are right

I How does one use Coq ?
I Describe four components : the data, the operations, the

properties, the proofs



Logique

Documentation

I This course’s page
www.labri.fr/perso/casteran/FM/LogiqueM1

I Book by Bertot and Castéran (French version) available on
this page

I English and Chinese version are under copyright.

I Coq’s official site : coq.inria.fr



Logique

A commented example on sorting : the data

(* this is a comment. *)

Inductive list (A : Type) : Type :=
nil | cons (a : A) (l : list A).

Implicit Arguments nil [A].
Implicit Arguments cons [A].

Notation "a :: l" := (cons a l).



Logique

The operations

Fixpoint insert (x : Z) (l : List Z) :=
match l with
| nil => x::nil
| a::l’ =>
if Zle_bool x a then x::a::l’ else a::insert x l’

end.

Fixpoint sort l :=
match l with
| nil => nil
| a::l’ => insert a (sort l’)
end.



Logique

The properties

I Have a property sorted to express that a list is sorted

I Have a property permutation l1 l2

Definition permutation l1 l2 :=
forall x, count x l1 = count x l2.

I assuming the existence of a function count



Logique

Proving properties
Two categories of statements :

I General theory about the properties (statements that do not
mention the algorithm being proved) :

∀x y l, sorted (x::y::l) ⇒ x ≤ y

transitive permutation

I Specific theory about the algorithms insert and sort :

∀x l, sorted l ⇒ sorted(insert x l)

∀x l, permutation (x::l) (insert x l)

∀ l, let l’ := sort l in
permutation l l’ ∧ sorted l’



Logique

Proving properties
Two categories of statements :

I General theory about the properties (statements that do not
mention the algorithm being proved) :

∀x y l, sorted (x::y::l) ⇒ x ≤ y

transitive permutation

I Specific theory about the algorithms insert and sort :

∀x l, sorted l ⇒ sorted(insert x l)

∀x l, permutation (x::l) (insert x l)

∀ l, let l’ := sort l in
permutation l l’ ∧ sorted l’



Logique

First steps in Coq

First steps in Coq
Write a comment “open parenthesis-star”, “star-close parenthesis”

(* This is a comment *)

Give a name to an expression

Definition three := 3.
three is defined

Verify that an expression is well-formed

Check three.
three : nat

Compute a value

Compute three.
= 3 : nat



Logique

First steps in Coq

Defining functions

Expressions that depend on a variable

Definition add3 (x : nat) := x + 3.
add3 is defined



Logique

First steps in Coq

The type of values

The command Check is used to verify that an expression is
well-formed

I It returns the type of this expression

I The type says in which context the expression can be used

Check 2 + 3.
2 + 3 : nat

Check 2.
2 : nat

Check (2 + 3) + 3.
(2 + 3) + 3 : nat



Logique

First steps in Coq

The type of functions

The value add3 is not a natural number

Check add3.
add3 : nat -> nat

The value add3 is a function

I It expects a natural number as input

I It outputs a natural number

Check add3 + 3.
Error the term "add3" has type "nat -> nat"

while it is expected to have type "nat"



Logique

First steps in Coq

Applying functions
Function application is written only by juxtaposition

I Parentheses are not mandatory

Check add3 2.
add3 2 : nat

Compute add3 2.
= 5 : nat

Check add3 (add3 2).
add3 (add3 2) : nat

Compute add3 (add3 2).
= 8 : nat



Logique

First steps in Coq

Functions with several arguments

At definition time, just use several variables

Definition s3 (x y z : nat) := x + y + z.
s3 is defined

Check s3.
s3 : nat -> nat -> nat -> nat

Functions with one argument that return functions.

Check s3 2.
s3 2 : nat -> nat -> nat

Check s3 2 1.
s3 2 1 : nat -> nat



Logique

First steps in Coq

Functions are values

I The value add3 2 is a natural number,

I The value s3 2 is a function,

I The value s3 2 1 is a function, like add3



Logique

First steps in Coq

Function arguments

I Functions can also expect functions as argument

Definition rep2 (f : nat -> nat)(x:nat) := f (f x).
rep2 is defined

Check rep2.
rep2 : (nat -> nat) -> nat -> nat

Definition rep2on3 (f : nat -> nat) := rep2 f 3.

Check rep2on3.
rep2on3 : (nat -> nat) -> nat



Logique

First steps in Coq

Type verification strategy (function application)

Function application is well-formed if types match :

I Assume a function f has type A -> B

I Assume a value a has type A

I then the expression f a is well-formed and has type B

Check rep2on3. rep2on3 : (nat -> nat) -> nat

Check add3. add3 : nat -> nat

Check rep2 add3. rep2on3 add3 : nat



Logique

First steps in Coq

Anonymous functions

Functions can be built without a name
Construct well-formed expressions containing a variable, with a
header

Check fun (x : nat) => x + 3.
fun x : nat => x + 3 : nat -> nat

The new expression is a function, usable like add3 or s3 2 1

Check rep2on3 (fun (x : nat) => x + 3).
rep2on3 (fun x : nat => x + 3) : nat

This is called an abstraction



Logique

First steps in Coq

Type verification strategy (abstraction)

An anonymous function is well-formed if the body is well formed

I add the assumption that the variable has the input type

I add the argument type in the result

I Example, verify : fun x : nat => x + 3

I x + 3 is well-formed when x has type nat, and has type nat

I Result : fun x : nat => x + 3 has type nat -> nat



Logique

Defined datatypes and notations

A few datatypes

I An introduction to some of the pre-defined parts of Coq

I Grouping objects together : tuples

I Natural numbers and the basic operations

I Boolean values and the basic tests on numbers



Logique

Defined datatypes and notations

Putting data together

I Grouping several pieces of data : tuples,

I fetching individual components : pattern-matching,

Check (3,4).
(3, 4) : nat * nat

Check
fun v : nat * nat =>
match v with (x, y) => x + y end.

fun v : nat * nat => let (x, y) := v in x + y

: nat * nat -> nat



Logique

Defined datatypes and notations

Numbers

As in programming languages, several types to represent numbers

I natural numbers (non-negative), relative integers,
more efficient reprentations

I Need to load the corresponding libraries

I Same notations for several types of numbers : need to choose
a scope

I By default : natural numbers
I Good properties to learn about proofs
I Not adapted for efficient computation



Logique

Defined datatypes and notations

Focus on natural numbers

Require Import Arith.
Open Scope nat_scope.

Check 3.
3 : nat

Check S.
S : nat -> nat

Check S 3.
4 : nat

Check 3 * 3.
3 * 3 : nat



Logique

Defined datatypes and notations

Boolean values

I Values true and false

I Usable in if .. then .. else .. statements

I comparison function provided for numbers

I To find them : use the command Search


	First steps in Coq
	Defined datatypes and notations

