Université BORDEAUX	ANNEE UNIVERSITAIRE 2014 / 2015 SESSION D'AUTOMNE MENTION : INFORMATIQUE PARCOURS / ETAPE : Master1 Code UE : J1IN7M21 Epreuve : Logique (Logic) Date : 15/12/2014 Heure : 8h30 Durée : 3h Documents : autorisés Epreuve de M : Castéran	Collège Sciences et technologies Masters
-------------------------------	---	---

Any document is authorized Recommended duration for this part: 1h30

Important: In questions 1, 2 and 3.2.2, you may answer either by giving proofs in natural deduction or a sequence of goals leading to the conclusion. Any undocumented sequence of tactics will be ignored.

1 Exercise

Prove the following propositions:

Lemma LO : forall P Q R:Prop, (P \rightarrow Q) \rightarrow (P \land Q \rightarrow R) \rightarrow P \rightarrow R.

Lemma L1: forall P:Prop, $\sim \sim P \rightarrow$ (P $\lor \sim P$) \rightarrow P.

2 Exercise

We consider the "principle of weak excluded middle" also known as *Jankov's logic* obtained by adding to the intuitionnistic logic of *Coq* the scheme $\neg A \lor \neg \neg A$ for any proposition *A*.

Definition weak_EXM := forall A:Prop, \sim A \lor \sim \sim A

Prove that this principle implies the following proposition:

forall P Q : Prop, \sim (P \land Q) \rightarrow (\sim P \lor \sim Q)

3 Exercise

Let us recall the definition of binary trees:

```
Inductive bintree (A : Type) :=
| leaf
| node (label:A)(l_son r_son : bintree A ).
```

The following predicate means " There exists some node in t whose label is equal to a":

```
Fixpoint In_tree {A:Type} (a:A) (t : bintree A) :=
match t with
| leaf => False
| node r t1 t2 => a = r ∨ In_tree a t1 ∨ In_tree a t2
end.
```

3.1

Translate in *Coq* the following definitions:

A total strict order on a type A is a binary relation Lt on A which is

irreflexive: *Lt a a* never holds

transitive: whenever $Lt \ a \ b$ and $Lt \ b \ c$, then $Lt \ a \ c$,

total: for any a and b, one of the three following propositions holds: $Lt \ a \ b, \ a = b$, or $Lt \ b \ a$

A binary tree of type bintree A is a binary search tree if

- The left subtree of any node contains only nodes with labels less than the node's label,
- The right subtree of any node contains only nodes with labels greater than the node's label,
- The left and right subtrees are also binary search trees.

Give in Coq a (polymorphic) definition of the predicate "being a binary search tree with respect to the relation Lt "

3.2

We would like to prove that if Lt is a total strict order on A and (node $a t_1 t_2$) is a binary search tree, then no label can occur both in t_1 and t_2 .

3.2.1

Express this property as a proposition in *Coq*.

3.2.2

How do you prove it in Coq?