
Rodin

Introduction to the Event-B method and the Rodin
development tool

Pierre Castéran
Bordeaux, HCMC

http://www.labri.fr/perso/casteran/FM/Rodin

1 / 53

http://www.labri.fr/~casteran/FM/Rodin/


Rodin

Introduction

Introduction

quoted from Wikipedia

A critical system or safety-critical system is a system whose failure
or malfunction may result in :

I death or serious injury to people, or

I loss or severe damage to equipment or

I environmental harm,

I etc.

Safety-critical systems are increasingly computer-based.

2 / 53



Rodin

Introduction

Examples (c) Wikipedia

infrastructure : Emergency services dispatch systems, Fire alarm,
Electricity generation, transmission and distribution

medicine : Heart-lung machines, Robotic surgery machines

Nuclear engineering : Nuclear reactor control systems

Transport : Railway signalling and control systems, Braking
systems, Avionics, Human spaceflight vehicles

3 / 53



Rodin

Introduction

I Safety critical software need to be trusted

I Tests and model-checkers don’t cover all software.

Solutions ?

I Interactive Program Proving : Frama-C, Jessie

I Program Synthesis by stepwise refinements : Atelier B, Rodin

4 / 53



Rodin

Introduction

Introduction to the B Method

Let’s look at Wikipedia again

The B method is a method of software development based on B, a
tool-supported formal method based around an abstract machine
notation, used in the development of computer software.
It was originally developed by Jean-Raymond Abrial in France and
the UK.

B has been used in major safety-critical system applications in
Europe (such as the Paris Métro Line 14), and is attracting
increasing interest in industry. It has robust, commercially available
tool support for specification, design, proof and code generation.

5 / 53



Rodin

Introduction

Principles of the B Method

This method proposes the following cycle of project development :

1. Translation from an informal or semi-formal specification into
the Abstract Machine Notation.This step is not
machine-checked, so it’s extremely important that this
translation can be read and accepted by the “client”.

2. A sequence of (machine-checked) refinements : each version of
the software is proved to be consistent with the previous one.

3. Possible translation into some classical programming
language : Ada, C, C++.

6 / 53



Rodin

Introduction

Some remarks

I The weak link of this method is obviously the translation from
an informal or semi-formal requirement into a formal
statement. It is important that the client can read and control
this translation.

I The B-Method proposes to use the basic mathematical
language (first-order logic, elementary set theory) for writing
formal specifications.

I The first and most abstract step of the development is
supposed to be readable. It should contain no implementation
details, which should be introduced in further development
steps.

7 / 53



Rodin

Introduction

Faire un dessin

8 / 53



Rodin

Introduction

Atelier B or Rodin ?

Two development tools actually use the B method : Atelier B and
Rodin.

I Atelier B is suitable for developping imperative programs
using classical control structures : loops, sequences,
conditionals, etc.

I Rodin implements the event-B formalism for describing event
driven reactive systems : the basic control structure is the
event : Any event that satisfies some given contdition : its
guard can occur. Such systems are not bound to terminate,
but their state is required to be consistent.

9 / 53



Rodin

Learning Rodin

On-line documentation

I http://www.event-b.org/ : wiki, downloads

I Some home-made developments
http://www.labri.fr/perso/casteran/FM/Rodin

10 / 53



Rodin

Learning Rodin

Let’s take some examples

I “Controling cars on a bridge” (J.R. Abrial)

I Searching an item in an array

11 / 53



Rodin

Learning Rodin

Event-B components : contexts

I A context is a first-order theory that contains
I declarations of constants,
I axioms about these constants

I The description language is first order logic + arithmetics +
simple set theory.

I typing is expressed through set membership.

12 / 53



Rodin

Learning Rodin

An Event-B Specification of Maximum
Creation Date: 27 Nov 2011 @ 02 :45 :32 PM

CONTEXT Maximum

CONSTANTS
maxi Maximum number of cars in the island

(bridge included)

AXIOMS
axm1 : maxi ∈ N1

END

13 / 53



Rodin

Learning Rodin

Comments

I The previous slide has been generated from a context :
I written with Rodin’s interactive (Eclipse-based) editor,
I then translated into LaTEX

I It contains a constant declaration of maxi

I The “type” of this constant is expressed through an axiom
(with the language of set theory).

I The symbol N1 denotes the set of strictly positive integers.

14 / 53



Rodin

Learning Rodin

Beware of Axioms !

CONTEXT AxiomsBad

CONSTANTS
f

AXIOMS
axm1 : f ∈ N→ N
axm2 : ∀n·(n ∈ N⇒ f (n) < n)

END

From these declarations, one can infer contradictions, hence 2 = 3.

15 / 53



Rodin

Learning Rodin

The following systems of axioms are OK :

axm1 : f ∈ N 7→ N
axm2 : ∀n·(n ∈ dom(f )⇒ f (n) < n)

axm1 : f ∈ N 7→ N
axm3 : ∀x , y ·((x 7→ y) ∈ f ⇒ y < x)

16 / 53



Rodin

Learning Rodin

Advice for building contexts

I Give axioms systems that are consistent (that have some
model)

I Try to get minimal sets of axioms : if some property can be
inferred from the other axioms, mark it as theorem.

axm1 : n ∈ N1

thm1 : ∀i ·i ∈ 0 .. n − 1 ⇒ i > 0 ∨ i < n

17 / 53



Rodin

Learning Rodin

A context for searching in an array

CONTEXT Array

CONSTANTS
n array size
a the array to search in
x value to search in a

AXIOMS
axm1 : n ∈ N1

axm2 : a ∈ 1 .. n→ Z
axm3 : x ∈ Z

END

18 / 53



Rodin

Learning Rodin

CONTEXT SortedArray

EXTENDS Array

AXIOMS
axm1 : ∀i , j ·i ∈ 1 .. n ∧ j ∈ i .. n⇒ a(i) ≤ a(j)

END

19 / 53



Rodin

Learning Rodin

Event-B’s description language is quite big, including :

I First Order Logic : connective, quantifiers,

I Näıve set theory : sets, relations, functions,

I Arithmetics (on Z). N and N1 are subsets of Z.

Note that sets, relations, functions, are first-class objects of
Event-B language. It is thus possible to quantify over them.

SETS

U

AXIOMS
thm1 : ∀A,B,C ·A ⊆ C ∧ B ⊆ C ∧ C ⊆ U ⇒ A ∪ B ⊆ C

20 / 53



Rodin

Learning Rodin

Abstract Machines

An abstract machine is a component of an Event-B project, which
describes a reactive system.

Structure of an abstract machine

I Constants and axioms are imported from contexts (SEES
clauses).

I The state of the machine is describe by a set of variables,

I the consistency of the state is defined by a set of invariants :
i.e. formulae that the variables must satisfy.

I A set of events describe the possible evolutions of the
machine’s state.

21 / 53



Rodin

Learning Rodin

An example

An Event-B Specification of Br0
Creation Date: 27 Nov 2011 @ 02 :45 :39 PM

MACHINE Br0

SEES Maximum

VARIABLES
nb cars total number of cars (bridge + island)

INVARIANTS
inv1 : nb cars ∈ 0 .. maxi

22 / 53



Rodin

Learning Rodin

Any abstract machine must define a special event called
initialisation for giving an initial value to the variables of the
machine. It takes the form of a set of (parallel) assignments.

EVENTS
Initialisation

act1 : nb cars := 0

Proof Obligation :

The initial values of the variables must satisfy the invariants of the
machine.
For each invariant invi , Rodin generates a proof obligation
INITIALISATION/invi/INV whose hypotheses are all the axioms
and theorems of the seen contexts, and conclusion (goal) is invi
where every variable has been replaced by its initial value.

0 ∈ 0 .. maxi

This obligation is solved automatically, thanks to the axiom

axm1 : maxi ∈ N1

in the context Maximum.

23 / 53



Rodin

Learning Rodin

Ordinary events

Events (other than initialisation) describe the possible
changes of the machine’s state. They are composed of :

I A guard, that defines whether the event can be triggered,

I An action part, that reassigns (part of) the variables of the
machine.

24 / 53



Rodin

Learning Rodin

Event Main out =̂
A car leaves the mainland

when
grd1 : nb cars < maxi

then
act1 : nb cars := nb cars + 1

end

Event Main in =̂
when

grd1 : nb cars > 0
then

act1 : nb cars := nb cars − 1
end

25 / 53



Rodin

Learning Rodin

Proof obligations associated with an event

I If the invariants are true before the event,

I and if the event’s guard is true,

I then the invariant must be true after the event.

26 / 53



Rodin

Learning Rodin

Proof Obligations associated with an event

Let us consider some event e : for each invariant invi of the
machine, a proof obligation e/invi/INV is built.
The hypotheses are formed by :

I The axioms and theorems of the imported contexts

I All the invariants,

I The guard of the considered event

I The before-after relations associated with the assignments
(expressed as a relation beteen old variables v and new
variables v ′)

The conclusion is inv ′
i which is a copy of invi after replacing all

assigned variable names v by v ′.

27 / 53



Rodin

Learning Rodin

Example : the Main out event

Hypotheses axm1 maxi ∈ N1

inv1 nb cars ∈ 0 .. maxi
grd1 nb cars < maxi

before-after relation nb cars ′ = nb cars + 1

Goal : inv1’ inv1’ nb cars ′ ∈ 0 .. maxi

28 / 53



Rodin

Learning Rodin

A commented abstract machine : Searching in an array

An Event-B Specification of S0
Creation Date: 2 Jan 2012 @ 03 :01 :14 PM

MACHINE S0

SEES Array

VARIABLES
result

INVARIANTS
inv3 : result ∈ 0 .. n

EVENTS Initialisation
begin

act1 : result := 0

end

29 / 53



Rodin

Learning Rodin

Events with parameters

Some events may use local parameters, introduced with the
ANY...WHERE construct :
EVENT SUCCESS

any
r

where
grd1 : r ∈ 1 .. n
grd2 : a(r) = x

then
act1 : result := r

end

30 / 53



Rodin

Learning Rodin

The proof obligation associated to an invariant and a
parameterized event just considers the parameter as a free variable.

Hypotheses axm1 n ∈ N1

axm2 a ∈ 1 .. n→ Z
axm3 x ∈ Z

inv3 result ∈ 0 .. n
grd1 r ∈ 1 .. n
grd2 a(r) = x

result ′ = r

Goal inv3’ result ′ ∈ 0 .. n

31 / 53



Rodin

Learning Rodin

The following event describes the case where x has no occurrence
in the array a. Notice that it is just an abstract but easy to read
specification.
EVENT FAILURE :

when
grd1 : ∀i ·i ∈ 1 .. n⇒ a(i) 6= x

then
skip

end

32 / 53



Rodin

On Refinements

Introduction to the notion of refinement

I We will say that a machine C refines a machine A when all
behaviours of C correspond to behavoiours of A.

I We will say that C is more concrete than A.

I Rodin helps us to build machine-proven refinements,

I Refinements are useful for deriving more concrete
implementations from abstract specifications.

I We can also use refinements for expressing more precise
sepcifications.

33 / 53



Rodin

On Refinements

A first example

An Event-B Specification of L0
Creation Date: 2 Jan 2012 @ 03 :46 :23 PM

MACHINE L0

REFINES S0

SEES Array

VARIABLES
result

EVENTS

Initialisation
extended

begin
act1 : result := 0

end

34 / 53



Rodin

On Refinements

Event SUCCESS =̂
extends SUCCESS

any
r

where
grd1 : r ∈ 1 .. n
grd2 : a(r) = x

grd3 : ∀i ·i ∈ 1 ..n∧a(i) = x⇒r ≤ i
then

act1 : result := r
end

Event Failure =̂
extends Failure

when
grd1 : ∀i·i ∈ 1 .. n⇒ a(i) 6= x

then
skip

end
END

35 / 53



Rodin

On Refinements

An Event-B Specification of LinearSearch
Creation Date: 2 Jan 2012 @ 03 :57 :14 PM

MACHINE LinearSearch

REFINES L0

SEES Array

VARIABLES
result

c cursor

INVARIANTS
inv1 : c ∈ 1 .. n
inv2 : ∀i ·i ∈ 1 .. n ∧ a(i) = x ⇒ i ∈ c .. n
DLF : a(c) = x ∨ (c = n ∧ a(c) 6= x) ∨ (c <

n ∧ a(c) 6= x)

36 / 53



Rodin

On Refinements

EVENTS

Initialisation
extended

begin
act1 : result := 0

act2 : c := 1
end

Event SUCCESS =̂

refines SUCCESS
when

grd2 : a(c) = x
with

r : r = c

then
act1 : result := c

end
37 / 53



Rodin

On Refinements

Event Failure =̂
refines Failure

when
grd2 : c = n
grd3 : a(c) 6= x

then
skip

end
Event Right =̂
Status convergent

when
grd1 : c < n
grd2 : a(c) 6= x

then
act1 : c := c + 1

end
VARIANT

n− c
END

38 / 53



Rodin

Proof Obligations

Proof Obligations

It is extremely important to know how Rodin builds and tries to
solve proof obligations associated to abstract machines and their
refinements.

I It helps to design correct machines and invariants,

I It allows to detect conception errors,

I In case of non-automatic proofs, it helps to interact with the
tool.

I Last but not least, it is the basis of many questions in a
written exam.

39 / 53



Rodin

Proof Obligations

Let us consider a machine A and a refinement C . We assume that
A sees a context ΓA and C a context ΓC (which is often an
extension of ΓA

We assume that all the POs of A have been solved.

Remarks

I C must declare every variable that occurs in events (in gaurds
and/or assignments)

I Some variables occur both in A and C

I If a variable occur both in A and C , one assumes that it has
always the same value in both machines.

I an event in A can be refined by one or several events in C .

I Intuitively, an event evtC in C refines an event evtA in A if on
can associate to any behaviour of evtC a behaviour of A.

40 / 53



Rodin

Proof Obligations

Remark

Note that the initialisation of LinearSearch extends the
intialisation of L0.

41 / 53



Rodin

Proof Obligations

An example

I The machine LinearSearch refines the machine L0.

I The variable result is common to both machines

I The variable c belongs only to LinearSearch

I The event SUCCESS is parameterized in L0, but not in
LinearSearch

I The event Right belongs only to LinearSearch, and
corresponds to a non-event in L0.

42 / 53



Rodin

Proof Obligations

Proof obligations for LinearSearch

All the invariants of the concrete machine must be satisfied by the
initialisation event :

Hypotheses axm1 n ∈ N1

axm2 a ∈ 1 .. n→ Z
axm3 x ∈ Z

inv3 result ∈ 0 .. n
c = 1 ∧ result = 0

Goal inv1 : 1 ∈ 1 .. n
inv2 : ∀i ·i ∈ 1 .. n ∧ a(i) = x ⇒ i ∈ 1 .. n
inv3′ : result ′ ∈ 0 .. n

43 / 53


	Introduction
	Learning Rodin
	On Refinements
	Proof Obligations

