
DRAFTAddition chains

Pierre Castéran
LaBRI, Univ. Bordeaux, CNRS UMR 5800, Bordeaux-INP

September 5, 2020

2

Contents

1 Introduction 5

2 Smart Computation of xn 9
2.1 Introduction . 9
2.2 Some basic implementations . 9

2.2.1 A semi-naive algorithm 10
2.2.2 A truly logarithmic exponentiation function 11
2.2.3 Examples of computation 12
2.2.4 Formal specification of an exponentiation function: a first

attempt . 14
2.3 Representing Monoids in Coq . 15

2.3.1 A common notation for multiplication 15
2.3.2 The Monoid Type Class 17
2.3.3 Building Instances of Monoid 17
2.3.4 Matrices on a semi-ring 19
2.3.5 Monoids and Equivalence Relations 20

2.4 Computing Powers in any EMonoid 22
2.4.1 The naive (linear) Algorithm 23
2.4.2 The Binary Exponentiation Algorithm 24
2.4.3 Refinement and Correctness 24
2.4.4 Proof of correctness of binary exponentiation w.r.t. the

function power . 25
2.4.5 Equivalence of the two exponentiation functions 26

2.5 Comparing Exponentiation Algorithms with respect to Efficiency 27
2.5.1 Addition chains . 28
2.5.2 A type for addition chains 29
2.5.3 Chains as a (small) programming language 32

2.6 Proving a chain’s correctness . 33
2.6.1 Proof by rewriting . 34
2.6.2 Correctness Proofs by Reflection 35
2.6.3 reflection tactic . 38
2.6.4 Chain correctness for —practically — free! 39

2.7 Certified Chain Generators . 43
2.7.1 Definitions . 44
2.7.2 The binary chain generator 44

2.8 Euclidean Chains . 47
2.8.1 Chains and Continuations : f-chains 47
2.8.2 F-chain correctness . 50

3

4 CONTENTS

2.8.3 Building chains for two distinct exponents : k-chains . . 56
2.8.4 Systematic construction of correct f-chains and k-chains . 58
2.8.5 Automatic chain generation by Euclidean division 62
2.8.6 The dichotomic strategy 64
2.8.7 Main chain generation function 64

2.9 Projects . 67
2.10 How to install the libraries . 73

Chapter 1

Introduction

Proof assistants are excellent tools for exploring the structure of mathematical
proofs, studying which hypotheses are really needed, and which proof patterns
are useful and/or necessary. Since the development of a theory is represented
as a bunch of computer files, everyone is able to read the proofs with an arbi-
trary level of detail, or to play with the theory by building alternate proofs or
definitions.

Among all the theorems proved with the help of proof assistants like Coq,
Isabelle, HOL, etc., several statements and proofs share some interesting fea-
tures:

• Their statements are easy to understand, even by non-mathematicians

• Their proof requires some non-trivial mathematical tools

• Their mechanization on computer presents some methodological interest.

This is obviously the case of the four-color theorem [Gon08] and the Kepler
conjecture [H+15].

Structure of this document

• We present several contributions, whose topic is easy to understand. Each
contribution is chosen according to its potential to illustrate interesting
proof patterns, or how to use some libraries of the Coq system

• Whenever several implementations are possible, we will discuss the pros
and cons of every possible choice

• Most of the proofs we present are constructive. Whenever possible, we
provide the user with an associated function, which she or he can apply
in Gallina or OCaml in order to get a “concrete” feeling of the meaning
of the considered theorem.

• We found it interesting to present several implementions of a given con-
cept. After some discussions of the pros and cons of each solution, we
will choose to develop only one of them, leaving the others as exercises or

5

6 CHAPTER 1. INTRODUCTION

projects (i.e., big or difficult exercises). In order to discuss which assump-
tions are really needed for proving a theorem, we will also present several
aborted proofs.

Warning: This document is not an introductory text for Coq, and there are
many aspects of this proof assistant that are not covered. The reader should
already have some basic experience with the Coq system. The Reference Manual
and several tutorials are available on Coq page [Coq]. First chapters of textbooks
like Interactive Theorem Proving and Program Development [BC04], Software
Foundations [P+] or Certified Programming with Dependent Types [Chl11] will
give you the right background.

Contributions are welcome

Any form of contribution is welcome: correction of errors, improvement of Coq
scripts, proposition of inclusion of new chapters, and generally any comment or
proposition that would help us. The text contains several projects which, when
completed, may improve the present work. Please do not hesitate to bring your
contribution!

1.0.0.1 Acknowledgements

Many thanks to David Ilcinkas, Sylvain Salvati, Alan Schmitt and Théo Zim-
merman for their help on the elaboration of this document, and to the members
of the Formal Methods team at laBRI for their helpful comments on an oral
presentation of this work.

Many thanks also to the Coq development team, Yves Bertot, and mem-
bers of the Coq Club for interesting discussions about the Coq system and the
Calculus of Inductive Constructions.

I owe my interest in discrete mathematics and their relation to formal proofs
and functional programming to Srecko Brlek. Equally, there is W. H. Burge’s
book “Recursive Programming Techniques” [Bur75] which was a great source
of inspiration.

1.0.0.2 Typographical conventions

Quotations from our Coq source are displayed as follows:

Require Import Arith.

Definition square (n:nat) := n * n.

Lemma square_double : exists n:nat, n + n = square n.
Proof.

exists 2.

Answers from Coq (including sub-goals, error messages, etc.) are displayed
in slanted style with a different background color.

1 subgoal, subgoal 1 (ID 5)

7

============================
2 + 2 = square 2

reflexivity.
Qed.

1.0.0.3 Alternative or bad definitions

Finally, we decided to include definitions or lemma statements, as well as tactics,
that lead to dead-ends or to too complex developments, with the following
coloring. Bad definitions and encapsulation in modules called Bad, Bad1, etc.

Module Bad.

Definition double (n:nat) := n + 2.

Lemma lt_double : forall n:nat, n < double n.
Proof.

unfold double; omega.
Qed.

End Bad.

Likewise, alternative, but still unexplored definitions will be presented in
modules Alt, Alt1, etc. Using these definitions is left as an implicit exercise.

Module Alt.

Definition double (n : nat) := 2 * n.

End Alt.

Lemma alt_double_ok n : Nat.double n = Alt.double n.
Proof.
unfold Alt.double, Nat.double.
omega.

Qed.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Smart Computation of xn

2.1 Introduction
Nothing looks simpler than writing some function for computing xn. On the
contrary, this simple programming exercise allows us to address advanced pro-
gramming techniques such as:

• monadic programming, and continuation passing style

• type classes, and generalized rewriting

• proof engineering, in particular proof re-using

• proof by reflection

• polymorphism and parametricity

• composition of correct programs, etc.

2.2 Some basic implementations
Let us start with a very naive way of computing the n-th power of x, where n
is a natural number and x belongs to some type for which a multiplication and
an identity element are defined.

From Module Powers.FirstSteps

Section Definitions.

Variables (A: Type)
(mult: A -> A -> A)
(one: A).

Local Infix "*" := mult.
Local Notation "1" := one.

Fixpoint power (x:A)(n:nat) : A :=
match n with 0%nat => 1

| S p => x * x ^ p
end

9

../src/html/addition.power.FirstSteps.html

10 CHAPTER 2. SMART COMPUTATION OF XN

where "x ^ n" := (power x n).

Compute power Z.mul 1%Z 2%Z 10.

= 1024%Z
: Z

Open Scope string_scope.
Compute power append "" "ab" 12.

= "abababababababababababab"
: string

The number of multiplications needed to compute xn via this function is lin-
ear with respect to n. Despite this lack of efficiency, and thanks to its simplicity,
we keep it as a specification for more efficient and complex exponentiation al-
gorithms. A function will be considered a correct exponentiation function if we
can prove it is extensionally equivalent to power.

2.2.1 A semi-naive algorithm
In versions up to V8.9.1, the exponentiation function on type Z was defined as
follows, (in modules Coq.PArith.BinPosDef.Pos and Coq.ZArith.BinIntDef.Z.

(** ** Iteration of a function over a positive number *)

Definition iter {A} (f:A -> A) : A -> positive -> A :=
fix iter_fix x n := match n with
| xH => f x
| xO n' => iter_fix (iter_fix x n') n'
| xI n' => f (iter_fix (iter_fix x n') n')

end.

Definition pow (x:positive) := iter (mul x) 1.

Definition pow_pos (z:Z) := Pos.iter (mul z) 1.

Definition pow x y :=
match y with
| pos p => pow_pos x p
| 0 => 1
| neg _ => 0

end.

Infix "^" := pow : Z_scope.

At first sight, the function Pos.pow seems to be logarithmic because of the
recursive structure of the help function iter_fix. Unfortunately, it is obvi-
ous that a call to iter f x n will apply n times the function f . Thus, these
exponentiation functions with binary exponents are in fact linear!

2.2. SOME BASIC IMPLEMENTATIONS 11

Time Compute (1 ^ 56666667)%N.

Finished transaction in 3.604 secs (3.587u,0.007s)

2.2.2 A truly logarithmic exponentiation function
Using the following equations, we can easily define a polymorphic exponentiation
whose application requires only a logarithmic number of multiplications.

x1 = x (2.1)
x2p = (x2)p (2.2)

x2p+1 = (x2)p × x (2.3)
x1 × a = x× a (2.4)
x2p × a = (x2)p × a (2.5)

x2p+1 × a = (x2)p × (a× x) (2.6)

In equalities 2.4 to 2.6, the variable a plays the role of an accumulator whose
initial value (set by 2.3) is x. This accumulator helps us to get a tail-recursive
implementation.

For instance, the computation of 214 can be decomposed as follows:

214 = 47

= 163 × 4

= 2561 × (4× 16)

= 16384

With the same notations as in Sect 2.2 on page 9, we can implement this
algorithm in Gallina. The following definitions are still within the scope of the
section open in 2.2 on page 9.

From Module Powers.FirstSteps

Fixpoint binary_power_mult (x a:A)(p:positive) : A
:=
match p with

| xH => a * x
| xO q => binary_power_mult (x * x) a q
| xI q => binary_power_mult (x * x) (a * x) q

end.

Fixpoint Pos_bpow (x:A)(p:positive) :=
match p with
| xH => x
| xO q => Pos_bpow (x * x) q
| xI q => binary_power_mult (x * x) x q

end.

../src/html/addition.power.FirstSteps.html

12 CHAPTER 2. SMART COMPUTATION OF XN

Definition N_bpow x (n:N) :=
match n with
| 0%N => 1
| Npos p => Pos_bpow x p
end.

End Definitions.

Let us close the section Definitions and mark the argument A as implicit.

End Definitions.

Arguments N_bpow {A}.
Arguments power {A}.

Remark Note that closing the section Definitions makes us lose the handy
notations _ * _ and one. Fortunately, operational type classes will help us to
define nice infix notations for polymorphic functions (Sect. 2.3.1 on page 15).

2.2.3 Examples of computation
It is now possible to test our functions with various interpretations of × and 1:

Compute N_bpow Z.mul 1%Z 2%Z 10.

= 1024%Z
: Z

Require Import String.
Open Scope string_scope.

Compute N_bpow append "" "ab" 12.

= "abababababababababababab"
: string

2.2.3.1 Exponentiation on 2× 2 matrices

Our second example is a definition of Mn where M is a 2× 2 matrix over any
“scalar” type A, assuming one can provide A with a semi-ring structure [Coq].

A 2 × 2 matrix will be simply represented by a structure with four fields;
each field cij is associated with the i-th line and j-th column of the considered
matrix.

Module M2.
Section Definitions.

Variables (A: Type) (zero one : A) (plus mult : A -> A -> A).

Variable rt : semi_ring_theory zero one plus mult (@eq A).

2.2. SOME BASIC IMPLEMENTATIONS 13

Add Ring Aring : rt.

Notation "0" := zero.
Notation "1" := one.
Notation "x + y" := (plus x y).
Notation "x * y " := (mult x y).

Structure t : Type := mat{c00 : A; c01 : A; c10 : A; c11 : A}.

The structure type M2.t allows us to define the product of two matrices.

Definition M2_mult (M M':t) : t := mat
(c00 M * c00 M' + c01 M * c10 M') (c00 M * c01 M' + c01 M * c11 M')
(c10 M * c00 M' + c11 M * c10 M') (c10 M * c01 M' + c11 M * c11 M').

The neutral element for M2_mult is the identity matrix.

Definition Id2 : t := mat 1 0 0 1.

End M2_Definitions.
End M2.

Matrix exponentiation is a well-known method for computing Fibonacci
numbers:

Import M2.

Arguments M2_mult {A} plus mult _ _.
Arguments mat {A} _ _ _ _.
Arguments Id2 {A} _ _.

Definition fibonacci (n:N) :=
c00 N (N_bpow (M2_mult Nplus Nmult)

(Id2 0%N 1%N)
(mat 1 1 1 0)%N
n).

Compute fibonacci 20.

= 10946%N
: N

2.2.3.2 Remark

Our function N_bpow is really logarithmic. Let us make a comparative test
with Standard Library’s exponentiation function on type N (see section 2.2.1 on
page 10).

Time Compute (N_bpow N.mul 1 1 56666667)%N.

Finished transaction in 0. secs (0.u,0.s) (successful)

14 CHAPTER 2. SMART COMPUTATION OF XN

2.2.4 Formal specification of an exponentiation function:
a first attempt

Let us compare the functions power and N_bpow. The first one is obviously
correct, since it is a straightforward translation of the mathematical definition.
The second one is much more efficient, but it is not obvious that its 18-line
long definition is bug-free. Thus, we must prove that the two functions are
extensionally equal (taking into account conversions between N and nat).

More abstractly, we can define a predicate that characterizes any correct im-
plementation of power, this “naive” function being a specification of any poly-
morphic exponentiation function.

First, we define a type for any such function.

Definition power_t := forall (A:Type)
(mult : A -> A -> A)
(one:A)
(x:A)
(n:N), A.

Then, we would say that a function f:power_t is a correct exponentiation
function if it is extensionally equal to power.

Module Bad.

Definition correct_expt_function (f : power_t) : Prop :=
forall A (mult : A -> A -> A) (one:A)

(x:A) (n:N),
power mult one x (N.to_nat n) = f A mult one x n.

Unfortunately, our definition of correct_expt is too general. It suffices to
build an interpretation where the multiplication is not associative or one is not
a neutral element to obtain different results through the two functions.

Section CounterExample.
Let mul (n p : nat) := n + 2 * p.
Let one := 0.

Remark mul_not_associative :
exists n p q, mul n (mul p q) <> mul (mul n p) q.

Proof.
exists 1, 1, 1; discriminate.

Qed.

Remark one_not_neutral :
exists n : nat, mul one n <> n.

Proof.
exists 1; discriminate.

Qed.

Lemma correct_expt_too_strong :
~ correct_expt_function (@N_bpow).

Proof.

2.3. REPRESENTING MONOIDS IN COQ 15

intro H; specialize (H _ mul one 1 7%N).
discriminate H.

Qed.

End CounterExample.
End Bad.

So, we will have to improve our definition of correctness, by restricting the
universal quantification to associative operations and neutral elements, i.e., by
considering monoids. An exponentiation function will be considered as correct
if it returns always the same result as power in any monoid.

2.3 Representing Monoids in Coq
In this section, we present a “minimal” algebraic framework in which exponen-
tiation can be defined and efficiently implemented.

Exponentiation is built on multiplication, and many properties of this op-
eration are derived from the associativity of multiplication. Furthermore, if we
allow the exponent to be any natural number, including 0, then we need to
consider a neutral element for multiplication.

The structure on which we define exponentiation is called a monoid. It is
composed of a carrier A, an associative binary operation × on A, and a neutral
element 1 for × . The required properties of × and 1 are expressed by the
following equations:

∀x y z : A, x× (y × z) = (x× y)× z (2.7)
∀x : A, x× 1 = 1× x = x (2.8)

In Coq, we define the monoid structure in terms of type classes[SO08, SvdW11].
The tutorial on type classes [CS] gives more details on type classes and opera-
tional type classes, also illustrated with the monoid structure.

First, we define a class and a notation for representing multiplication oper-
ators, then we use these definitions for defining the Monoid type class.

2.3.1 A common notation for multiplication
Operational type classes [SvdW11] allow us to define a common notation for
multiplication in any algebraic structure. First, we associate a class to the
notion of multiplication on any type A.

From Module Powers/Monoid_def.v.

Class Mult_op (A:Type) := mult_op : A -> A -> A.

From the type theoretic point of view, the term (Mult_op A) is βδ-reducible
to A→A→A, and if op has type (Mult_op A), then (@mult_op A op) is con-
vertible with op.

We are now ready to define a new notation scope, in which the notation x
* y will be interpreted as an application of the function mult_op.

../src/html/addition.power.Monoid_def.html

16 CHAPTER 2. SMART COMPUTATION OF XN

Delimit Scope M_scope with M.
Infix "*" := mult_op : M_scope.
Open Scope M_scope.

Let us show two examples of use of the notation scope M_scope. Each
example consists in declaring an instance of Mult_op, then type checking or
evaluating a term of the form x * y in M_scope.

Note that, since the reserved notation "_ * _ " is present in several scopes
such as nat_scope, Z_scope, N_scope, etc., in addition to M_scope, the user
should take care of which scopes are active — and with which precedence — in
a Gallina term. In case of doubt, explicit scope delimiters should be used.

2.3.1.1 Multiplication on Peano Numbers

Multiplication on type nat, called Nat.mul in Standard Library, has type
nat -> nat -> nat, which is convertible with Mult_op nat. Thus the fol-
lowing definition is accepted:

Instance nat_mult_op : Mult_op nat := Nat.mul.

Inside M_scope, the expression 3 * 4 is correctly read as an application of
mult_op. Nevertheless this term is convertible with Nat.mul 3 4, as shown by
the interaction below.

From Module Powers.Monoid_def

Set Printing All.
Check 3 * 4.

@mult_op nat nat_mult_op (S (S (S O))) (S (S (S (S O))))
: nat

Unset Printing All.
Compute 3 * 4.

= 12 : nat

2.3.1.2 String Concatenation

We can use the notation "_ * _ " for other types than numbers. In the follow-
ing example, the expression "abc" * "def" is interpreted as
@mult_op string ?X "abc" "def", then the type class mechanism replaces
the unknown ?X with string_op.

From Module Powers.Monoid_def

Require Import String.

Instance string_op : Mult_op string := append.
Open Scope string_scope.

Example ex_string : "ab" * "cde" = "abcde".
Proof. reflexivity. Qed.

../src/html/addition.power.Monoid_def.html
../src/html/addition.power.Monoid_def.html

2.3. REPRESENTING MONOIDS IN COQ 17

2.3.1.3 Solving Ambiguities

Let A be some type, and let us assume there are several instances of Mult_op
A. For solving ambiguity issues, one can add a precedence to each instance
declaration of Mult_op A. In any case, such ambiguity can be addressed by
explicitly providing some arguments of mult_op. For instance, in Sect. 2.3.3.2
on the following page, we consider various monoids on types nat and N.

2.3.2 The Monoid Type Class
We are now ready to give a definition of the Monoid class, using * as an infix
operator in scope %M for the monoid multiplication.

The following class definition, from Module Powers.Monoid_def, is param-
eterized with some type A, a multiplication (called op in the definition), and a
neutral element 1 (called one in the definition).

Class Monoid {A:Type}(op : Mult_op A)(one : A) : Prop :=
{

op_assoc : forall x y z:A, x * (y * z) = x * y * z;
one_left : forall x, one * x = x;
one_right : forall x, x * one = x

}.

2.3.3 Building Instances of Monoid

Let A be some type, op an instance of Mult_op A and one: A. In order to
build an instance of (Monoid A op one), one has to provide proofs of “monoid
axioms” op_assoc, one_left and one_right.

Let us show various instances, which will be used in further proofs and ex-
amples. Complete definitions and proofs are given in File Powers/Monoid_in-
stances.v.

2.3.3.1 Monoid on Z

The following monoid allows us to compute powers of integers of arbitrary size,
using type Z from standard library:

Instance Z_mult_op : Mult_op Z := Z.mul.

Instance ZMult : Monoid Z_mult_op 1.
Proof.
split.

3 subgoals, subgoal 1 (ID 8)

============================
forall x y z : Z, (x * (y * z))%M = (x * y * z)%M

subgoal 2 (ID 9) is:
forall x : Z, (1 * x)%M = x
subgoal 3 (ID 10) is:
forall x : Z, (x * 1)%M = x}

../src/html/addition.power.Monoid_def.html
../src/html/addition.power.Monoid_instances.html
../src/html/addition.power.Monoid_instances.html

18 CHAPTER 2. SMART COMPUTATION OF XN

all: unfold Z_mult_op, mult_op;intros;ring.
Qed.

2.3.3.2 Monoids on type nat and N

We define two monoids on type nat:

• The “natural” monoid (N,×, 1) :

Instance nat_mult_op : Mult_op nat | 5 := Nat.mul.

Instance Natmult : Monoid nat_mult_op 1%nat | 5
Proof.

split;unfold nat_mult_op, mult_op; intros; ring.
Qed.

• The “additive” monoid (N,+, 0). This monoid will play an important
role in correctness proofs of complex exponentiation algorithms. Its most
important property is that the n-th power of 1 is equal to n. See Sect. 2.6.4
on page 39 for more details.

Instance nat_plus_op : Mult_op nat | 12 := Nat.add.

Instance Natplus : Monoid nat_plus_op 0%nat | 12.
(* Proof omitted *)

Similarly, instances NMult and NPlus are built for type N, and PMult for type
positive.

2.3.3.3 Machine integers

Cyclic numeric types are good candidates for testing exponentiations with big
exponents, since the size of data is bounded.

The type int31 is defined in Module Coq.Numbers.Cyclic.Int31.Int31
of Coq’s standard library. The tactic ring works with this type, and helps us
to register an instance Int31Mult of class Monoid int31_mult_op 1.

Instance int31_mult_op : Mult_op int31 := mul31.

Instance Int31mult : Monoid int31_mult_op 1.
Proof.

split;unfold int31_mult_op, mult_op; intros; ring.
Qed.

Beware that machine integers are not natural numbers!

Module Bad.

Fixpoint int31_from_nat (n:nat) :=
match n with

2.3. REPRESENTING MONOIDS IN COQ 19

| O => 1
| S p => 1 + int31_from_nat p
end.

Coercion int31_from_nat : nat >-> int31.

Fixpoint fact (n:nat) :=
match n with
| O => 1
| S p => n * fact p

end.

Example fact_zero : exists n:nat, fact n = 0.
Proof. now exists 40%nat. Qed.

End Bad.

2.3.4 Matrices on a semi-ring
In Sect. 2.2.3.1 on page 12, we defined a function for computing powers of
any 2 × 2 matrix over any semi-ring. For proving a simple property of matrix
exponentiation, we had to prove that matrix multiplication is associative and
admits the identity matrix as a neutral element. These properties are easily
expressed within the type class framework, by defining a family of monoids. It
suffices to define an instance of Monoid within the scope of an hypothesis of
type semi_ring_theory

Section M2_def.
Variables (A:Type)

(zero one : A)
(plus mult : A -> A -> A).

Variable rt : semi_ring_theory zero one plus mult (@eq A).
Add Ring Aring : rt.

Structure M2 : Type := {c00 : A; c01 : A;
c10 : A; c11 : A}.

Definition Id2 : M2 := Build_M2 1 0 0 1.

Definition M2_mult (m m':M2) : M2 :=
Build_M2

(c00 m * c00 m' + c01 m * c10 m')
(c00 m * c01 m' + c01 m * c11 m')
(c10 m * c00 m' + c11 m * c10 m')
(c10 m * c01 m' + c11 m * c11 m').

Global Instance M2_op : Mult_op M2 := M2_mult.

Global Instance M2_Monoid : Monoid M2_op Id2.
(* Proof omitted *)

20 CHAPTER 2. SMART COMPUTATION OF XN

End M2_def.

Arguments M2_Monoid {A zero one plus mult} rt.

2.3.5 Monoids and Equivalence Relations
In some contexts, the “axioms” of the Monoid class may be too restrictive. For
instance, consider multiplication in Z/mZ where 1 < m. Although it could be
possible to compute with values of the dependent type {n:N | n < m}, it looks
simpler to compute with numbers of type N and consider the multiplication x×y
mod m.

It is easy to prove that this operation is associative, using library NArith.
Unfortunately, the following proposition is false in general (left as an exercise).

∀x : N, (1 ∗ x) mod m = x

Thus, we define a more general class, parameterized by an equivalence re-
lation Aeq on a type A, compatible with the multiplication *. The laws of
associativity and neutral element are not expressed as Leibniz equalities but as
equivalence statements:

First, let us define an operational type class for equivalence relations:
From Module Powers.Monoid_def

Class Equiv A := equiv : relation A.

Infix "==" := equiv (at level 70) : type_scope.

The definition of class EMonoid looks like Monoid’s definition, plus some
constraints on E_eq.

Please look for instance at our tutorial on type classes and relations [CS] for
understanding the use of type classes Equivalence, Reflexive, Proper, etc, in
relation with tactics like rewrite, reflexivity, etc., in proofs which involve
equivalence relations instead of equality.

Class EMonoid (A:Type)(E_op : Mult_op A)(E_one : A)
(E_eq: Equiv A): Prop :=

{
Eq_equiv :> Equivalence equiv;
Eop_proper :> Proper (equiv ==> equiv ==> equiv) E_op;
Eop_assoc : forall x y z, x * (y * z) == x * y * z;
Eone_left : forall x, E_one * x == x;
Eone_right : forall x, x * E_one == x

}.

2.3.5.1 Coercion from Monoid to EMonoid

Every instance of class Monoid can be transformed into an instance of EMonoid,
considering Leibniz’ equality eq. Thus, our definitions and theorems about
exponentiation will take place as much as possible within the more generic
framework of EMonoids.

../src/html/addition.power.Monoid_def.html

2.3. REPRESENTING MONOIDS IN COQ 21

Global Instance eq_equiv {A} : Equiv A := eq.

Global Instance Monoid_EMonoid `(M:@Monoid A op one) :
EMonoid op one eq_equiv.

Proof.
split; unfold eq_equiv, equiv in *.
- apply eq_equivalence.
- intros x y H z t H0; now subst.
- intros; now rewrite (op_assoc).
- intro; now rewrite one_left.
- intro; now rewrite one_right.
Defined.

Remark 2.1 In the definition of Monoid_EMonoid, the free variables A, op and
one are automatically generalized thanks to the backquote syntax (see the section
about implicit generalization in the reference manual [Coq]).

Thanks to the following coercion, every instance of Monoid can now be con-
sidered as an instance of EMonoid. For more details, please look at the section
Implicit Coercions of Coq’s reference manual [Coq].

Coercion Monoid_EMonoid : Monoid >-> EMonoid.

From Module Powers.Monoid_instances

Check NMult : EMonoid N.mul 1%N eq.

NMult:EMonoid N.mul 1%N eq
: EMonoid N.mul 1%N eq

2.3.5.2 Example : Arithmetic modulo m

The following instance of EMonoid describes the set of integers modulo m, where
m is any integer greater than or equal to 2. For simplicity’s sake, we represent
such values using the N type, and consider “equivalence modulo m” instead of
equality. Note that the law of associativity has been stated as Leibniz’ equality.

Section Nmodulo.
Variable m : N.
Hypothesis m_gt_1 : 1 < m.

Definition mult_mod (x y : N) := (x * y) mod m.
Definition mod_eq (x y: N) := x mod m = y mod m.

Global Instance mod_equiv : Equiv N := mod_eq.

Global Instance mod_op : Mult_op N := mult_mod.

Global Instance mod_Equiv : Equivalence mod_equiv.
(* Proof omitted *)

../src/html/addition.power.Monoid_instances.html

22 CHAPTER 2. SMART COMPUTATION OF XN

Global Instance mult_mod_proper :
Proper (mod_equiv ==> mod_equiv ==> mod_equiv) mod_op.
(* Proof omitted *)

Local Open Scope M_Scope.

Lemma mult_mod_associative :
forall x y z, x * (y * z) = x * y * z.
(* Proof omitted *)

Lemma one_mod_neutral_l : forall x, 1 * x == x.
(* Proof omitted *)

Lemma one_mod_neutral_r : forall x, x * 1 == x.
(* Proof omitted *)

Global Instance Nmod_Monoid : EMonoid mod_op 1 mod_equiv.
(* Proof omitted *)

End Nmodulo.

2.3.5.2.1 Example In the following interaction, we show how to instantiate
the parameter m to a concrete value, for instance 256.

Section S256.
Let mod256 := mod_op 256.
Local Existing Instance mod256 | 1.

Compute (211 * 67)

= 57 : N

End S256.

Outside the section S256, the term (211 * 67)%M is interpreted as a plain
multiplication in type N:

Compute (211 * 67)%M.

= 14137 : N

2.4 Computing Powers in any EMonoid
The module Powers.Pow defines two functions for exponentiation on any EMonoid
on carrier A. They are essentially the same as in Sect. 2.2 on page 9. The main
difference lies in the arguments of the functions, which now contain an instance M
of class EMonoid. Thus, the arguments associated with the multiplication, the
neutral element and the equivalence relation associated with M are left implicit.

../src/html/addition.power.Pow.html

2.4. COMPUTING POWERS IN ANY EMONOID 23

2.4.1 The naive (linear) Algorithm
The new version of the linear exponentiation function is as follows:

Fixpoint power`{M: @EMonoid A E_op E_one E_eq}
(x:A) (n:nat) :=

match n with
| 0%nat => E_one
| S p => x * x ^ p
end
where "x ^ n" := (power x n) : M_scope.

The three following lemmas will be used by the rewrite tactic in further
correctness proofs. Note that the first two lemmas are strong (i.e., Leibniz)
equalities, whilst power_eq3 is only an equivalence statement, because its proof
uses one of the EMonoid laws, namely Eone_right.

Lemma power_eq1 {A:Type} `{M: @EMonoid A E_op E_one E_eq}
(x:A) : x ^ 0 = E_one.

Proof. reflexivity. Qed.

Lemma power_eq2 {A:Type} `{M: @EMonoid A E_op E_one E_eq}
(x:A) (n:nat) :
x ^ (S n) = x * x ^ n.

Proof. reflexivity. Qed.

Lemma power_eq3 {A:Type} `{M: @EMonoid A E_op E_one E_eq}
(x:A) : x ^ 1 == x.

Proof. cbn; rewrite Eone_right; reflexivity. Qed.

2.4.1.1 Examples of computation

In the following computations, we first show an exponentiation in Z, then in
the type of 31-bit machine integers.1

From Module Powers.Demo_power

Open Scope M_scope.

Compute 22%Z ^ 20.

= 705429498686404044207947776%Z

Import Int31.
Coercion phi_inv : Z >-> int31.

Compute (22%int31 ^ 20).

= 2131755008%int31
: int31

1phi and phi_inv are standard library’s conversion functions between types Z and int31,
used for making it possible to read and print values of type int31.

../src/html/addition.power.Demo_power.html

24 CHAPTER 2. SMART COMPUTATION OF XN

2.4.2 The Binary Exponentiation Algorithm
Please find below the implementation of binary exponentiation using type classes
(to be compared with the version in 2.2.2 on page 11).

From Module Powers.Pow

Fixpoint binary_power_mult `{M: @EMonoid A E_op E_one E_eq}
(x a:A)(p:positive) : A

:=
match p with
| xH => a * x
| xO q => binary_power_mult (x * x) a q
| xI q => binary_power_mult (x * x) (a * x) q

end.

Fixpoint Pos_bpow `{M: @EMonoid A E_op E_one E_eq}
(x:A)(p:positive) :=

match p with
| xH => x
| xO q => Pos_bpow (x * x) q
| xI q => binary_power_mult (x * x) x q

end.

It is easy to extend Pos_bpow’s domain to the type of all natural numbers:
From Module Powers.Pow

Definition N_bpow {A} `{M: @EMonoid A E_op E_one E_eq} x (n:N) :=
match n with
| 0%N => E_one
| Npos p => Pos_bpow x p
end.

Infix "^b" := N_bpow (at level 30, right associativity): M_scope.

2.4.3 Refinement and Correctness
We have got two functions for computing powers in any monoid. So, it is
interesting to ask oneself whether this duplication is useful, and which would
be the respective role of N_bpow and power.

• The function power, although very inefficient, is a direct translation of the
mathematical definition, as shown by lemmas power_eq1 to
power_eq3. Moreover, its structural recursion over type nat allows simple
proofs by induction over the exponent. Thus, we will consider power as a
specification of any exponentiation algorithm.

• Functions N_bpow and Pos_bpow are more efficient, but less readable than
power, and we cannot use these functions before having proved their cor-
rectness. In fact, the correctness of N_bpow and Pos_bpow will mean “being
extensionally equivalent to power”. For instance N_bpow’s correctness is
expressed by the following statement (in the context of an EMonoid on
type A).

../src/html/addition.power.Pow.html
../src/html/addition.power.Pow.html

2.4. COMPUTING POWERS IN ANY EMONOID 25

From Module Powers.Pow

Lemma N_bpow_ok :
forall (x:A) (n:N), x ^b n == x ^ N.to_nat n.
(* Proof omitted *)

The relationship between power and N_bpow can be considered as a kind
of refinement as in the B-method [Abr96]. Note that the two representations
of natural numbers and the function N.to_nat form a kind of data refinement
[Abr10, CDM13a].

2.4.4 Proof of correctness of binary exponentiation w.r.t.
the function power

Section M_given of Module Powers.Pow is devoted to the proof of properties
of the functions above. Note that properties of power refer to the specification
of exponentiation, and can be applied for proving correctness of any implemen-
tation.

In this section, we consider an arbitrary instance M of class EMonoid.

Section M_given.
Variables (A:Type) (E_op : Mult_op A)(E_one:A) (E_eq : Equiv A).
Context (M:EMonoid E_op E_one E_eq).

2.4.4.1 Properties of exponentiation

We establish a few well-known properties of exponentiation, and define some
basic tactics for simplifying proof search.

Ltac monoid_rw :=
rewrite Eone_left ||
rewrite Eone_right ||
rewrite Eop_assoc .

Ltac monoid_simpl := repeat monoid_rw.

Section About_power.

In order to make possible proof by rewriting on expressions which contain the
exponentiation operator, we have to prove that, whenever x == y, the equality
xn == yn holds for any exponent n. For this purpose, we use the Proper class
of module Coq.Classes.Morphisms

Global Instance power_proper :
Proper (equiv ==> eq ==> equiv) power.

(* Proof omitted *)

In the following proofs, we note how notations, type classes and generalized
rewriting can be used to write algebraic properties in a nice way.

../src/html/addition.power.Pow.html
../src/html/addition.power.Pow.html
https://coq.inria.fr/distrib/current/stdlib/Coq.Classes.Morphisms.html

26 CHAPTER 2. SMART COMPUTATION OF XN

Lemma power_of_plus : forall x n p, x ^ (n + p) == x ^ n * x ^ p.
(* Proof omitted *)

Ltac power_simpl :=
repeat (monoid_rw || rewrite <- power_x_plus).

Please note that the following two lemmas do not require the operation * to
be commutative.

Lemma power_commute :
forall x n p, x ^ n * x ^ p == x ^ p * x ^ n.

(* Proof omitted *)

Lemma power_commute_with_x :
forall x n, x * x ^ n == x ^ n * x.

(* Proof omitted *)

Lemma power_of_power :
forall x n p, (x ^ n) ^ p == x ^ (p * n).

(* Proof omitted *)

The following two equalities are auxiliary lemmas for proving correctness of
the binary exponentiation functions.

Lemma sqr_def : forall x, x ^ 2 == x * x.
(* Proof omitted *)

Lemma power_of_square :
forall x n, (x * x) ^ n == x ^ n * x ^ n.

(* Proof omitted *)

2.4.5 Equivalence of the two exponentiation functions
Since binary_power_mult is defined by structural recursion on the exponent
p:positive, its basic properties are proved by induction along positive’s con-
structors.

From Module Powers.Pow

Lemma binary_power_mult_ok :
forall p a x, binary_power_mult x a p ==

a * x ^ Pos.to_nat p.
Proof.

induction p as [q IHq | q IHq|].
(* Rest of proof omitted *)

Lemma Pos_bpow_ok :
forall p x, Pos_bpow x p == x ^ Pos.to_nat p.

(* Proof omitted *)

../src/html/addition.power.Pow.html

2.5. COMPARING EXPONENTIATION ALGORITHMS WITH RESPECT TO EFFICIENCY27

Lemma N_bpow_ok :
forall n x, x ^b n == x ^ N.to_nat n.

(* Proof omitted *)

Lemma N_bpow_ok_R :
forall n x, x ^b (N.of_nat n) == x ^ n.

(* Proof omitted *)

Lemma Pos_bpow_ok_R :
forall p x, p <> 0 ->

Pos_bpow x (Pos.of_nat p) == x ^ p.
(* Proof omitted *)

End About_power.

2.4.5.1 Remark

The preceding lemmas can be applied for deriving properties of the binary ex-
ponentiation functions:

Lemma N_bpow_commute : forall x n p,
x ^b n * x ^b p ==
x ^b p * x ^b n.

Proof.
intros x n p; repeat rewrite N_bpow_ok.
rewrite power_commute; reflexivity.
Qed.

2.5 Comparing Exponentiation Algorithms with
respect to Efficiency

It looks obvious that the binary exponentiation algorithm is more efficient than
the naive one. Can we study within Coq the respective efficiency of both func-
tions? Let us take a simple example with the exponent 17, in any EMonoid.

Eval simpl in fun (x:A) => x ^b 17.

= fun x : A =>
x *
(x * x * (x * x) * (x * x * (x * x)) *
(x * x * (x * x) * (x * x * (x * x))))

: A -> A

Therefore, we note that the term (fun (x:A) =>x ^b 17) is convertible, —
thus logically indistinguishable —, with a function that performs 16 multiplica-
tions.

Likewise, let us simplify the term (fun (x:A) =>x ^ 17):

Eval simpl in fun x => x ^ 17.

28 CHAPTER 2. SMART COMPUTATION OF XN

= fun x : A =>
x * (x * (x * (x * (x * (x * (x * (x *
(x * (x * (x * (x * (x * (x * (x * (x * (x * one)))))

)))))))))))

From these tests, we may infer that representing exponentiation algorithms
as Coq functions hides information about the real structure of the computations,
particularly the sharing on intermediate computations.

Thus, we propose to define a data structure that makes explicit the sequence
of multiplications that lead to the computation of xn. For instance, the values
of x * x and x * x * (x * x) are used twice in the computation of x17 with
the binary algorithm. This information should appear explicitly in the data
structure chosen for representing exponentiation algorithms.

It is well known that local variables can be used to store intermediate results.
In an ISWIM - ML style, the function computing x17 could be written as follows:

Definition pow_17 (x:A) :=
let x2 := x * x in
let x4 := x2 * x2 in
let x8 := x4 * x4 in
let x16 := x8 * x8 in
x16 * x.

Unfortunately, Coq’s let-in construct is useless for our purpose, since ζ-
conversion would make the sharing of computations disappear.

Eval cbv zeta beta delta [pow_17] in pow_17.

= fun x : A =>
x * x * (x * x) * (x * x * (x * x)) *
(x * x * (x * x) * (x * x * (x * x))) * x

: A -> A

In the next section, we propose to use a data structure for representing the
computations that lead to the evaluation of some power xn, where intermediary
results are explicitly named for further use in the rest of the computation.

2.5.1 Addition chains
An addition chain (In short : a chain) [Bra39] is a representation of a sequence of
intermediate steps that lead to the evaluation of some xn, under the assumption
that each of these steps is a computation of a power xi, with i < n.

In articles from the combinatorist community, e.g. [Bra39, BB87], addition
chains are represented as sequences of positive integers, each member of which
is either 1 or the sum of two previous elements. For instance, the three following
sequences are addition chains for the exponent 87:

c87 = (1, 2, 3, 6, 7, 10, 20, 40, 80, 87) (2.9)
c′87 = (1, 2, 3, 4, 7, 8, 16, 23, 32, 64, 87) (2.10)
c′′87 = (1, 2, 4, 8, 16, 32, 64, 80, 84, 86, 87) (2.11)

2.5. COMPARING EXPONENTIATION ALGORITHMS WITH RESPECT TO EFFICIENCY29

It is possible to associate to any addition chain a directed acyclic graph:
whenever i = j + k, there is an arc from xj to xi and an arc from xk to xi.
Figures 2.1 and 2.2 show the graphical representations of c87 and c′87. Please note
that some chains may be represented by various different dags. For instance,
we can associate four different dags to the chain (1, 2, 3, 4, 6, 9, 13).

Figure 2.1: Graphical representation of c87 (9 multiplications)

x x2 x3 x6 x7 x10 x20 x40 x80 x87

Figure 2.2: Graphical representation of c′87 (10 multiplications)

x x2 x3 x4 x7 x8 x16 x23 x32 x64 x87

Let us assume that the efficiency of an exponentiation algorithm is pro-
portional to the number of multiplications it requires. This assumption looks
reasonable when the data size is bounded (for instance : machine integers, arith-
metic modulo m, etc.). Let us define the length of a chain c as its number |c| of
exponents (without counting the initial 1). This length is the number of multi-
plications needed for computing the xis by applying the following algorithm:

For any item i of c, there exists j and k in c, where i = j + k, and
xj and xk are already computed.
Thus, compute xi = xj × xk.

In our little example, we have |c87| = 9 < 10 = |c′87|. In the rest of this
chapter, we will try to focus on the following aspects:

• Define a representation of addition chains that allows to compute effi-
ciently xn in any monoid, for quite large exponents n;

• Certify that our representation of chains is correct, i.e., determines a com-
putation of xn for a given n;

• Define and certify functions for automatically generating correct and short-
est as possible chains.

In a previous work [BCHM95, BCS91, Cas], addition chains were represented
so as to allow efficient computations of powers and certification of a family of
automatic chain generators. We present here a new implementation that takes
into account some advances in the way we use Coq: generalized rewriting, type
classes, parametricity, etc.

2.5.2 A type for addition chains
Let us recall that we want to represent some algorithms of the form described in
section 2.5, but avoiding to represent intermediate results by let-in constructs.
We describe below the main design choices we made:

30 CHAPTER 2. SMART COMPUTATION OF XN

• Continuation Passing Style (CPS) [Rey93] is a way to make explicit the
control in the evaluation of an expression, in a purely functional way.
For every intermediate computation step, the result is sent to a continua-
tion that executes the further continuations. When the continuation is a
lambda-abstraction, its bound variable gives a name to this result

• Like in Parametric Higher Order Abstract Syntax (PHOAS) [Chl08], the
local variables associated to intermediate results are represented by vari-
ables of type A, where A is the underlying type of the considered monoid.

2.5.2.1 Definition

Let A be some type; a computation on A is

• either a final step, returning some value of type A

• or the multiplication of two values of type A, with a continuation that
takes as argument the result of this multiplication, then starts a new
computation.

In the following inductive type definition, the intended meaning of the con-
truct (Mult x y k) is “multiply x with y, then send the result of this multipli-
cation to the continuation k”.

From Module Powers.Chains

Inductive computation {A:Type} : Type :=
| Return (a : A)
| Mult (x y : A) (k : A -> computation).

2.5.2.2 Monadic Notation

The following monadic notation makes terms of type computation look like
expressions of a small programming language dedicated to sequences of muti-
plications. Please look at CPDT [Chl11] for more details on monadic notations
in Coq.

Notation "z '<---' x 'times' y ';' e2 " :=
(Mult x y (fun z => e2))
(right associativity, at level 60).

The computation type family is able to express sharing of intermediate
computations. For instance, the computation of 27 depicted in Figure 2.3 is
described by the following term:

Example comp7 : computation :=
x <--- 2 times 2;
y <--- x times 2;
z <--- y times y ;
t <--- 2 times z ;
Return t.

../src/html/addition.power.Chains.html

2.5. COMPARING EXPONENTIATION ALGORITHMS WITH RESPECT TO EFFICIENCY31

2

x

y

z

t

2

2

2

2
22

23 23

26

Figure 2.3: The dag associated to a computation of 27

2.5.2.3 Definition

Thanks to the computation type family, we can associate a type to the kind of
computation schemes described in Figures 2.1 and 2.2.

We define addition chains (in short chains) as functions that map any type
A and any value a of type A into a computation on A:

Definition chain := forall A:Type, A -> @computation A.

Thus, terms of type chain describe polymorphic exponentiation algorithms.
For instance, Fig 2.4 shows a definition of the chain of Figure 2.1, for the

exponent 87. Note that, like in PHOAS, bound variables associated with the
intermediary results are Coq variables of type A.

Example C87 : chain :=
fun A (x : A) =>
x2 <--- x times x ;
x3 <--- x2 times x ;
x6 <--- x3 times x3 ;
x7 <--- x6 times x ;
x10 <--- x7 times x3 ;
x20 <--- x10 times x10 ;
x40 <--- x20 times x20 ;
x80 <--- x40 times x40 ;
x87 <--- x80 times x7 ;
Return x87.

Figure 2.4: A chain for raising x to its 87-th power

The structure of the definition of types computation and chain suggest that
basic definitions over chain will have the following structure:

• A recursive function on type computation A (for a given type A)

32 CHAPTER 2. SMART COMPUTATION OF XN

• A main function on type chain that calls the previous one on any A:Type.

For instance, the following function computes the length of any chain, i.e.,
the number of multiplications of the associated computation. Note that the
function chain_length calls the auxiliary function computation_length, with
the variable A instantiated to the singleton type unit.

Any other type in Coq would have fitted our needs, but unit and its unique
inhabitant tt was the simplest solution.

Fixpoint computation_length {A} (a:A)(m : @computation A)
: nat :=

match m with
| Mult _ _ k => S (computation_length a (k a))
| _ => 0%nat

end.

Definition chain_length (c:chain)
:= computation_length tt (c _ tt).

Compute chain_length C87.

= 9 : nat

2.5.3 Chains as a (small) programming language
The chain type can be considered as a tiny programming language dedicated
to compute powers in any EMonoid. Thus, we have to define a semantics for
this language. This semantics is defined in two parts:

• A structurally recursive function, — parameterized with an EMonoid M on a
given type A —, that computes the value associated with any computation
on M

• A polymorphic function that takes as arguments a chain c, a type A, an
EMonoid on A, and a value x:A, then executes the computation (c A x).

Fixpoint computation_execute {A:Type} (op: Mult_op A)
(c : computation) :=

match c with
| Return x => x
| Mult x y k => computation_execute op (k (x * y))
end.

Definition chain_execute (c:chain) {A} op (a:A) :=
computation_execute op (c A a).

Definition computation_eval `{M:@EMonoid A E_op E_one E_eq}
(c : computation) : A := computation_execute E_op c.

Definition chain_apply (c:chain)
{M:@EMonoid A E_op E_one E_eq} a : A :=
computation_eval (c A a).

2.6. PROVING A CHAIN’S CORRECTNESS 33

Project 2.1 Study how to compile efficiently such data structures.

Examples:

The following interactions show how to apply the chain C87 for exponentiation
within two different monoids:

Compute chain_apply C87 3%Z.

= 323257909929174534292273980721360271853387%Z
: Z

Compute chain_apply C87 (M:=M2N) (Build_M2 1 1 1 0)%N.

= {|
c00 := 1100087778366101931%N;
c01 := 679891637638612258%N;
c10 := 679891637638612258%N;
c11 := 420196140727489673%N |}

: M2 N

2.5.3.1 Chain Correctness and Optimality

A chain is said to be correct with respect to a positive integer p if its execution
in any monoid computes p-th powers.

Definition chain_correct_nat (c: chain) (n:nat) :=
n <> 0 /\
forall `(M:@EMonoid A E_op E_one E_eq) (x:A),

chain_apply c x == x ^ n.

Definition chain_correct (c: chain) (p:positive) :=
chain_correct_nat c (Pos.to_nat p).

Definition 2.1 A chain c is optimal for a given exponent p if its length is less
than or equal to the length of any chain correct for p.

Definition optimal (p:positive) (c : chain) :=
forall c', chain_correct p c' ->

(chain_length c <= chain_length c')%nat.

2.6 Proving a chain’s correctness
In this section, we present various ways of proving that a given chain is correct
w.r.t. a given exponent. First, we just try to apply the definition in Sec-
tion 2.5.3.1, but this method is very inefficient, even for small exponents. In a
second step, we use more sophisticated techniques such as reflection and para-
metricity. Automatic generation of correct chains will be treated in Sect. 2.7 on
page 43.

34 CHAPTER 2. SMART COMPUTATION OF XN

2.6.1 Proof by rewriting
Let us show how to prove the correctness of some chains, using the EMonoid
laws shown in Sect. 2.3.5 on page 20.

Ltac slow_chain_correct_tac :=
match goal with

[|- chain_correct ?c ?p] =>
let A := fresh "A" in
let op := fresh "op" in
let one := fresh "one" in
let eqv := fresh "eqv" in
let M := fresh "M" in
let x := fresh "x"
in split;

[discriminate |
unfold c, chain_apply, computation_eval; simpl;
intros A op one eq M x; monoid_simpl M; reflexivity]

end.

Example C7_ok : chain_correct C7 7.
Proof.

slow_chain_correct_tac.
Qed.

Unfortunately, this approach is terribly inefficient, even for quite small ex-
ponents:

Example C87_ok : chain_correct C87 87.
Proof.
Time slow_chain_correct_tac.

Finished transaction in 62.808 secs (62.677u,0.085s) (successful)

Qed.

In addition to this big computation time, this approach generates a huge
proof term. Just try to execute the command “Print C87_ok” to get a mea-
sure of its size. In order to understand this poor performance, let us consider
an intermediate subgoal of the previous proof generated after a sequence of
unfoldings and simplifications. This goal is presented below.

1 subgoal, subgoal 1 (ID 219)

A : Type
E_op : Mult_op A
E_one : A
E_eq : Equiv A
M : EMonoid E_op E_one E_eq
x : A
============================

2.6. PROVING A CHAIN’S CORRECTNESS 35

x * x * x * (x * x * x) * x * (x * x * x) *
(x * x * x * (x * x * x) * x * (x * x * x)) *
(x * x * x * (x * x * x) * x * (x * x * x) *
(x * x * x * (x * x * x) * x * (x * x * x))) *
(x * x * x * (x * x * x) * x * (x * x * x) *
(x * x * x * (x * x * x) * x * (x * x * x)) *
(x * x * x * (x * x * x) * x * (x * x * x) *
(x * x * x * (x * x * x) * x * (x * x * x)))) *

(x * x * x * (x * x * x) * x) ==
x *
(x *
(x *
(x *
(x *
(x *
(x *
(x *
(x *
(x *
(x *
(x *
(x *
(x * (x * (x * (x * (x * (x * (x * (x * (x * (x *
..))))))))))))))))))))))

This goal is solved by the following tactic composition:

monoid_simpl M; reflexivity.

This inefficiency certainly comes from the cost of setoid rewriting. At every
application of an EMonoid law, the system must verify that the context of this
rewriting is compatible with the equivalence relation associated with the current
EMonoid. The rest of this chapter is devoted to the presentation of more efficient
methods for proving chain correctness.

2.6.2 Correctness Proofs by Reflection
Instead of letting the tactic rewrite look for contexts in which setoid rewrit-
ing is possible, we propose to use (deterministic) computations for obtaining a
“canonical” form for terms generated from a variable x by contructors associated
with monoid multiplication and neutral element.

The reader will find general explanations about proofs by reflection in Coq,
for instance in Chapter 16 of Coq’Art[BC04] and the numerous examples (in-
cluding the ring tactic) in Coq’s reference manual.

2.6.2.1 How does reflection work

Let us consider again the subgoal on page 35, the conclusion of which has the
form |a1 == a2|, where |a1| and |a2| are terms of type A. Instead of spending
space and time in setoid rewritings, we would like to normalize the terms |a1|
and |a2| and verify that the associated normal forms are equal.

36 CHAPTER 2. SMART COMPUTATION OF XN

Defining such a normalization function is possible on an inductive type.
The following type describes expressions composed of monoid operations and
inhabitants of a given type A.

(** Binary trees of multiplications over A *)

Inductive Monoid_Exp (A:Type) : Type :=
Mul_node (t t' : Monoid_Exp A) | One_node | A_node (a:A).

Arguments Mul_node {A} _ _.
Arguments One_node {A} .
Arguments A_node {A} _ .

Thus, the main steps of a correctness proof of a given chain, e.g. C87 will
be the following ones:

1. generate a subgoal as in page 35,

2. express each term of the equivalence as the image of a term of type
Monoid_Exp A,

3. normalize both terms and verify that their normal forms are equal.

The rest of this section is devoted to the definition of the normalization
function on Monoid_Exp A, and the proofs of lemmas that link equivalence on
type A and equality of normal forms of terms of type Monoid_Exp A.

2.6.2.2 Linearization function

The following functions help to transform any term of type Monoid_Exp A into
a flat “normal form”.

Fixpoint flatten_aux {A:Type} (t fin : Monoid_Exp A)
: Monoid_Exp A :=

match t with Mul_node t t' =>
flatten_aux t (flatten_aux t' fin)

| One_node => fin
| x => Mul_node x fin

end.

Fixpoint flatten {A:Type} (t: Monoid_Exp A) : Monoid_Exp A :=
match t with
| Mul_node t t' => flatten_aux t (flatten t')
| One_node => One_node
| X => Mul_node X One_node
end.

2.6.2.3 Interpretation function

The function eval maps any term of type Monoid_Exp A into a term of type
A.

2.6. PROVING A CHAIN’S CORRECTNESS 37

Function eval {A:Type} {op one eqv}
(M: @EMonoid A op one eqv)
(t: Monoid_Exp A) : A :=

match t with
| Mul_node t1 t2 => (eval M t1 * eval M t2)%M
| One_node => one
| A_node a => a

end.

The following two lemmas relate the linearization function flatten with the
interpretation function eval.

Lemma flatten_valid {A} `(M: @EMonoid A op one eqv):
forall t , eval M t == eval M (flatten t).
(* Proof omitted *)

Lemma flatten_valid_2 {A} `(M: @EMonoid A op one eqv):
forall t t' , eval M (flatten t) == eval M (flatten t') ->

eval M t == eval M t'.
(* Proof omitted *)

2.6.2.4 Transforming a multiplication into a tree

Let us now build a tool for building terms of type Monoid_Exp A out of terms of
type A containing multiplications of the form (_ * _)%M and the variable one.
In fact, what we want to define is an inverse of the function flatten.

Since mult_op is not a constructor (see Sect. 2.3.1), the transformation of a
product of type A into a term of type Monoid_Exp A is done with the help of a
tactic:

(** "Quote" tactic *)

Ltac model A op one v :=
match v with
| (?x * ?y)%M => let r1 := model A op one x

with r2 := model A op one y
in constr:(@Mul_node A r1 r2)

| one => constr:(@One_node A)
| ?x => constr:(@A_node A x)
end.

For instance, the term (x * x * x * (x * x * x) * x) is transformed by
model in the following term of type Monoid_Exp A

(eval M
(Mul_node
(Mul_node

(Mul_node (Mul_node (A_node x) (A_node x)) (A_node x))
(Mul_node (Mul_node (A_node x) (A_node x)) (A_node x)))

(A_node x)))

38 CHAPTER 2. SMART COMPUTATION OF XN

2.6.3 reflection tactic
The tactic monoid_eq_A converts a goal of the form (E_eq X Y), where X
and Y are terms of type A, into (E_eq (eval M (model X)) (eval M (model
Y))). This last goal is intended to be solved thanks to the lemma flatten_valid_2.

Ltac monoid_eq_A A op one E_eq M :=
match goal with
| [|- E_eq ?X ?Y] =>

let tX := model A op one X with
tY := model A op one Y in
(change (E_eq (eval M tX) (eval M tY)))

end.

2.6.3.1 Main reflection tactic

The tactic reflection_correct_tac tries to prove a chain’s correctness by
a comparison of two terms of type Monoid_Exp A: one being obtained from
the chain’s definition, the other one by expansion of the naive exponentiation
definition.

Ltac reflection_correct_tac :=
match goal with
[|- chain_correct ?c ?n] =>
split; [try discriminate |

let A := fresh "A"
in let op := fresh "op"
in let one := fresh "one"
in let E_eq := fresh "eq"
in let M := fresh "M"
in let x := fresh "x"
in (try unfold c); unfold chain_apply;

simpl; red; intros A op one E_eq M x;
unfold computation_eval;simpl;
monoid_eq_A A op one E_eq M;
apply flatten_valid_2;try reflexivity

]
end.

2.6.3.2 Example

The following dialogue clearly shows the efficiency gain over naive setoid rewrit-
ing.

Example C87_ok : chain_correct C87 87.
Proof.

Time reflection_correct_tac.

Finished transaction in 0.038 secs (0.038u,0.s) (successful)

Qed.

2.6. PROVING A CHAIN’S CORRECTNESS 39

This tactic is not adapted to much bigger exponents. In
Module Euclidean_Chains, for instance, we tried to apply this tactic for proving
the correctness of a chain associated with the exponent 45319. We had to inter-
rupt the prover, which was trying to build a linear tree of 2× 45319 + 1 nodes!
Indeed, using reflection_correct_tac is like doing a symbolic evaluation of
an inefficient (linear) exponentiation algorithm.

In the next section, we present a solution that avoids doing such a lot of
computations.

2.6.4 Chain correctness for —practically — free!
2.6.4.1 About parametricity

Let us now present another tactic for proving chain correctness, in the tradi-
tion of works on parametricity and its use for proving properties on programs.
Strachey [Str00] explores the nature of parametric polymorphism: “Polymorphic
functions behave uniformly for all types” then Reynolds [Rey83] formalizes this
notion through binary relations. Wadler [Wad89], then Cohen et al. [CDM13b]
use this relation for deriving theorems about functions that operate on para-
metric polymorphic types.

Let us look again at the definitions of type family computation and the type
chain:

Inductive computation {A:Type} : Type :=
| Return (a : A)
| Mult (x y : A) (k : A -> computation).

Definition chain := forall A:Type, A -> @computation A.

Let c be a closed term of type chain; c is of the form
fun (A:Type)(a:A) => ta, where ta is a term of type @computation A. Obvi-
ously, in every subterm of ta of type A, the two first arguments of constructor
Mult or the argument of Return are either a or a variable introduced as the
formal argument of a continuation k. In effect, there is no other way to build
terms of type A in the considered context.

Marc Lasson’s paramcoq plug-in (available as opam package coq-paramcoq)
generates a family of binary relations definitions from computation’s definition.

Inductive
computation_R (A B : Type) (R : A -> B -> Type)
: computation -> computation -> Type :=
| computation_R_Return_R :

forall (a1 : A) (a2 : B), R a1 a2 ->
computation_R A B R (Return a1) (Return a2)

| computation_R_Mult_R : forall (x1 : A) (x2 : B),
R x1 x2 ->
forall (y1 : A) (y2 : B),
R y1 y2 ->
forall (k1 : A -> computation)

(k2 : B -> computation),
(forall (H : A) (H0 : B),

R H H0 ->

../src/html/addition.power.Euclidean_Chains.html

40 CHAPTER 2. SMART COMPUTATION OF XN

computation_R A B R (k1 H) (k2 H0)) ->
computation_R A B R

(z <--- x1 times y1; k1 z)
(z <--- x2 times y2; k2 z)

Let A and B be two types, and R : A→B→Type a relation. Two com-
putations cA: @computation A and cB: @computation B are related w.r.t.
computation_R if every pair of arguments of Mult and Return at the same
position are related w.r.t. R.

2.6.4.2 Definition

A chain c is parametric if it has the same behaviour for any pair of types A and
B, any relation R between A and B and any R-related pair of arguments a and
b:

Definition parametric (c:chain) :=
forall A B (R: A -> B -> Type) (a:A) (b:B),
R a b -> computation_R R (c A a) (c B b).

2.6.4.3 How to use these definitions?

Let us use parametricity for proving easily a given chain’s correctness. In other
words, let c be a chain and p:positive be a given exponent. Consider some
instance of EMonoid over a type A. We want to prove that the application of
the chain c to any value a of type A returns the value ap.

We first use Coq’s computation facilities for “guessing” the exponent asso-
ciated with any given chain. It suffices to instantiate “monoid multiplication”
with addition on positive integers.

Definition the_exponent_nat (c:chain) : nat :=
chain_apply c (M:=Natplus) 1%nat.

Definition the_exponent (c:chain) : positive :=
chain_execute c Pos.add 1%positive.

Compute the_exponent C87.

= 87%positive
: positive

We show how to prove that a given chain c, applied to any a, really computes
ap, where p = the_exponent c. Parametricity allows us to compare executions
on any monoid M with executions on NatPlus. Let us consider the following
mathematical relation

{(x, n) ∈ M × N | 0 < n ∧ x = an}

Definition power_R (a:A) :=
fun (x:A)(n:nat) => n <> 0 /\ x == a ^ n.

2.6. PROVING A CHAIN’S CORRECTNESS 41

First, we prove the following lemma, that relates computation_R with the
result of the executions of the corresponding computations:

Lemma power_R_is_a_refinemnt (a:A) :
forall(gamma : @computation A)

(gamma_nat : @computation nat),
computation_R (power_R a) gamma gamma_nat ->
power_R a (computation_eval gamma)

(computation_eval (M:= Natplus) gamma_nat).
(* Proof omitted *)

Thus, if c:chain is parametric, this refinement lemma allows us to prove a
correctness result:

Lemma param_correctness_nat :
forall c:chain, parametric c ->

chain_correct_nat c (the_exponent_nat c).
(* Proof omitted *)

A similar result can be proven with the exponent in positive. First we
instantiate the parameter R of computation_R, with the relation that links the
representations of natural numbers on respective types nat and positive. Then
we use our lemmas for rewriting under the assumption that the considered chain
is parametric. Please note how our approach is related with data refinement (see
also [CDM13b]). The reader may also consult a survey by D. Brown on the most
important contributions to the notion of parametricity [Bro10].

Lemma exponent_pos2nat : forall c: chain, parametric c ->
the_exponent_nat c = Pos.to_nat (the_exponent c).

Lemma exponent_pos_of_nat : forall c: chain, parametric c ->
the_exponent c = Pos.of_nat (the_exponent_nat c).

Lemma param_correctness (c:chain) :
parametric c ->
chain_correct c (the_exponent c).

Proof.
intros; rewrite exponent_pos_of_nat; auto.
red; rewrite exponent_pos2nat;auto.
rewrite Pos2Nat.id, <- exponent_pos2nat;auto.
apply param_correctness_nat; auto.

Qed.

Lemma param_correctness suggests us a method for verifying that a given
chain c is correct w.r.t. some positive exponent p:

1. Verify that c is parametric.

2. Verify that p is equal to (the_exponent c).

42 CHAPTER 2. SMART COMPUTATION OF XN

2.6.4.4 How to prove a chain’s parametricity

Despite the apparent complexity of computation_R’s definition, it is very simple
to prove that a given chain is parametric. The following tactics proceed as
follows:

1. Given a chain c, consider two types A and B, and any relation R:A->B->Prop,

2. Push into the context declarations of a:A, b:B and an hypothesis assuming
R a b.

3. Then the tactic crosses in parallel the terms (c A a) and (c B b) (of the
same structure),

• On a pair of terms of the form Mult xA yA (fun zA => tA) and
Mult xB yB (fun zB => tB), the tactic checks whether R xA xB
and R yA yB are already assumed in the context, then pushes into the
context the declaration of zA and zB and the hypothesis
Hz: R zA zB, then crosses the terms tA and tB

• On a pair of terms of the form (Return xA) and (Return xB), the
tactic just checks whether (R xA xB) is assumed.

The tactic itself is simpler than its explanation.

Ltac parametric_tac :=
match goal with [|- parametric ?c] =>

red ; intros;
repeat (right;[assumption | assumption |]);
left; assumption

end.

Example P87 : parametric C87.
Proof. Time parametric_tac.

Finished transaction in 0.005 secs (0.005u,0.s) (successful)

Qed.

2.6.4.5 Proving a chain’s correctness

Finally, for proving that a given chain c is correct with respect to an ex-
ponent p, it suffices to check that c is parametric, and to apply the lemma
param_correctness. The reader will note how this computation-less method
is much more efficient than our reflection tactic.

Ltac param_chain_correct :=
match goal with
[|- chain_correct ?c ?p] =>
apply param_correctness; parametric_tac
end.

Lemma C87_ok' : chain_correct C87 87.
Time param_chain_correct.

2.7. CERTIFIED CHAIN GENERATORS 43

Finished transaction in 0.005 secs (0.005u,0.s) (successful)

Qed.

2.6.4.6 Remark

For the reasons exposed in Section 2.6.4.1 on page 39, it seems obvious that any
well-written chain is parametric. Unfortunately, we cannot prove this property
in Coq, for instance by induction on c, since chain is a product type and not
an inductive type.

Definition any_chain_parametric : Type :=
forall c:chain, parametric c.

Goal any_chain_parametric.
Proof.
intros c A B R a b ; induction c.

2 subgoals, subgoal 1 (ID 556)

c : chain
A : Type
B : Type
R : A -> B -> Type
a : A
b : B
a0 : A
============================
R a b -> computation_R R (Return a0) (c B b)

...

Abort.

Given this situation, we could admit (as an axiom) that any chain is para-
metric. Nevertheless, if a chain is under the form of a closed term, using
parametric_tac is so efficient than we prefer to avoid a shameful introduc-
tion of an axiom in our development.

2.7 Certified Chain Generators
In this section, we are interested in the correct by construction paradigm. We
just want to give a positive exponent to Coq and get a (hopefully) correct and
efficient chain for this exponent.

We first define the notion of chain generator, then present a certified gen-
erator that simulates the binary exponentiation algorithm. Last, we present a
better chain generator based on integer division.

44 CHAPTER 2. SMART COMPUTATION OF XN

2.7.1 Definitions
We call chain generator any function that takes as argument any positive integer
and returns a chain.

Definition chain_generator := positive -> chain.

A generator g is correct it it returns a correct chain for any exponent:

Definition correct_generator (g : positive -> chain) :=
forall p, chain_correct p (g p).

Correct generators can be used for computing powers on the fly, thanks to
the following functions:

Definition cpower_pos (g : chain_generator) p
`{M:@EMonoid A E_op E_one E_eq} a :=

chain_apply (g p) (M:=M) a.

Definition cpower (g : chain_generator) n
`{M:@EMonoid A E_op E_one E_eq} a :=

match n with 0%N => E_one
| Npos p => cpower_pos g p a

end.

Note also that the use of chain generators is independent from the techniques
presented in Sect. 2.6: Designing an efficient and correct chain generator may
be a long and hard task. On the other hand, once a generator is certified, we
are assured of the correctness of all its outputs. Finally, we say that a generator
g is optimal if it returns chains whose length are less than or equal to any chain
returned by any correct generator:

Definition optimal_generator (g : positive -> chain) :=
forall p:positive, optimal p (g p).

2.7.2 The binary chain generator
Let us reinterpret the binary exponentiation algorithms in the framework of
addition chains. Instead of directly computing xn for some base x and exponent
n, we build chains that describe the computations associated with the binary
exponentiation method. Not surprisingly, this chain generation will be described
in terms of recursive functions, once the underlying monoid is fixed.

As for the “classical” binary exponentiation algorithm, we define an auxiliary
computation generator for the product of an accumulator a with an arbitrary
power of some value x. Then, the main function builds a computation for any
positive exponent:

2.7. CERTIFIED CHAIN GENERATORS 45

Fixpoint axp_scheme {A} p : A -> A -> @computation A :=
match p with

| xH => (fun a x => y <--- a times x ; Return y)
| xO q => (fun a x => x2 <--- x times x ; axp_scheme q a x2)
| xI q => (fun a x => ax <--- a times x ;

x2 <--- x times x ;
axp_scheme q ax x2)

end.

Fixpoint bin_pow_scheme {A} (p:positive)
: A -> @computation A:=
match p with
| xH => fun x => Return x
| xI q => fun x => x2 <--- x times x; axp_scheme q x x2
| xO q => fun x => x2 <--- x times x ; bin_pow_scheme q x2
end.

The following function associates a chain to any positive exponent:

Definition binary_chain (p:positive) : chain :=
fun A => bin_pow_scheme p.

Compute binary_chain 87.

= fun (A : Type) (x : A) =>
x0 <--- x times x;
x1 <--- x times x0;
x2 <--- x0 times x0;
x3 <--- x1 times x2;
x4 <--- x2 times x2;
x5 <--- x4 times x4;
x6 <--- x3 times x5;
x7 <--- x5 times x5;
x8 <--- x7 times x7;
x9 <--- x6 times x8;
Return x9

: chain

2.7.2.1 Proof of binary_chain’s correctness

Let us now prove that binary_chain always returns correct chains. First, due
to the structure of this generator’s definition, we study the properties of the
auxiliary functions that operate on a given monoid M .

Section binary_power_proof.

Variables (A: Type)
(E_op : Mult_op A)
(E_one : A)
(E_eq: Equiv A).

46 CHAPTER 2. SMART COMPUTATION OF XN

Context (M : EMonoid E_op E_one E_eq).

Existing Instance Eop_proper.

Lemma axp_correct : forall p a x,
computation_eval (axp_scheme p a x) == a * x ^ (Pos.to_nat p).
(* Proof by induction on p *)

Lemma binary_correct :
forall p x,

computation_eval (bin_pow_scheme p (A:=A) x) ==
x ^ (Pos.to_nat p).

(* Proof by induction on p *)

End binary_power_proof.

Lemma binary_generator_correct : correct_generator binary_chain.
Proof.

red;unfold chain_correct, binary_chain, chain_apply;
split; [auto| intros A op one Eq M x; apply binary_correct].

Qed.

2.7.2.2 The binary method is not optimal

It is easy to prove by contradiction that the binary method is not the most effi-
cient for computing powers. First, let us assume that binary_chain is optimal:

Section non_optimality_proof.

Hypothesis binary_opt : optimal binary_chain.

Then, let us consider for instance the binary chain generated for the exponent
87.

Compute chain_length (binary_chain 87).

= 10 : nat

Let us recall that C87’s length has been evaluated to 9 (Sect 2.5.2.3, and that
this chain is correct (Sect 2.6.4.5 on page 42). Thus, it is very easy to finish our
proof:

Lemma binary_generator_not_optimal : False.
Proof.

generalize (binary_opt gen _ _ C87_ok);
compute; omega.

Qed.

End non_optimality_proof.

2.8. EUCLIDEAN CHAINS 47

Exercice 2.1 Prove that for any positive integer p, the length of any optimal
chain for p is less than twice the number of digits of the binary representation
of p.

2.8 Euclidean Chains
In this section, we present an efficient chain generator. The chains built by
this generator are never longer than the chains built by the binary generator.
Moreover, for an infinite number of exponents, the chains it builds are strictly
shorter than the chain returned by binary_chain. Euclidean chains are based
on the following idea:

For generating a chain that computes xn, one may choose some
natural number 0 < p < n, and build a chain that computes first xp

then uses this value for computing xn.

For instance, a computation of x42 can be decomposed into a computation
of y = x3, then a computation of y14. The efficiency of the chain built with this
methods depends heavily on the choice of p. See [BCHM95] for details.

Considering chain generators and their correctness, we may consider the dual
of decomposition of exponents: we would like to write composable correct chain
generators. For instance, we want to build some object that, “composed” with
any correct chain for n, returns a correct chain for 3n.

2.8.0.0.1 Note: All the Coq material described in this section is available
on Module Powers/Euclidean_Chains.v

2.8.1 Chains and Continuations : f-chains
Please consider the following small example:

Example C3 : chain :=
fun A (x:A) =>
x2 <--- x times x;
x3 <--- x2 times x ;
Return x3.

The execution of this chain on some value x : A stops after computing x3,
because of the Return “statement”. However, we would like to compose the
instructions of C3 with a chain for another exponent n, in order to generate a
chain for the exponent 3× n.

Since computation is an inductive family of types, it could be possible to de-
fine a composition operator that works like list appending (replacing the Return
y of the first computation with the second computation). This approach is left
as an exercise. The solution we present is based on functional programming
and the concept of continuation.

Exercice 2.2 Develop the approach suggested in the previous paragraph.

../src/html/addition.power.Euclidean_Chains.html

48 CHAPTER 2. SMART COMPUTATION OF XN

2.8.1.1 Type definition of f-chains

Let us consider incomplete or open chains. Such an object waits for another
chain to resume a computation.

Figure 2.5 represents an f-chain associated with the exponent 3, as a dag
with an input and one output the edges of which are depicted as thick arrows.

x x2 x3

Figure 2.5: Graphical representation of F3

In other words, this kind of objects can be considered as functions from
chains to chains. So, we called their type Fchain.

First, we define a type of continuations, i.e., functions that wait for some
value x, then build a computation for raising x to some given exponent.

Definition Fkont (A:Type) := A -> @computation A.

An f-chain is just a polymorphic function that combines a continuation
and en element into a computation:

Definition Fchain := forall A, Fkont A -> A -> @computation A.

2.8.1.2 Examples

Let us define a chain for computing the cube of some x, then sending the result
to a continuation k.

Definition F3 : Fchain :=
fun A k (x:A) =>
y <--- x times x ;
z <--- y times x ;
k z.

Any f-chain can be converted into a chain by the help of the following func-
tion:

Definition F2C (f : Fchain) : chain :=
fun (A:Type) => f A Return.

Compute the_exponent (F2C F3).

= 3%nat

In the rest of this chapter, we will use two other f-chains, respectively asso-
ciated with the exponents 1 and 2. Chains F1, F2 and F3 will form a basis to
generate chains for many exponents by composition of correct functions.

2.8. EUCLIDEAN CHAINS 49

Definition F1 : Fchain :=
fun A k (x:A) => k x.

Definition F2 : Fchain :=
fun A k (x:A) =>
y <--- x times x ;
k y.

2.8.1.3 F-chain application and composition

The following definition allows us to consider any value f of type Fchain as a
function of type chain → chain.

Definition Fapply (f : Fchain) (c: chain) : chain :=
fun A x => f A (fun y => c A y) x.

In a similar way, composition of f-chains is easily defined (see Figure 2.6).

Definition Fcompose (f1 f2: Fchain) : Fchain :=
fun A k x => f1 A (fun y => f2 A k y) x.

Lemma F1_neutral_l : forall f, Fcompose F1 f = f.
Proof. reflexivity. Qed.

Lemma F1_neutral_r : forall f, Fcompose f F1 = f.
Proof. reflexivity. Qed.

f1 f2

Figure 2.6: Composition of f-chains f1 and f2 (Fcompose)

2.8.1.4 Examples

The following examples show that the apparent complexity of the previous defi-
nition is counterbalanced with the simplicity of using Fapply and Fcompose.

Example F9 := Fcompose F3 F3.

Compute F9.

= fun (A : Type) (x : Fkont A) (x0 : A) =>
x1 <--- x0 times x0;
x2 <--- x1 times x0; x3 <--- x2 times x2;
x4 <--- x3 times x2;
x x4

: Fchain

50 CHAPTER 2. SMART COMPUTATION OF XN

Remark F9_correct :chain_correct (F2C F9) 9.
Proof.

apply param_correctness_pos; lazy; parametric_tac.
Qed.

x x2 x3 y y2 y3
y := x

Figure 2.7: Composition of F-chains: F9

Using structural recursion and the operator FCompose, we build a chain for
any exponent of the form 2n:

Fixpoint Fexp2_of_nat (n:nat) : Fchain :=
match n with O => F1

| S p => Fcompose F2 (Fexp2_of_nat p)
end.

Definition Fexp2 (p:positive) : Fchain :=
Fexp2_of_nat (Pos.to_nat p).

Compute Fexp2 4.

= fun (A : Type) (x : Fkont A) (x0 : A) =>
x1 <--- x0 times x0;
x2 <--- x1 times x1; x3 <--- x2 times x2;
x4 <--- x3 times x3; x x4

: Fchain

2.8.2 F-chain correctness
Let f be some term of type Fchain, and n:nat. We would like to say that f is
correct w.r.t. n:nat if for any continuation k and a, the application of f to k
and a computes k(an).

Module Bad.

Definition Fchain_correct (f : Fchain) (n:nat) :=
forall A `(M : @EMonoid A op E_one E_equiv) k (a:A),
computation_execute op (f A k a)==
computation_execute op (k (a ^ n)).

Let us now try to prove that F3 is correct w.r.t. 3.

2.8. EUCLIDEAN CHAINS 51

Theorem F3_correct : Fchain_correct F3 3.
Proof.
intros A op E_one E_equiv M k a ; simpl.
monoid_simpl M.

A : Type
op : Mult_op A
E_one : A
E_equiv : Equiv A
M : EMonoid op E_one E_equiv
k : Fkont A
a : A
H : Proper (equiv ==> equiv ==> equiv) op
============================
computation_execute op (k (a * a * a)) ==
computation_execute op (k (a * (a * (a * E_one))))

Abort.
End Bad.

This failure is due to a lack of an assumption that the continuation k is proper
with respect to the equivalence equiv. Thus, Coq is unable to infer from the
equivalence (a * a * a) == (a * (a * (a * E_one)))
that k (a * a * a) and k (a * (a * (a * E_one))) are equivalent compu-
tations.

2.8.2.1 Definition:

A continuation k:Fkont A is proper if, whenever x == y holds, the computa-
tions k x and k y are equivalent.

Class Fkont_proper
`(M : @EMonoid A op E_one E_equiv) (k: Fkont A) :=

Fkont_proper_prf:
Proper (equiv ==> computation_equiv op E_equiv) k.

We are now able to improve our definition of correctness, taking only proper
continuations into account.

Definition Fchain_correct_nat (f : Fchain) (n:nat) :=
forall A `(M : @EMonoid A op E_one E_equiv) k

(Hk :Fkont_proper M k)
(a : A) ,

computation_execute op (f A k a) ==
computation_execute op (k (a ^ n)).

Definition Fchain_correct (f : Fchain) (p:positive) :=
Fchain_correct_nat f (Pos.to_nat p).

52 CHAPTER 2. SMART COMPUTATION OF XN

2.8.2.2 Examples

Let us show some manual correctness proofs for small f-chains:

Lemma F1_correct : Fchain_correct F1 1.
Proof.

intros until M ; intros k Hk a ; unfold F1; simpl.
apply Hk; monoid_simpl M; reflexivity.

Qed.

While proving F3’s correctness, we will have to apply the properness hypoth-
esis on k:

Theorem F3_correct : Fchain_correct F3 3.
Proof.

intros until M; intros k Hk a; simpl.

A : Type
op : Mult_op A
E_one : A
E_equiv : Equiv A
M : EMonoid op E_one E_equiv
k : Fkont A
Hk : Fkont_proper M k
a : A
============================
computation_execute op (k (a * a * a)) ==
computation_execute op (k (a * (a * (a * E_one))))}

apply Hk.

...
============================

a * a * a == a * (a * (a * E_one))}

monoid_simpl M; reflexivity.
Qed.

Correctness of F2 is proved the same way:

Theorem F2_correct : Fchain_correct F2 2.
Proof.

intros until M; intros k Hk a; simpl;
apply Hk; monoid_simpl M; reflexivity.

Qed.

2.8.2.3 Composition of correct f-chains: a first attempt

We are now looking for a way to generate correct chains for any positive number.
It seems obvious that we could use Fcompose for building a correct f-chain for
n× p by composition of a correct f-chain for n and a correct f-chain for p.

Let us try to certify this construction:

2.8. EUCLIDEAN CHAINS 53

Module Bad2.

Lemma Fcompose_correct_attempt :
forall f1 f2 n1 n2, Fchain_correct f1 n1 ->

Fchain_correct f2 n2 ->
Fchain_correct (Fcompose f1 f2)

(n1 * n2).

(* Beginning of proof omitted *)

Hk : Fkont_proper M k
a, x, y : A
Hxy : x == y
============================
computation_execute op (f2 A k x) ==
computation_execute op (f2 A k y)

No hypothesis guarantees us that the execution of f2 respects the equivalence
x == y.

Abort.

Thus, we need to define also a notion of properness for f-chains. A first
attempt would be :

Module Bad3.

Class Fchain_proper_ (fc : Fchain) := Fchain_proper_prf :
forall `(M : @EMonoid A op E_one E_equiv) k ,

Fkont_proper M k
forall x y, x == y ->

@computation_equiv _ op E_equiv (fc A k x) (fc A k y).

This definition is powerful enough for proving that properness is preserved
by composition:

Instance Fcompose_proper_ (f1 f2 : Fchain)
(_ : Fchain_proper_simple f1)
(_ : Fchain_proper_simple f2) :

Fchain_proper_ (Fcompose f1 f2).
Proof.
intros until M;intros k Hk x y Hxy; unfold Fcompose;cbn.
apply (H _ _ _ _ M); auto.
intros u v Huv;apply (H0 _ _ _ _ M);auto.
Qed.

Nevertheless, we had to throw away this definition of properness: In further
developments (Sect. 2.8.3 on page 56) we shall have to compare executions of the
form fc A kx x and fc A ky y where x == y and kx and ky are “equivalent”
but not convertible continuations.

End Bad3.

54 CHAPTER 2. SMART COMPUTATION OF XN

2.8.2.4 A better definition of properness

The following generalization will allow us to consider continuations that are
different (according to Leibniz equality) but lead to equivalent computations
and results.

Definition Fkont_equiv `(M : @EMonoid A op E_one E_equiv)
(k k': Fkont A) :=
forall x y : A, x == y ->

computation_equiv op E_equiv (k x) (k' y).

Class Fchain_proper (fc : Fchain) := Fchain_proper_prf :
forall `(M : @EMonoid A op E_one E_equiv) k k' ,

Fkont_proper M k -> Fkont_proper M k' ->
Fkont_equiv M k k' ->
forall x y, x == y ->

@computation_equiv _ op E_equiv
(fc A k x)
(fc A k' y).

2.8.2.5 Examples

The definition above allows us to build simply several instances of the class
Fchain_proper:

Instance F1_proper : Fchain_proper F1.
Proof.

intros until M ; intros k k' Hk Hk' H a b H0; unfold F1; cbn;
now apply H.

Qed.

Ltac add_op_proper M H :=
let h := fresh H in

generalize (@Eop_proper _ _ _ _ M); intro h.

Instance F3_proper : Fchain_proper F3.
Proof.

intros A op one equiv M k k' Hk Hk' Hkk' x y Hxy;
apply Hkk'; add_op_proper M H; repeat rewrite Hxy;
reflexivity.

Qed.

We are now able to prove Fexp2 n’s correctness by induction on n:

Instance Fexp2_nat_proper (n:nat) :
Fchain_proper (Fexp2_of_nat n).

Proof.
induction n; cbn.

- apply F1_proper.
- apply Fcompose_proper ; [apply F2_proper | apply IHn].

Qed.

2.8. EUCLIDEAN CHAINS 55

Lemma Fexp2_nat_correct (n:nat) :
Fchain_correct_nat (Fexp2_of_nat n) (2 ^ n).

Proof.
induction n; cbn.
- apply F1_correct.
- rewrite Nat.add_0_r;

replace (2 ^ n + 2 ^ n)%nat with (2 * 2 ^n)%nat by omega;
apply Fcompose_correct_nat;auto.
+ apply F2_correct.
+ apply Fexp2_nat_proper.

Qed.

Lemma Fexp2_correct (p:positive) :
Fchain_correct (Fexp2 p) (2 ^ p).

(* Proof omitted *)

Instance Fexp2_proper (p:positive) : Fchain_proper (Fexp2 p).
(* Proof omitted *)

We are now able to build chains for any exponent of the form 2k × 3p, using
Fcompose. Les us look at a simple example:

Hint Resolve F1_correct F1_proper
F3_correct F3_proper Fcompose_correct Fcompose_proper
Fexp2_correct Fexp2_proper .

Example F144: {f : Fchain | Fchain_correct f 144 /\
Fchain_proper f}.

Proof.
change 144 with ((3 * 3) * (2 ^ 4))%positive.
exists (Fcompose (Fcompose F3 F3) (Fexp2 4)); auto.
Defined.

Compute proj1_sig F144.

= fun (A : Type) (x : Fkont A) (x0 : A) =>
x1 <--- x0 times x0;
x2 <--- x1 times x0;
x3 <--- x2 times x2;
x4 <--- x3 times x2;
x5 <--- x4 times x4;
x6 <--- x5 times x5;
x7 <--- x6 times x6;
x8 <--- x7 times x7;
x x8

: Fchain

56 CHAPTER 2. SMART COMPUTATION OF XN

2.8.3 Building chains for two distinct exponents : k-chains

2.8.3.1 Introduction

Not every chain can be built efficiently with Fcompose. For instance, consider
the exponent n = 23 = 3 + 24 + 22.

One may attempt to define a new operator for combining f-chains for n and
p into an f-chain for n+ p.

Definition Fplus (f1 f2 : Fchain) : Fchain :=
fun A k x =>
f1 A (fun y =>

f2 A (fun z => t <--- z times y; k t) x)
x.

For instance, we can define a chain for 23:

Let F23 := Fplus F3 (Fplus (Fexp2 4) (Fexp2 2)).

Unfortunately, our construct is still very inefficient, since it results in dupli-
cations of computations, as shown by the normal form of F23.

Compute F23

= fun (A : Type) (k : Fkont A) (x0 : A) =>
x1 <--- x0 times x0;
x2 <--- x1 times x0;
x3 <--- x0 times x0;
x4 <--- x3 times x3;
x5 <--- x4 times x4;
x6 <--- x5 times x5;
x7 <--- x0 times x0;
x8 <--- x7 times x7;
x9 <--- x8 times x6;
x10 <--- x9 times x2;
k x10

We observe that the variables x3 and x7 are useless, since they will have the
same value as x1. Likewise, computing x8 (same value as x4) is a waste of time.

A better scheme for computing x23 would be the following one:

1. Compute x, x2, x3, and x6 = (x3)
2, then x7,

2. Compute x10 = x7 × x3, then x20

3. Finally, return x23 = x20 × x3

In fact, the first step of this sequence computes two values: x7 and x3, that
are re-used by the rest of the computation.

2.8. EUCLIDEAN CHAINS 57

Like in some programming languages that allow “multiple values”, like Scheme
and Common Lisp, we can express this feature in terms of continuations that ac-
cept two arguments. Thus, we extend our previous definitions to chains that
return two different powers of their argument2.

Definition Kkont A:= A -> A -> @computation A.

Definition Kchain := forall A, Kkont A -> A -> @computation A.

2.8.3.2 Examples

The chain k3_1 sends both values x and x3 to its continuation. Likewise, k7_3
“returns” x7 and x3.

Example k3_1 : Kchain := fun A (k:Kkont A) (x:A) =>
x2 <--- x times x ;
x3 <--- x2 times x ;
k x3 x.

Example k7_3 : Kchain := fun A (k:Kkont A) (x:A) =>
x2 <--- x times x;
x3 <--- x2 times x ;
x6 <--- x3 times x3 ;
x7 <--- x6 times x ;
k x7 x3.

x x2 x3
x x3

x

Figure 2.8: Graphical representation of K3_1

x x2 x3 x6 x7
x x7

x3

Figure 2.9: Graphical representation of K7_3

2.8.3.3 Definitions

First, we have to adapt to k-chains our definitions of correctness and properness.

Definition Kkont_proper `(M : @EMonoid A op E_one E_equiv)
(k : Kkont A) :=

2The name Kchain comes from previous versions of this development. It may be changed
later.

58 CHAPTER 2. SMART COMPUTATION OF XN

Proper (equiv ==> equiv ==> computation_equiv op E_equiv) k .

Definition Kkont_equiv `(M : @EMonoid A op E_one E_equiv)
(k k': Kkont A) :=

forall x y : A, x == y -> forall z t, z == t ->
computation_equiv op E_equiv (k x z) (k' y t).

A k-chain is correct with respect to two exponents n and p if it computes
xn and xp for any x in any monoid M .

Definition Kchain_correct_nat (kc : Kchain) (n p : nat) :=
forall `(M : @EMonoid A op E_one E_equiv)

(k : Kkont A),
Kkont_proper M k ->
forall (x : A) ,

computation_execute op (kc A k x) ==
computation_execute op (k (x ^ n) (x ^ p)).

Definition Kchain_correct (kc : Kchain) (n p : positive) :=
Kchain_correct_nat kc (Pos.to_nat n) (Pos.to_nat p).

Class Kchain_proper (kc : Kchain) :=
Kchain_proper_prf :
forall `(M : @EMonoid A op E_one E_equiv) k k' x y ,

Kkont_proper M k ->
Kkont_proper M k' ->
Kkont_equiv M k k' ->
E_equiv x y ->
computation_equiv op E_equiv (kc A k x) (kc A k' y).

2.8.3.4 Example

For instance, let us prove that k7_3 is proper and correct for the exponents 7
and 3.
Instance k7_3_proper : Kchain_proper k7_3.
Proof.

intros until M; intros; red; unfold k7_3; cbn;
add_op_proper M H3; apply H1; rewrite H2; reflexivity.

Qed.

Lemma k7_3_correct : Kchain_correct k7_3 7 3.
Proof.

intros until M; intros; red; unfold k7_3; simpl.
apply H; monoid_simpl M; reflexivity.

Qed.

2.8.4 Systematic construction of correct f-chains and k-
chains

We are now ready to define various operators on f- and k-chains, and prove
these operators preserve correcness and properness. We will also show that

2.8. EUCLIDEAN CHAINS 59

these operators allow to generate easily correct chains for any positive exponent.
They will be used to generate chains for numbers of the form n = bq + r where
0 ≤ r < b, assuming the previous construction of correct chains for r, b and q.
For instance, Figure 2.10 shows how K7_3 is built as a composition of K3_1 and
F2.

K3_1
x

F2
x3

x3

×x6

x

x7

Figure 2.10: Decomposition of K7_3

2.8.4.1 Conversion from k-chains into f-chains

Any k-chain for n and p can be converted into an f-chain, just by applying it to
a continuation that ignores its second argument.

◦
kn,p

x xn

Figure 2.11: The K2F (knp) construction

Definition K2F (knp : Kchain) : Fchain :=
fun A (k:Fkont A) => kc A (fun y _ => k y).

Lemma K2F_correct :
forall knp n p, Kchain_correct kc n p ->

Fchain_correct (K2F knp) n.
(* Proof omitted *)

Instance K2F_proper (kc : Kchain)(_ : Kchain_proper kc) :
Fchain_proper (K2F kc).

(* Proof omitted} *)

2.8.4.2 Construction associated with Euclidean division with a pos-
itive rest

Let n = bq + r, with 0 < r < b. Then, for any x, xn = (xb)q × xr. Thus, we
can compose an chain that computes xb and xr with a chain that raises any y
to its q-th power for obtaining a chain that computes xn.

Definition KFK (kbr : Kchain) (fq : Fchain) : Kchain :=
fun A k a =>

kbr A (fun xb xr =>
fq A (fun y =>

60 CHAPTER 2. SMART COMPUTATION OF XN

Kb,r
x

Fq
xb

xb

×

xr

xbq xbq+r

Figure 2.12: The KFK combinator

z <--- y times xr; k z xb) xb) a.

Lemma KFK_correct :
forall (b q r : positive) (kbr : Kchain) (fq : Fchain),
Kchain_correct kbr b r ->
Fchain_correct fq q ->
Kchain_proper kbr ->
Fchain_proper fq ->
Kchain_correct (KFK kbr fq) (b * q + r) b.

(* Proof omitted *)

Instance KFK_proper :
forall (kbr : Kchain) (fq : Fchain),

Kchain_proper kbr ->
Fchain_proper fq ->
Kchain_proper (KFK kbr fq)

(* Proof omitted *)

2.8.4.3 Ignoring the remainder

Let n = bq + r, with 0 < r < b. The following construction computes xr and
xb, then xbq, and finally sends xbq+r to the continuation, throwing away xb.

Kb,r
x

Fq
xb

×

xr

xbq xbq+r

Figure 2.13: The KFF combinator

Definition KFF (kbr : Kchain) (fq : Fchain) : Fchain :=
K2F (KFK kbr fq).

Lemma KFF_correct :
forall (b q r : positive) (kbr : Kchain) (fq : Fchain),
Kchain_correct kbr b r ->
Fchain_correct fq q ->
Kchain_proper kbr ->

2.8. EUCLIDEAN CHAINS 61

Fchain_proper fq -> Fchain_correct (KFF kbr fq) (b * q + r).
(* Proof omitted *)

Instance KFF_proper :
forall (kbr : Kchain) (fq : Fchain),
Kchain_proper kbr -> Fchain_proper fq -> Fchain_proper (KFF kbr fq).
(* Proof omitted *)

2.8.4.4 Conversion of an f-chain into a k-chain

The following conversion is useful when a chain generation algorithm needs to
build a k-chain for exponents p and 1:

Definition FK (f : Fchain) : Kchain :=
fun (A : Type) (k : Kkont A) (a : A) =>

f A (fun y => k y a) a.

Lemma FK_correct : forall (p: positive) (Fp : Fchain),
Fchain_correct Fp p ->
Fchain_proper Fp ->
Kchain_correct (FK Fp) p 1.

(* Proof omitted *)

Instance FK_proper (Fp : Fchain) (_ : Fchain_proper Fp):
Kchain_proper (FK Fp).

(* Proof omitted *)

2.8.4.5 Computing xp and xpq

Fp
x

Fq
xp

xp

xpq

Figure 2.14: The FFK combinator

Definition FFK (fp fq : Fchain) : Kchain :=
fun A k a => fp A (fun xb => fq A (fun y => k y xb) xb) a.

Lemma FFK_correct :
forall (p q : positive) (fp fq : Fchain),

Fchain_correct fp p ->
Fchain_correct fq q ->
Fchain_proper fp ->
Fchain_proper fq -> Kchain_correct (FFK fp fq) (p * q) p.

62 CHAPTER 2. SMART COMPUTATION OF XN

(* Proof omitted *)

Instance FFK_proper
(fp: Fchain) (fq : Fchain)
(_ : Fchain_proper fp)
(_ : Fchain_proper fq) : Kchain_proper (FFK fp fq) .

(* Proof omitted *)

2.8.4.6 A correct-by-construction chain

A simple example will show us how to build correct chains for any positive
exponent, using the operators above.

Hint Resolve KFF_correct KFF_proper KFK_correct KFK_proper.

Definition F87 :=
let k7_3 := KFK k3_1 (Fexp2 1) in
let k10_7 := KFK k7_3 F1 in
KFF k10_7 (Fexp2 3).

Lemma OK87 : Fchain_correct F87 87.
Proof.
unfold F87; change 87 with (10 * (2 ^ 3) + 7)%positive.
apply KFF_correct;auto.
change 10 with (7 * 1 + 3); apply KFK_correct;auto.
change 7 with (3 * 2 ^ 1 + 1)%positive; apply KFK_correct;auto.
Qed.

Note that this method of construction still requires some interaction from
the user. In the next section, we build a function that maps any positive number
n into a correct and proper chain for n. Thus correct chain generation will be
fully automated.

2.8.5 Automatic chain generation by Euclidean division
The goal of this section is to write a function make_chain (p:positive):
chain that builds a correct chain for p, using the Euclidean method above.
In other words, we want to get correct chains by computation. The correctness
of the result of this computation should be asserted by a theorem:

Theorem make_chain_correct :
forall p, chain_correct (make_chain p) p.

In the previous section, we considered two different kinds of objects: f-chains,
associated with a single exponent, and k-chains, associated with two exponents.
We would expect that the function make_chain we want to build and certify is
structured as a pair of mutually recursive functions. In Coq , various ways of
building such functions are available:

• Structural [mutual] recursion with Fixpoint

• Using Program Fixpoint

2.8. EUCLIDEAN CHAINS 63

• Using Function.
Since our construction is based on Euclidean division, we could not define

our chain generator by structural recursion. For simplicity’s sake, we chosed to
avoid dependent elimination and used Function with a decreasing measure.

For this purpose, we define a single data-type for associated with the gener-
ation of F- and K-chains.

We had two slight technical problems to consider:
• The generation of a k-chain for n and p is meaningfull only if p < n.

Thus, in order to avoid a clumsy dependent pattern-matching, we chosed
to represent a pair (n, p) where 0 < p < n by a pair of positive numbers
(p, d) where d = n− p

• In order to avoid to deal explicitly with mutual recursion, we defined a
type called signature for representing both forms of function calls. Thus,
it is easy to define a decreasing measure on type signature for proving
termination. Likewise, correctness and properness statements are also
indexed by this type.

Inductive signature : Type :=
| (** Fchain for the exponent n *)

gen_F (n:positive)
| (** Kchain for the exponents p+d and p *)

gen_K (p d: positive).

The following dependently-typed functions will help us to specify formally
any correct chain generator.

(**
exponent associated with a signature:

*)
Definition signature_exponent (s:signature) : positive :=
match s with
| gen_F n => n
| gen_K p d => p + d
end.

(**
Type of the associated continuation
*)

Definition kont_type (s: signature)(A:Type) : Type :=
match s with
| gen_F _ => Fkont A
| gen_K _ _ => Kkont A
end.

Definition chain_type (s: signature) : Type :=
match s with
| gen_F _ => Fchain
| gen_K _ _ => Kchain
end.

64 CHAPTER 2. SMART COMPUTATION OF XN

Definition correctness_statement (s: signature) :
chain_type s -> Prop :=
match s with

| gen_F p => fun ch => Fchain_correct ch p
| gen_K p d => fun ch => Kchain_correct ch (p + d) p

end.

Definition proper_statement (s: signature) :
chain_type s -> Prop :=
match s with

| gen_F p => fun ch => Fchain_proper ch
| gen_K p d => fun ch => Kchain_proper ch

end.

(** Full correctness *)

Definition OK (s: signature)
:= fun c: chain_type s =>

correctness_statement s c /\
proper_statement s c.

2.8.6 The dichotomic strategy
Assume we want to build automatically a correct f-chain for some positive inte-
ger n. If n equals to 1, 3, or 2p for some positive integer p, this task is immediate,
thanks to the constants F1, F3 and Fexp2. Otherwise, like in [BCHM95], we
decompose n into bq + r, where 1 < b < n, and compose the recursively built
chains for q and r on one side, and q on the other side.

The efficiency of this method depends on the choice of b. In [BCHM95], the
function that maps n into b is called a strategy. In this chapter, we concentrate
on the so-called dichotomic strategy.

δ(n) = n÷ 2k where k = b(log2 n)/2c.
Intuitively, it corresponds to splitting the binary representation of a positive

integer into two halves. For instance, consider n = 87 its binary representation
is 1010111. The number b(log2 n)/2c is equal to 3. Dividing n by 23 gives the
decomposition n = 10 × 23 + 7. Thus, a chain for n = 87 can be built from a
chain computing both x7 and x10, and a chain that raises its argument to its
8− th power.

Module Powers.Dichotomy contains a definition of the function delta, and
proofs that if n > 3 then 1 < δ(n) < n.

2.8.7 Main chain generation function
We are now able to define a function that generates a correct chain for any
signature. We use the Recdef module of Standard Library, with an appropriate
measure.

Definition signature_measure (s : signature) : nat :=
match s with

| gen_F n => 2 * Pos.to_nat n

../src/html/addition.power.Dichotomy.html

2.8. EUCLIDEAN CHAINS 65

| gen_K p d => 2 * Pos.to_nat (p + d) +1
end.

The following function definition generates 9 sub-goals, for proving that the
measure on signatures is strictly decreasing along the recursive calls. They are
solved with the help of Standard Library’s lemmas on arithemtic of positive
numebers end Euclidean division.

Function chain_gen (s:signature) {measure signature_measure}
: chain_type s :=
match s return chain_type s with

| gen_F i =>
if pos_eq_dec i 1 then F1 else

if pos_eq_dec i 3
then F3
else
match exact_log2 i with

Some p => Fexp2 p
| _ =>

match N.pos_div_eucl i (Npos (dicho i))
with
| (q, 0%N) =>
Fcompose (chain_gen (gen_F (dicho i)))

(chain_gen (gen_F (N2Pos q)))
| (q,r) => KFF (chain_gen

(gen_K (N2Pos r)
(dicho i - N2Pos r)))

(chain_gen (gen_F (N2Pos q)))

end end

| gen_K p d =>
if pos_eq_dec p 1 then FK (chain_gen (gen_F (1 + d)))
else

match N.pos_div_eucl (p + d) (Npos p) with
| (q, 0%N) => FFK (chain_gen (gen_F p))

(chain_gen (gen_F (N2Pos q)))
| (q,r) => KFK (chain_gen (gen_K (N2Pos r)

(p - N2Pos r)))
(chain_gen (gen_F (N2Pos q)))

end
end.

(* A lot of arithmetic proofs omitted *)
Defined.

Definition make_chain (n:positive) : chain :=
F2C (chain_gen (gen_F n)).

Thanks to the Recdef package, we are now able to get automatically built
chains using the dichotomic strategy.

Compute make_chain 87.

66 CHAPTER 2. SMART COMPUTATION OF XN

= fun (A : Type) (x : A) =>
x0 <--- x times x;
x1 <--- x0 times x;
x2 <--- x1 times x1;
x3 <--- x2 times x;
x4 <--- x3 times x1;
x5 <--- x4 times x4;
x6 <--- x5 times x5;
x7 <--- x6 times x6;
x8 <--- x7 times x3;
Return x8

: chain

2.8.7.1 Correctness of the Euclidean chain generator

Recdef’s functional induction tactic allows us to prove that every value
returned by (chain_gen s) is correct w.r.t. s and proper. The proof obliga-
tions are solved thanks to the previous lemmas on the composition operators on
chains: Fcompose, KFK, etc. Unfortunately, a lot of interaction is still needed or
proving properties of Euclidean division and binary logarithm.

Lemma chain_gen_OK : forall s:signature, OK s (chain_gen s).
intro s; functional induction chain_gen s.
Proof.
(* A lot of arithmetic proofs omitted *)

Theorem make_chain_correct :
forall p, chain_correct (make_chain p) p.

Proof.
intro p; destruct (chain_gen_OK (gen_F p)).
unfold make_chain; apply F2C_correct; apply H.
Qed.

2.8.7.2 A last example

Let us compute 677776145319 with 32 bits integers:

Ltac compute_chain ch :=
let X := fresh "x" in
let Y := fresh "y" in
let X := constr:ch in
let Y := (eval vm_compute in X) in
exact Y.

Let big_chain := ltac:(compute_chain (make_chain 6145319)).

Print big_chain.

big_chain =
fun (A : Type) (x : A) =>

2.9. PROJECTS 67

x0 <--- x times x; x1 <--- x0 times x0;
x2 <--- x1 times x1; x3 <--- x2 times x1;
x4 <--- x3 times x3; x5 <--- x4 times x;
x6 <--- x5 times x5; x7 <--- x6 times x6;
x8 <--- x7 times x1; x9 <--- x8 times x5;
x10 <--- x9 times x8; x11 <--- x10 times x9;
x12 <--- x11 times x11; x13 <--- x12 times x11;
x14 <--- x13 times x10; x15 <--- x14 times x14;
x16 <--- x15 times x11; x17 <--- x16 times x16;
x18 <--- x17 times x17; x19 <--- x18 times x18;
x20 <--- x19 times x19; x21 <--- x20 times x20;
x22 <--- x21 times x21; x23 <--- x22 times x22;
x24 <--- x23 times x23; x25 <--- x24 times x24;
x26 <--- x25 times x25; x27 <--- x26 times x26;
x28 <--- x27 times x14; Return x28

: forall A : Type, A -> computation

Time Compute Int31.phi
(chain_apply big_chain (snd (positive_to_int31 67777))).

= 2014111041%Z
: Z

Finished transaction in 0.005 secs (0.005u,0.s) (successful)}

Compute chain_length big_chain.

= 29%nat
: nat

2.9 Projects

Project 2.2 (Optimality and relative efficiency)

1. Prove that the chain generated by Fexp2 is optimal.

2. Prove that the length of any optimal chain for n is greater than or equal
to blog2 nc.

3. Prove that, for any positive n, the length of any Euclidean chain generated
by the dichotomic strategy is always less than or equal to the length of
binary_chain n, and for an infinite number of positive integers n, the
first chain is strictly shorter than the latter.

4. Prove that our implementation of the dichotomic strategy describes the
same function as in the litterature (for instance [BCHM95].) This is
important if we want to follow the complexity analyses in this and similar
articles.

5. Study how to compile a chain into imperative code, using a register allo-
cation strategy (it may be useful to define chain width).

68 CHAPTER 2. SMART COMPUTATION OF XN

Remark: The first two questions of the list above should involve a uni-
versal quantification on type chain. It may be necessary (but we’re not
sure) to consider some restriction on parametric chains.

Appendices

69

Bibliography

[Abr96] J.-R. Abrial. The B-book: Assigning Programs to Meanings. Cam-
bridge University Press, New York, NY, USA, 1996.

[Abr10] Jean-Raymond Abrial. Modeling in Event-B: System and Software
Engineering. Cambridge University Press, New York, NY, USA, 1st
edition, 2010.

[BB87] Jean Berstel and Srecko Brlek. On the length of word chains. Inf.
Process. Lett., 26(1):23–28, 1987.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving
and Program Development. Coq’Art: The Calculus of Inductive
Constructions. Springer, 2004. http://www.labri.fr/perso/
casteran/CoqArt/index.html.

[BCHM95] Srecko Brlek, Pierre Castéran, Laurent Habsieger, and Richard Mal-
lette. On-line evaluation of powers using euclid’s algorithm. ITA,
29(5):431–450, 1995.

[BCS91] Srecko Brlek, Pierre Castéran, and Robert Strandh. On addi-
tion schemes. In TAPSOFT’91: Proceedings of the International
Joint Conference on Theory and Practice of Software Development,
Brighton, UK, April 8-12, 1991, Volume 2: Advances in Distributed
Computing (ADC) and Colloquium on Combining Paradigms for
Software Development (CCPSD), pages 379–393, 1991.

[Bra39] Alfred Brauer. On addition chains. Bull. Amer. Math. Soc.,
45(10):736–739, 10 1939.

[Bro10] Daniel Brown. Parametricity. http://www.ccs.neu.edu/home/matthias/369-
s10/Transcript/parametricity.pdf, 2010. Available on Matthias
Felleisen page.

[Bur75] William H. Burge. Recursive programming techniques / William H.
Burge. Addison-Wesley Pub. Co Reading, Mass, 1975.

[Cas] Pierre Castéran. Additions. User Contributions to the Coq Proof
Assistant. https://github.com/coq-contribs/additions.

[CDM13a] Cyril Cohen, Maxime Dénès, and Anders Mörtberg. Refinements for
Free! In Certified Programs and Proofs, pages 147 – 162, Melbourne,
Australia, December 2013.

71

http://www.labri.fr/perso/casteran/CoqArt/index.html
http://www.labri.fr/perso/casteran/CoqArt/index.html

72 BIBLIOGRAPHY

[CDM13b] Cyril Cohen, Maxime Dénès, and Anders Mörtberg. Refinements
for free! In Georges Gonthier and Michael Norrish, editors, Cer-
tified Programs and Proofs - Third International Conference, CPP
2013, Melbourne, VIC, Australia, December 11-13, 2013, Proceed-
ings. Springer, Springer, 2013.

[Chl08] Adam Chlipala. Parametric higher-order abstract syntax for mech-
anized semantics. In Proceedings of the 13th ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP’08), 2008.

[Chl11] Adam Chlipala. Certified Programming with Dependent Types. MIT
Press, 2011. http://adam.chlipala.net/cpdt/.

[Coq] Coq Development Team. The coq proof assistant. https://coq.in-
ria.fr.

[CS] Pierre Castéran and Matthieu Sozeau. A gentle Introduction to
Type Classes and Relations in Coq. http://www.labri.fr/perso/cast-
eran/CoqArt/TypeClassesTut/typeclassestut.pdf.

[Gon08] Georges Gonthier. Formal proof — the four-color theorem. Notices
of the American Mathematical Society, 55(11), December 2008.

[H+15] Thomas Hales et al. A formal proof of the Kepler conjecture.
https://arxiv.org/abs/1501.02155, 2015.

[P+] Benjamin Pierce et al. Software foundations. https://softwarefoun-
dations.cis.upenn.edu/.

[Rey83] John C. Reynolds. Types, abstraction and parametric polymor-
phism. In R. E. A. Mason, editor, Information Processing 83,
pages 513–523, Amsterdam, 1983. Elsevier Science Publishers B.
V. (North-Holland).

[Rey93] John C. Reynolds. The discovery of continuations. Lisp and Sym-
bolic Computation, 6:233–247, 1993.

[SO08] M. Sozeau and N. Oury. First-class type classes. In TPHOLs ’08:
Proceedings of the 21st International Conference on Theorem Prov-
ing in Higher Order Logics, pages 278–293, Berlin, Heidelberg, 2008.
Springer-Verlag.

[Str00] Christopher Strachey. Fundamental concepts in programming lan-
guages. Higher Order Symbol. Comput., 13(1-2):11–49, April 2000.

[SvdW11] Bas Spitters and Eelis van der Weegen. Type classes for mathematics
in type theory. http://arxiv.org/pdf/1102.1323.pdf, 2011.

[Wad89] Philip Wadler. Theorems for free! In Proceedings of the Fourth In-
ternational Conference on Functional Programming Languages and
Computer Architecture, FPCA ’89, pages 347–359, New York, NY,
USA, 1989. ACM.

http://adam.chlipala.net/cpdt/

2.10. HOW TO INSTALL THE LIBRARIES 73

2.10 How to install the libraries
• The present distribution has been checked with version 8.12.0 of the Coq

proof assistant, with the plug-ins coq-paramcoq and coq-equations.

• just go into the top directory, and type ”make”

Index

Advanced proof techniques
Parametricity, 39
Proof by reflection, 35

Coercions, 20

Dependently Typed Functions, 63

Equivalence relations, 20
Exercises, 47

Fibonacci numbers
Matrix exponentiation, 13

Generalized rewriting, 20

Parametric Higher-Order Abstract Syn-
tax (PHOAS), 30

Programming Styles
Continuation Passing Style (CPS),

30, 57
Projects, 33, 67

Type Classes, 17
Operational Type Classes, 15
Proper, 20, 25, 51

74

	Introduction
	Smart Computation of Powers
	Introduction
	Some basic implementations
	A semi-naive algorithm
	A truly logarithmic exponentiation function
	Examples of computation
	Formal specification of an exponentiation function: a first attempt

	Representing Monoids in Coq
	A common notation for multiplication
	The Monoid Type Class
	Building Instances of Monoid
	Matrices on a semi-ring
	Monoids and Equivalence Relations

	Computing Powers in any EMonoid
	The naive (linear) Algorithm
	The Binary Exponentiation Algorithm
	Refinement and Correctness
	Proof of correctness of binary exponentiation w.r.t. the function power
	Equivalence of the two exponentiation functions

	Comparing Exponentiation Algorithms with respect to Efficiency
	Addition chains
	A type for addition chains
	Chains as a (small) programming language

	Proving a chain's correctness
	Proof by rewriting
	Correctness Proofs by Reflection
	reflection tactic
	Chain correctness for —practically — free!

	Certified Chain Generators
	Definitions
	The binary chain generator

	Euclidean Chains
	Chains and Continuations : f-chains
	F-chain correctness
	Building chains for two distinct exponents : k-chains
	Systematic construction of correct f-chains and k-chains
	Automatic chain generation by Euclidean division
	The dichotomic strategy
	Main chain generation function

	Projects
	How to install the libraries

