
DRAFTHydra Battles in Coq

Pierre Castéran
LaBRI, Univ. Bordeaux, CNRS UMR 5800, Bordeaux-INP

with contributions by Évelyne Contejean, Florian Hatat and Pascal Manoury

November 4, 2020

2

3

“I start from one point and go as far as possi-
ble.”
John Coltrane.

4

Contents

1 Introduction 7
1.1 Remarks . 8
1.2 Acknowledgements . 12

2 Hydras and Hydra Games 15
2.1 Hydras and their Representation in Coq 19
2.2 Relational Description of Hydra Battles 24
2.3 A Long Battle . 29
2.4 Generic Properties . 38

3 Introduction to Ordinal Numbers and Ordinal Notations 43
3.1 The Mathematical Point of View 44
3.2 Ordinal Numbers in Coq . 45
3.3 Countable Ordinals . 45
3.4 Ordinal Notations . 46
3.5 Examples of Ordinal Notations 48
3.6 Limits and Successors . 50
3.7 The Ordinal ω2 . 52
3.8 A Notation for Finite Ordinals 59
3.9 Comparing two Ordinal Notations 62
3.10 Comparing an Ordinal Notation with Schütte’s Model 63
3.11 Isomorphism of Ordinal Notations 64
3.12 Other Ordinal Notations . 65

4 A proof of termination, using epsilon0 67
4.1 The Ordinal ε0 . 67
4.2 Well-foundedness and Transfinite Induction 78
4.3 A Variant for Hydra Battles . 82

5 The Ketonen-Solovay machinery 89
5.1 Introduction . 89
5.2 Canonical Sequences . 90
5.3 Accessibility inside ε0 : Paths . 93
5.4 A Proof of Impossibility . 96
5.5 The Case of Standard Battles . 98

5

6 CONTENTS

6 Large Sets and Rapidly Growing Functions 107
6.1 Definitions . 107
6.2 The Length of Minimal Large Sequences 108
6.3 The Wainer-Hardy Hierarchy (Functions Hα) 116
6.4 The Wainer Hierarchy (Functions Fα) 122

7 Countable Ordinals (after Schütte) 127
7.1 Declarations and Axioms . 128
7.2 Additional Axioms . 129
7.3 The Successor Function . 132
7.4 Finite Ordinals . 134
7.5 The Definition of omega . 134
7.6 The Exponential of Basis ω . 138
7.7 More about ε0 . 141
7.8 Critical Ordinals . 141
7.9 Cantor Normal Form . 142
7.10 An Embedding of T1 into Ord . 144
7.11 Related Work . 145

8 The Ordinal Γ0 (first draft) 147
8.1 Introduction . 147
8.2 The Type T2 of Ordinal Terms 148
8.3 How Big is Γ0? . 149
8.4 Veblen Normal Forms . 151
8.5 Main Functions on T2 . 154
8.6 An Ordinal Notation for Γ0 . 156

9 Appendices 159
9.1 Future Work (projects) . 163
9.2 How to Install the Libraries . 163
9.3 Comments on Exercises and Projects 163
9.4 Index . 164

Chapter 1

Introduction

Proof assistants are excellent tools for exploring the structure of mathematical
proofs, studying which hypotheses are really needed, and which proof patterns
are useful and/or necessary. Since the development of a theory is represented
as a bunch of computer files, everyone is able to read the proofs with an arbi-
trary level of detail, or to play with the theory by writing alternate proofs or
definitions.

Among all the theorems proved with the help of proof assistants like Coq,
Isabelle, HOL, etc., several statements and proofs share some interesting fea-
tures:

• Their statements are easy to understand, even by non-mathematicians

• Their proof requires some non-trivial mathematical tools

• Their mechanization on computer presents some methodological interest.

This is obviously the case of the four-color theorem [Gon08] and the Kepler
conjecture [H+15]. We do not mention impressive works like the proof of the
odd-order theorem [GAA+13], since understanding its statement requires a
quite good mathematical culture.

Hydra games (a.k.a. Hydra battles) appear in an article published in 1982
by two mathematicians: L. Kirby and J. Paris [KP82]: Accessible Independence
Results for Peano Arithmetic. Although the mathematical contents of this paper
are quite advanced, the rules of hydra battles are very easy to understand. There
are now several sites on Internet where you can find tutorials on hydra games,
together with simulators you can play with. See, for instance, the page written
by Andrej Bauer [Bau08].

Hydra battles, as well as Goodstein Sequences [Goo44, KP82] are a nice
way to present complex termination problems. The article by Kirby and Paris
presents a proof of termination based on ordinal numbers, as well as a proof that
this termination is not provable in Peano arithmetic. In the book dedicated to
J.P. Jouannaud [CLKK07], N. Dershowitz and G. Moser give a thorough survey
on this topic [DM07].

Here, we present a development for the Coq proof assistant, after the work
of Kirby and Paris. This formalization contains the following main parts:

7

8 CHAPTER 1. INTRODUCTION

• Representation in Coq of hydras and hydra battles

• A proof that every battle is finite and won by Hercules. This proof is
based on a variant which maps any hydra to an ordinal strictly less than
ε0 and is strictly decreasing along any battle.

• Using a combinatorial toolkit designed by J. Ketonen and R. Solovay [KS81],
we prove that, for any ordinal µ < ε0, there exists no such variant mapping
any hydra to an ordinal stricly less than µ. Thus, the complexity of ε0 is
really needed in the previous proof.

• We prove a relation between the length of a “classic” class of battles 1 and
the Wainer-Hardy hierarchy of “rapidly growing functions” Hα [Wai70].
The considered class of battles, which we call standard is the most con-
sidered one in the scientific litterature(including popularization).

Simply put, this document tries to combines the scientific interest of two
articles [KP82, KS81] and a book [Sch77] with the playful activity of truly
proving theorems. We hope that such a work, besides exploring a nice piece of
discrete maths, will show how Coq and its standard library are well fitted to
help us to understand some non-trivial mathematical developments, and also to
experiment the constructive parts of the proof through functional programming.

We also hope to provide a little clarification on infinity (both potential and
actual) through the notions of function, computation, limit, types and proofs.

1.1 Remarks
1.1.1 Difference from Kirby and Paris’s Work
In [KP82], Kirby and Paris showed that there is no proof of termination of all
hydra battles in Peano Arithmetic (PA). Since we are used to writing proofs
in higher order logic, the restriction to PA was quite unnatural for us. So we
chosed to prove another statement without any reference to PA, by considering
a class of proofs indexed by ordinal numbers upto ε0.

1.1.2 Trust in our Proofs?
Unlike mathematical literature, where definitions and proofs are spread over
many articles and books, the whole proof is now inside your computer. It is
composed of the .v files you downloaded and parts of Coq’s standard library.
Thus, there is no ambiguity in our definitions and the premises of the theorems.
Furthermore, you will be able to navigate through the development, using your
favourite text editor or IDE, and some commands like Search, Locate, etc.

1.1.3 Assumed Redundancy
It may often happen that several definitions of a given concept, or several proofs
of a given theorem are possible. If all the versions present some interest, we will
make them available, since each one may be of some methodological interest (by

1This class is also called standard in this document (text and proofs). The replication
factor of the hydra is exactly i at the i-th round of the battle (see Sect 2.0.1 on page 15).

1.1. REMARKS 9

illustrating some tactic of proof pattern, for instance). We may use Coq’s mod-
ule system to make several proofs of a given theorem co-exist in our libraries (see
also Sect 1.1.10 on page 12). After some discussions of the pros and cons of each
solution, we develop only one of them, leaving the others as exercises or projects
(i.e., big or difficult exercises). In order to discuss which assumptions are really
needed for proving a theorem, we will also present several aborted proofs. Of
course, do not hesitate to contribute nice proofs or alternative definitions !

It may also happen that some proof looks to be useless, because the proven
theorem is a trivial consequence of another (proven too) result. For instance,
let us consider the three following statements:

1. There is no measure into N for proving the termination of all hydra battles
(Sect 2.4.3 on page 39).

2. There is no measure into [0, ω2) for proving the termination of all hydra
battle (Sect 3.7.3 on page 55).

3. There is no measure into [0, µ) for proving the termination of all hydra
battles, for any µ < ε0 (Sect 5.4.1 on page 97).

Obviously, the third theorem implies the second one, which implies the first
one. So, theoretically, a library would contain only a proof of (3) and remarks
for (2) and (1). But we found it interesting to make all the three proofs avail-
able, allowing the reader to compare their common structure and notice their
technical differences. In particular, the proof of (3) uses several non-trivial com-
binatorial properties of ordinal numbers up to ε0 [KS81], whilst (1) and (2) use
simple properties of N and N2.

1.1.4 About Logic
Most of the proofs we present are constructive. Whenever possible, we provide
the user with an associated function, which she or he can apply in Gallina or
OCaml in order to get a “concrete” feeling of the meaning of the considered
theorem. For instance, in Chapter 5 on page 89, the notion of limit ordinal
is made more “concrete” thanks to a function canon which computes every
item of a sequence which converges on a given limit ordinal α. This simply
typed function allows the user/reader to make her/his own experimentations.
For instance, one can very easily compute the 42-nd item of a sequence which
converges towards ωωω .

Except in the Schutte library, dedicated to an axiomatic presentation of the
set of countable ordinal numbers, all our development is axiom-free, and respects
the rules of intuitionistic logic. Note that we also use the Equations plug-
in [SM19] in the definitition of several rapidly growing hierarchy of functions,
in Chap. 6. This plug-in imports several known-as-harmless axioms.

At any place of our development, you may use the Print Assumptions ident
command in order to verify on which axiom the theorem ident may depend. The
following example is extracted from Library hydras.Epsilon0.F_alpha, where we
use the coq-equations plug-in (see Sect. 6.4 on page 122).

About F_zero_eqn.

../theories/html/hydras.Epsilon0.F_alpha.html

10 CHAPTER 1. INTRODUCTION

F_zero_eqn : forall i : nat, F_ Zero i = S i

Print Assumptions F_zero_eqn.

Axioms:
FunctionalExtensionality.functional_extensionality_dep

: forall (A : Type) (B : A -> Type) (f g : forall x : A, B x),
(forall x : A, f x = g x) -> f = g

Eqdep.Eq_rect_eq.eq_rect_eq
: forall (U : Type) (p : U) (Q : U -> Type) (x : Q p) (h : p = p),
x = eq_rect p Q x p h

1.1.5 Main References

In our development, we adapt the definitions and prove many theorems which
we found in the following articles.

• “Accessible independence results for Peano arithmetic” by Laurie Kirby
and Jeff Paris [KP82]

• ”Rapidly growing Ramsey Functions” by Jussi Ketonen and Robert Solo-
vay [KS81]

• “The Termite and the Tower”, by Will Sladek [Sla07]

• Chapter V of “Proof Theory” by Kurt Schütte [Sch77]

Warning: This document is not an introductory text for Coq, and there are
many aspects of this proof assistant that are not covered. The reader should
already have some basic experience with the Coq system. The Reference Manual
and several tutorials are available on Coq page [Coq]. First chapters of textbooks
like Interactive Theorem Proving and Program Development [BC04], Software
Foundations [P+] or Certified Programming with Dependent Types [Chl11] will
give you the right background.

1.1.6 State of the Development

The Coq scripts herein are in constant development since our contribution [CC06]
on notations for the ordinals ε0 and Γ0. We added new material : axiomatic
definition of countable ordinals after Schütte [Sch77], combinatorial aspects of
ε0, after Ketonen and Solovay [KS81] and Kirby and Paris [KP82], recent Coq
technology: type classes, equations, etc.

We are now working in order to make clumsy proofs more readable, sim-
plify definitions, and “factorize” proofs as much as possible. Many possible
improvements are suggested as “todo”s or “projects” in this text.

1.1. REMARKS 11

1.1.7 Contributions
Many thanks to Évelyne Contejean, Florian Hatat and Pascal Manoury for their
contribution. Évelyne contributed libraries on the recursive path ordering (rpo)
for proving the well-foundedness of our representation of ε0 and Γ0. Florian
Hatat proved many useful lemmas on countable sets, which we used in our
adaptation of Schütte’s formalization of countable ordinals. Pascal Manoury is
integrating the ordinal ωω into our hierarchy of ordinal notations.

Any form of contribution is welcome: correction of errors (typos and more
serious mistakes), improvement of Coq scripts, proposition of inclusion of new
chapters, and generally any comment or proposition that would help us. The
text contains several projects which, when completed, may improve the present
work. Please do not hesitate to bring your contribution!

1.1.8 Typographical Conventions
Quotations from our Coq source are displayed as follows:

Require Import Arith.

Definition square (n:nat) := n * n.

Lemma square_double : exists n:nat, n + n = square n.
Proof.

exists 2.

Answers from Coq (including sub-goals, error messages, etc.) are displayed
in slanted style with a different background color.

1 subgoal, subgoal 1 (ID 5)

============================
2 + 2 = square 2

reflexivity.
Qed.

1.1.9 Active Links
The links which appear in this pdf document lead are of three possible kinds of
destination:

• Local links to the document itself,

• External links, mainly to Coq’s page,

• Local links to pages generated by coqdoc. According to the current make-
file (through the commands make html and make pdf), we assume that
the page generated from a library XXX/YYY.v is stored as the relative
address ../theories/html/hydras.XXX.YYY.html (from the location of

12 CHAPTER 1. INTRODUCTION

the pdf) Thus, active links towards our Coq modules may be incorrect if
you got this pdf document otherwise than by compiling the distribution
available in https://github.com/coq-community/hydra-battles.

1.1.10 Alternative or Bad Definitions
Finally, we decided to include definitions or lemma statements, as well as tactics,
that lead to dead-ends or too complex developments, with the following coloring.
Bad definitions and encapsulation in modules called Bad, Bad1, etc.

Require Import Lia.

Module Bad.

Definition double (n:nat) := n + 2.

Lemma lt_double : forall n:nat, n < double n.
Proof.

unfold double; lia.
Qed.

End Bad.

Likewise, alternative, but still unexplored definitions will be presented in
modules Alt, Alt1, etc. Using these definitions is left as an implicit exercise.

Require Import Arith Lia Iterates.
Module Alt.

Definition double (n : nat) := iterate S n n.
End Alt.

Lemma alt_double_ok n : Nat.double n = Alt.double n.
Proof.

unfold Alt.double, Nat.double; induction n; cbn.
- trivial.
- rewrite <- iterate_rw, iterate_S_eqn, <- IHn; lia.

Qed.

1.2 Acknowledgements
Many thanks to David Ilcinkas, Sylvain Salvati, Alan Schmitt and Théo Zim-
merman for their help on the elaboration of this document, and to the members
of the Formal Methods team at laBRI for their helpful comments on an oral
presentation of this work.

Many thanks also to the Coq development team, Yves Bertot, and mem-
bers of the Coq Club for interesting discussions about the Coq system and the
Calculus of Inductive Constructions.

The author of the present document wishes to express his gratitude to the
late Patrick Dehornoy, whose talk was determinant for our desire to work on
this topic.

https://github.com/coq-community/hydra-battles

1.2. ACKNOWLEDGEMENTS 13

I owe my interest in discrete mathematics and their relation to formal proofs
and functional programming to Srecko Brlek. Equally, there is W. H. Burge’s
book “Recursive Programming Techniques” [Bur75] which was a great source
of inspiration.

14 CHAPTER 1. INTRODUCTION

Chapter 2

Hydras and Hydra Games

This chapter is dedicated to the representation of hydras and rules of the hydra
game in Coq’s specification language: Gallina.

Technically, a hydra is just a finite ordered tree, each node of which has any
number of sons. Note that, contrary to the computer science tradition, we will
show the hydras with the heads up and the foot (i.e., the root of the tree) down.
Fig. 2.1 represents such a hydra, which will be referred to as Hy in our examples
(please look at the module Hydra.Hydra_Examples).

•

•

•

•

Figure 2.1: The hydra Hy

We use a specific vocabulary for talking about hydras. Table 2.2 shows the
correspondance between our terminology and the usual vocabulary for trees in
computer science.

The hydra Hy has a foot (below), five heads, and eight segments. We leave
it to the reader to define various parameters such as the height, the size, the
highest arity (number of sons of a node) of a hydra. In our example, these
parameters have the respective values : 4, 9 and 3.

2.0.1 The Rules of the Game
A hydra battle is a fight between Hercules and the Hydra. More formally, a
battle is a sequence of rounds. At each round:

15

../theories/html/hydras.Hydra.Hydra_Examples.html

16 CHAPTER 2. HYDRAS AND HYDRA GAMES

Hydras Finite rooted trees
foot root
head leaf
node node
segment (directed) edge
sub-hydra subtree
daughter immediate subtree

Figure 2.2: Translation from hydras to trees

• If the hydra is composed of just one head, the battle is finished and Her-
cules is the winner.

• Otherwise, Hercules chops off one head of the hydra,

– If the head is at distance 1 from the foot, the head is just lost by the
hydra, with no more reaction.

– Otherwise, let us denote by r the node that was at distance 2 from
the removed head in the direction of the foot, and consider the sub-
hydra h′ of h, whose root is r 1. Let n be some natural number. Then
h′ is replaced by n + 1 of copies of h′ which share the same root r.
The replication factor n may be different (and generally is) at each
round of the fight. It may be chosen by the hydra, according to its
strategy, or imposed by some particular rule. In many presentations
of hydra battles, this number is increased by 1 at each round. In the
following presentation, we will also consider battles where the hydra
is free to choose its replication factor at each round of the battle2.

Note that the description given in [KP82] of the replication process in hydra
battles is also semi-formal.

“From the node that used to be attached to the head which was
just chopped off, traverse one segment towards the root until the
next node is reached. From this node sprout n replicas of that part
of the hydra (after decapitation) which is “above” the segment just
traversed, i.e., those nodes and segments from which, in order to
reach the root, this segment would have to be traversed. If the head
just chopped off had the root of its nodes, no new head is grown. ”

Moreover, we note that this description is in imperative terms. In order
to build a formal study of the properties of hydra battles, we prefer to use
a mathematical vocabulary, i.e., graphs, relations, functions, etc. Thus, the
replication process will be represented as a binary relation on a data type Hydra,
linking the state of the hydra before and after the transformation. A battle will
thus be represented as a sequence of terms of type Hydra, respecting the rules
of the game.

1h′ will be called “the wounded part of the hydra” in the subsequent text. In Figures 2.4
on the next page and 2.6 on page 18, this sub-hydra is displayed in red.

2Let us recall that, if the chopped-off head was at distance 1 from the foot, the replication
factor is meaningless.

17

2.0.2 Example
Let us start a battle between Hercules and the hydra Hy of Fig. 2.1.

At the first round, Hercules choses to chop off the rightmost head of Hy.
Since this head is near the floor, the hydra loses this head. Let us call Hy' the
resulting state of the hydra, represented in Fig. 2.3.

Next, assume Hercules choses to chop off one of the two highest heads of Hy',
for instance the rightmost one. Fig. 2.4 represents the rotten neck in dashed
lines, and the part that will be replicated in red. Assume also that the hydra
decides to add 4 copies of the red part3. We obtain a new state Hy'' depicted
in Fig. 2.5.

•

•

•

•

Figure 2.3: Hy’: the state of Hy after one round

•

•

•

•

Figure 2.4: A second beheading

Figs. 2.6 and 2.7 on the next page represent a possible third round of the
battle, with a replication factor equal to 2. Let us call Hy''' the state of the
hydra after that third round.

3In other words, the replication factor at this round is equal to 4.

18 CHAPTER 2. HYDRAS AND HYDRA GAMES

•

•

•

•• • • • •

Figure 2.5: Hy”, the state of Hy after two rounds

•

•

•

•• • • • •

Figure 2.6: A third beheading (wounded part in red)

•

•

•

•• • • • •

•

•

•• • • • •

•

•

•• • • • •

Figure 2.7: The configuration Hy”’ of Hy

2.1. HYDRAS AND THEIR REPRESENTATION IN COQ 19

We leave it to the reader to guess the following rounds of the battle …

2.1 Hydras and their Representation in Coq
In order to describe trees where each node can have an arbitrary (but finite)
number of sons, it usual to define a type where each node carries a forest, i.e a
list of trees (see for instance Chapter 14, pages 400-406 of [BC04]).

For this purpose, we define two mutual ad-hoc inductive types, where Hydra
is the main type, and Hydrae is a helper for describing finite sequences of hydra.

From Module Hydra.Hydra_Definitions

Inductive Hydra : Set :=
| node : Hydrae -> Hydra
with Hydrae : Set :=
| hnil : Hydrae
| hcons : Hydra -> Hydrae -> Hydrae.

Project 2.1 Look for an existing library on trees with nodes of arbitrary arity,
in order to replace this ad-hoc type with something more generic.

Project 2.2 Another very similar representation could use the list type fam-
ily instead of the specific type Hydrae:

Module Alt.

Inductive Hydra: Set :=
hnode (daughters : list Hydra).

End Alt.

Using this representation, re-define all the constructions of this chapter.
You will probably have to use patterns described for instance in [BC04] or the
archives of the Coq-club [Coq].

Project 2.3 The type Hydra above describes hydras as plane trees, i.e., as
drawn on a sheet of paper or computer screen. Thus, hydras are oriented, and
it is appropriate to consider a leftmost or rightmost head of the beast. It could
be interesting to consider another representation, in which every non-leaf node
has a multi-set – not an ordered list – of daughters.

2.1.0.1 Abbreviations

We provide several notations for hydra patterns which occur often in our devel-
opments.

From Module Hydra.Hydra_Definitions

../theories/html/hydras.Hydra.Hydra_Definitions.html#Hydra
../theories/html/hydras.Hydra.Hydra_Definitions.html#head

20 CHAPTER 2. HYDRAS AND HYDRA GAMES

(** heads *)
Notation head := (node hnil).

(** nodes with 1, 2 or 3 daughters *)
Notation hyd1 h := (node (hcons h hnil)).
Notation hyd2 h h' := (node (hcons h (hcons h' hnil))).
Notation hyd3 h h' h'' :=

(node (hcons h (hcons h' (hcons h'' hnil)))).

For instance, the hydra Hy of Figure 2.1 on page 15 is defined in Gallina as
follows:

From Module Hydra.Hydra_Examples

Example Hy := hyd3 head
(hyd2

(hyd1
(hyd2 head head))

head)
head.

Hydras quite frequently contain multiple copies of the same pattern. The
following functions will help us to describe and reason about replications in
hydra battles.

From Module Hydra.Hydra_Definitions

Fixpoint hcons_mult (h:Hydra)(n:nat)(s:Hydrae):Hydrae :=
match n with
| O => s
| S p => hcons h (hcons_mult h p s)
end.

(** hydra with n copies of the same daughter *)

Definition hyd_mult h n :=
node (hcons_mult h n hnil).

For instance, the hydra Hy′′ of Fig 2.5 on page 18 can be defined in Coq as
follows:

From Module Hydra.Hydra_Examples

Example Hy'' :=
hyd2 head

(hyd2 (hyd_mult (hyd1 head) 5)
head).

../theories/html/hydras.Hydra.Hydra_Examples.html#Hy
../theories/html/hydras.Hydra.Hydra_Definitions.html#hcons_mult
../theories/html/hydras.Hydra.Hydra_Examples.html

2.1. HYDRAS AND THEIR REPRESENTATION IN COQ 21

2.1.0.2 Recursive Functions on type Hydra

When defining a recursive function over the type Hydra, one has to consider
the three constructors node, hnil and hcons of the mutually inductive types
Hydra and Hydrae. Let us define for instance the function which computes the
number of nodes of any hydra:
From Module Hydra.Hydra_Definitions

Fixpoint hsize (h:Hydra) : nat :=
match h with node l => S (lhsize l)
end

with lhsize l : nat :=
match l with hnil => 0

| hcons h hs => hsize h + lhsize hs
end.

Compute hsize Hy.

= 9
: nat

Likewise, the height (maximum distance between the foot and a head) is
defined by mutual recursion:

Fixpoint height (h:Hydra) : nat :=
match h with node l => lheight l
end

with lheight l : nat :=
match l with
| hnil => 0
| hcons h hs => Max.max (S (height h)) (lheight hs)
end.

Compute height Hy.

= 4
: nat

Exercise 2.1 Define a function max_degree: Hydra → nat which returns the
highest degree of a node in any hydra. For instance, the evaluation of the term
(max_degree Hy) should return 3.

2.1.1 Induction Principles for Hydras
In this section, we show how induction principles are used to prove properties
on the type Hydra. Let us consider for instance the following statement:

“ The height of any hydra is strictly less than its size. ”

../theories/html/hydras.Hydra.Hydra_Definitions.html

22 CHAPTER 2. HYDRAS AND HYDRA GAMES

2.1.1.1 A failed Attempt

One may try to use the default tactic of proof by induction, which corresponds
to an application of the automatically generated induction principle for type
Hydra:

Hydra_ind :
forall P : Hydra -> Prop,
(forall h : Hydrae, P (node h)) -> forall h : Hydra, P h

Ler us start a simple proof by induction.
From Module Hydra.Hydra_Examples

Module Bad.

Lemma height_lt_size (h:Hydra) :
height h <= hsize h.

Proof.
induction h as [s].

1 subgoal, subgoal 1 (ID 11)

s : Hydrae
============================
height (node s) <= hsize (node s)

We might be tempted to do an induction on the sequence s:

1 focused subgoal
(unfocused: 0), subgoal 1 (ID 19)

h : Hydra
s' : Hydrae
IHs' : height (node s') <= hsize (node s')
============================
height (node (hcons h s')) <= hsize (node (hcons h s'))

Note that the displayed subgoal does not contain any assumption on h, thus
there is no way to infer any property about the height and size of the hydra
(hcons h t).

Abort.

End Bad.

2.1.1.2 A Principle of Mutual Induction

In order to get an appropriate induction scheme for the types Hydra and Hydrae,
we can use Coq’s command Scheme.

../theories/html/hydras.Hydra.Hydra_Examples.html

2.1. HYDRAS AND THEIR REPRESENTATION IN COQ 23

Scheme Hydra_rect2 := Induction for Hydra Sort Type
with Hydrae_rect2 := Induction for Hydrae Sort Type.

Check Hydra_rect2.

Hydra_rect2
: forall (P : Hydra -> Type) (P0 : Hydrae -> Type),

(forall h : Hydrae, P0 h -> P (node h)) ->
P0 hnil ->
(forall h : Hydra, P h ->

forall h0 : Hydrae, P0 h0 -> P0 (hcons h h0)) ->
forall h : Hydra, P h

2.1.1.3 A Correct Proof

Let us now use Hydra_rect2 for proving that the height of any hydra is strictly
less than its size. Using this scheme requires an auxiliary predicate, called P0
in Hydra_rect2’s statement. Let us begin by defining an ad-hoc version of
List.Forall.
From Module Hydra.Hydra_Examples

(** All elements of s satisfy P *)

Fixpoint h_forall (P: Hydra -> Prop) (s: Hydrae) :=
match s with

hnil => True
| hcons h s' => P h /\ h_forall P s'

end.

Lemma height_lt_size (h:Hydra) :
height h < hsize h.
Proof.
induction h using Hydra_rect2 with
(P0 := h_forall (fun h => height h < hsize h)).

1. The first subgoal is as follows:

h: Hydrae
IHh : h_forall (fun h : Hydra => height h < hsize h) h
============================
height (node s) < hsize (node s)

This goal is easily solvable, using some arithmetic. We let the reader look
at the source.

2. The second subgoal is trivial:

../theories/html/hydras.Hydra.Hydra_Examples.html

24 CHAPTER 2. HYDRAS AND HYDRA GAMES

============================
h_forall (fun h : Hydra => height h < hsize h) hnil

reflexivity.

3. Finally, the last subgoal is also easy to solve:

h : Hydra
h0 : Hydrae
IHh : height h < hsize h
IHh0 : h_forall (fun h : Hydra => height h < hsize h) h0
============================
h_forall (fun h1 : Hydra => height h1 < hsize h1)

(hcons h h0)

split;auto.
Qed.

Exercise 2.2 It happens very often that, in the proof of a proposition of the
form (∀ h:Hydra, P h), the predicate P0 is (h_forall P). Design a tactic for
induction on hydras that frees the user from binding explicitly P0, and solves
trivial subgoals. Apply it for writing a shorter proof of height_lt_size.

2.2 Relational Description of Hydra Battles
In this section, we represent the rules of hydra battles as a binary relation asso-
ciated with a round, i.e., an interaction composed of the two following actions:

1. Hercules chops off one head of the hydra

2. Then, the hydra replicates the wounded part (if the head is at distance
≥ 2 from the foot).

The relation associated with each round of the battle is parameterized by the
expected replication factor (irrelevant if the chopped head is at distance 1 from
the foot, but present for consistency’s sake).

In our description, we will apply the following naming convention: if h rep-
resents the configuration of the hydra before a round, then the configuration of
h after this round will be called h′. Thus, we are going to define a proposition
(round_n n h h′) whose intended meaning will be “ the hydra h is transformed
into h′ in a single round of a battle, with the expected replication factor n ”.

Since the replication of parts of the hydra depends on the distance of the
chopped head from the foot, we decompose our description into two main cases,
under the form of a bunch of [mutually] inductive predicates over the types
Hydra and Hydrae.

The mutually exclusive cases we consider are the following:

2.2. RELATIONAL DESCRIPTION OF HYDRA BATTLES 25

• R1: The chopped off head was at distance 1 from the foot.

• R2: The chopped off head was at a distance greater than or equal to 2
from the foot.

2.2.1 Chopping off a Head at Distance 1 from the Foot
(Relation R1)

If Hercules chops off a head near the floor, there is no replication at all. We
use an auxiliary predicate S0, associated with the removing of one head from a
sequence of hydras.

From ModuleHydra.Hydra_Definitions

Inductive S0 : relation Hydrae :=
| S0_first : forall s, S0 (hcons head s) s
| S0_rest : forall h s s', S0 s s' ->

S0 (hcons h s) (hcons h s').

Inductive R1 : Hydra -> Hydra -> Prop :=
| R1_intro : forall s s', S0 s s' -> R1 (node s) (node s').

2.2.1.1 Example

Let us represent in Coq the transformation of the hydra of Fig. 2.1 on page 15
into the configuration represented in Fig. 2.3.

From Module Hydra.Hydra_Examples

Example Hy_1 : R1 Hy Hy'.
Proof.
split; right; right; left.

Qed.

2.2.2 Chopping off a Head at Distance ≥ 2 from the Foot
(relation R2)

Let us now consider beheadings where the chopped-off head is at distance greater
than or equal to 2 from the foot. All the following relations are parameterized
by the replication factor n.

Let s be a sequence of hydras. The proposition (S1 n s s') holds if s′ is
obtained by replacing some element h of s by n + 1 copies of h′, where the
proposition (R1 h h') holds, in other words, h′ is just h, without the chopped-
off head. S1 is an inductive relation with two constructors that allow us to
choose the position in s′ of the wounded sub-hydra h.
From Module Hydra.Hydra_Definitions

Inductive S1 (n:nat) : Hydrae -> Hydrae -> Prop :=
| S1_first : forall s h h' , R1 h h' ->

S1 n (hcons h s) (hcons_mult h' (S n) s)
| S1_next : forall h s s', S1 n s s' ->

S1 n (hcons h s) (hcons h s').

../theories/html/hydras.Hydra.Hydra_Definitions.html
../theories/html/hydras.Hydra.Hydra_Examples.html
../theories/html/hydras.Hydra.Hydra_Definitions.html#S1

26 CHAPTER 2. HYDRAS AND HYDRA GAMES

The rest of the definition is structured as two mutually inductive relations
on hydras and sequences of hydras. The first constructor of R2 describes the
case where the chopped head is exactly at height 2. The others constructors
allow us to consider beheadings at height strictly greater than 2.

From Module Hydra.Hydra_Definitions

Inductive R2 (n:nat) : Hydra -> Hydra -> Prop :=
| R2_intro : forall s s', S1 n s s' -> R2 n (node s) (node s')
| R2_intro_2 : forall s s', S2 n s s' -> R2 n (node s) (node s')

with S2 (n:nat) : Hydrae -> Hydrae -> Prop :=
| S2_first : forall h h' s ,

R2 n h h' ->
S2 n (hcons h s) (hcons h' s)

| S2_next : forall h r r',
S2 n r r' ->
S2 n (hcons h r) (hcons h r').

2.2.2.1 Example

Let us prove the transformation of Hy' into Hy'' (see Fig. 2.5 on page 18). We
use an experimental set of tactics for specifying the place where the interaction
between Hercules and the hydra holds.

From Module Hydra.Hydra_Examples.

Example R2_example: R2 4 Hy' Hy''.
Proof.

(** move to 2nd sub-hydra (0-based indices) *) R2_up 1.
(** move to first sub-hydra *) R2_up 0.
(** we're at distance 2 from the to-be-chopped-off head

let's go to the first daughter,
then chop-off the leftmost head *) r2_d2 0 0.

Qed.

The reader is encouraged to look at all the successive subgoals of this exam-
ple. Please consider also exercise 2.5 on the facing page.

2.2.3 Relation Associated with a Round
We combine the two cases above into a single relation. First, we define the
relation (round_n n h h') where n is the expected number of replications (ir-
relevant in the case of an R1-transformation).

From Module Hydra.Hydra_Definitions

Definition round_n n h h' := R1 h h' \/ R2 n h h'.

By abstraction over n, we define a round (small step) of a battle:

Definition round h h' := exists n, round_n n h h'.

Infix "-1->" := round (at level 60).

../theories/html/hydras.Hydra.Hydra_Definitions.html#R2
../theories/html/hydras.Hydra.Hydra_Examples.html
../theories/html/hydras.Hydra.Hydra_Definitions.html#round_n

2.2. RELATIONAL DESCRIPTION OF HYDRA BATTLES 27

Project 2.4 Give a direct translation of Kirby and Paris’s description of hy-
dra battles (quoted on page 16) and prove that our relational description is
consistent with theirs.

2.2.4 Rounds and Battles
Using library Relations.Relation_Operators, we define round_plus, the transi-
tive closure of round, and round_star, the reflexive and transitive closure of
round.

Definition round_plus := clos_trans_1n Hydra round.
Infix "-+->" := rounds (at level 60).

Definition round_star h h' := h = h' \/ round_plus h h'.
Infix "-*->" := round_star (at level 60).

Exercise 2.3 Prove the following lemma:

Lemma rounds_height : forall h h',
h -+-> h' -> height h' <= height h.

Remark 2.1 Coq’s library Coq.Relations.Relation_Operators contains three
logically equivalent definitions of the transitive closure of a binary relation.
This equivalence is proved in Coq.Relations.Operators_Properties .

Why three definitions for a single mathematical concept? Each definition
generates an associated induction principle. According to the form of statement
one would like to prove, there is a “best choice”:

• For proving ∀y, xR+ y → P y, prefer clos_trans_n1

• For proving ∀x, xR+ y → P x, prefer clos_trans_1n

• For proving ∀x y, xR+ y → P x y, prefer clos_trans,

But there is no “wrong choice” at all: the equivalence lemmas in
Coq.Relations.Operators_Properties allow the user to convert any one of the
three closures into another one before applying the corresponding elimination
tactic. The same remark also holds for reflexive and transitive closures.

Exercise 2.4 Define a restriction of round, where Hercules always chops off
the leftmost among the lowest heads.

Prove that, if h is not a simple head, then there exists a unique h′ such that
h is transformed into h' in one round, according to this restriction.

Exercise 2.5 (Interactive battles) Given a hydra h, the specification of a
hydra battle for h is the type {h':Hydra | h -*-> h'}. In order to avoid
long sequences of split, left, and right, design a set of dedicated tactics
for the interactive building of a battle. Your tactics will have the following
functionalities:

https://coq.inria.fr/distrib/current/stdlib/Coq.Relations.Relation_Operators.html
https://coq.inria.fr/distrib/current/stdlib/Coq.Relations.Relation_Operators.html
https://coq.inria.fr/distrib/current/stdlib/Coq.Relations.Operators_Properties.html
https://coq.inria.fr/distrib/current/stdlib/Coq.Relations.Operators_Properties.html

28 CHAPTER 2. HYDRAS AND HYDRA GAMES

• Chose to stop a battle, or continue

• Chose an expected number of replications

• Navigate in a hydra, looking for a head to chop off.

Use your tactics for simulating a small part of a hydra battle, for instance
the rounds which lead from Hy to Hy''' (Fig. 2.7 on page 18).

Hints:

• Please keep in mind that the last configuration of your interactively built
battle is known only at the end of the battle. Thus, you will have to
create and solve subgoals with existential variables. For that purpose, the
tactic eexists, applied to the goal {h':Hydra | h -*-> h'} generates
the subgoal h -*-> ?h'.

• You may use Gérard Huet’s zipper data structure [Hue97] for writing
tactics associated with Hercule’s interactive search of a head to chop off.

2.2.5 Classes of Battles
In some presentations of hydra battles, e.g. [KP82, Bau08], the transformation
associated with the i-th round may depend on i. For instance, in these articles,
the replication factor at the i-th round is equal to i. In other examples, one can
allow the hydra to apply any replication factor at any time. In order to be the
most general as possible, we define the type of predicates which relate the state
of the hydra before and after the i-th round of a battle.

From Module Hydra.Hydra_Definitions

Definition dep_round_t := nat -> Hydra -> Hydra -> Prop.

Class Battle := {battle_r : dep_round_t;
battle_inclusion : forall i h h',

battle_r i h h' -> round h h'}.

The most general class of battles is free, which allows the hydra to chose
any replication factor at every step:

From Module Hydra.Hydra_Definitions

Program Instance free : Battle :=
(Build_Battle (fun _ h h' => round h h') _).

We chosed to call standard the kind of battles which appear most often in
the litterature and correspond to an arithmetic progression of the replication
factor : 0, 1, 2, 3, . . .

From Module Hydra.Hydra_Definitions

Program Instance standard : Battle := (Build_Battle round_n _).
Next Obligation.

now exists i.
Defined.

../theories/html/hydras.Hydra.Hydra_Definitions.html
../theories/html/hydras.Hydra.Hydra_Definitions.html#free
../theories/html/hydras.Hydra.Hydra_Definitions.html#standard

2.3. A LONG BATTLE 29

2.2.6 Big Steps
Let B be any instance of class Battle. It is easy to define inductively the
relation between the i-th and the j-th steps of a battle of type B.

From Module Hydra.Hydra_Definitions

Inductive battle (B:Battle) : nat -> Hydra -> nat -> Hydra -> Prop :=

| battle_1 : forall i h h', battle_r B i h h' ->
battle B i h (S i) h'

| battle_n : forall i h j h' h'', battle_r B i h h'' ->
battle B (S i) h'' j h' ->
battle B i h j h'.

2.3 A Long Battle
In this section we consider a simple example of battle, starting with a small
hydra, shown on figure 2.8, with a simple strategy for both players:

• Hercules chops off always the rightmost head of the hydra.

• The battle is standard: at the round number i, the expected replication
is i.

•

•

Figure 2.8: The hydra hinit

Definition hinit := hyd3 (hyd_mult head 3) head head.

The lemma we would like to prove is “The considered battle lasts exactly N
rounds”, with N being a natural number we gave to guess.

But the battle is so long that no test can give us an estimation of its length,
and we do need the expressive power of logic to compute this length. How-
ever, in order to guess this length, we made some experiments, computing with
Gallina, Coq’s functional programming language. Thus, we can consider this
development as a collaboration of proof with computation.

In the following lines, we try to show faithfully how we found the value of
the number N .

The complete proof is in file ../theories/html/hydras.Hydra.BigBattle.
html.

../theories/html/hydras.Hydra.Hydra_Definitions.html#fight
../theories/html/hydras.Hydra.BigBattle.html
../theories/html/hydras.Hydra.BigBattle.html

30 CHAPTER 2. HYDRAS AND HYDRA GAMES

•

•

Figure 2.9: The hydra (hyd1 h3)

2.3.1 The beginning of Hostilities
During the two first rounds, our hydra loses its two rightmost heads. Thus just
before the third round, it looks like in figure 2.9.

The following lemma is a formal description of these first rounds, in terms
of the battle predicate.

Lemma L_0_2 : battle standard 0 hinit 2 (hyd1 h3).

2.3.2 Looking for Regularities
A first study with pencil and paper suggested us that, after three rounds, the
hydra always looks like in figure 2.10 (with a variable number of subtrees of
height 1 or 0). Thus, we introduce handy notations.

Notation h3 := (hyd_mult head 3).
Notation h2 := (hyd_mult head 2).
Notation h1 := (hyd1 head).

Definition hyd a b c :=
node (hcons_mult h2 a

(hcons_mult h1 b
(hcons_mult head c hnil))).

For instance Fig 2.10 shows the hydra (hyd 3 4 2). The hydra (hyd 0 0
0) is the “final” hydra of any terminating battle, i.e., a tree whith exactly one
node and no edge.

•

• • • • • • •

Figure 2.10: The hydra (hyd 3 4 2)

With these notations, we get a formal description of the first three rounds.

Lemma L_2_3 : battle standard 2 (hyd1 h3) 3 (hyd 3 0 0).

Lemma L_0_3 : battle standard 0 hinit 3 (hyd 3 0 0).

2.3. A LONG BATTLE 31

2.3.3 Computing …
In order to study experimentally the different configurations of the battle, we
will use a simple datatype for representing the states as tuples composed of the
round number, and the respective number of daughters h2, h1, and heads of the
current hydra.

Record state : Type :=
mks {round: nat ; n2 : nat ; n1 : nat ; nh : nat}.

The following function returns the next configurarion of the game. Note that
this function is defined only for making experiments and is not “certified”. For-
mal proofs about our battle will only start with the lemma lemma:step-battle,
page 33.

Definition next (s : state) :=
match s with
| mks round a b (S c) => mks (S round) a b c
| mks round a (S b) 0 => mks (S round) a b (S round)
| mks round (S a) 0 0 => mks (S round) a (S round) 0
| _ => s
end.

We can make bigger steps through iterations of next. The functional iterate,
similar to Standard Library’s Nat.iter, is defined and studied in Prelude.Iter-
ates.

Fixpoint iterate {A:Type}(f : A -> A) (n: nat)(x:A) :=
match n with
| 0 => x
| S p => f (iterate f p x)
end.

The following function computes the state of the battle at the n-th round.

Definition test n := iterate next (n-3) (mks 3 3 0 0).

Compute test 3.
(**
= {| round := 3; n2 := 3; n1 := 0; nh := 0 |}
: state
*)

Compute test 4.
(*
= {| round := 4; n2 := 2; n1 := 4; nh := 0 |}

: state
*)

Compute test 5.
(*

= {| round := 5; n2 := 2; n1 := 3; nh := 5 |}

../theories/html/hydras.Prelude.Iterates.html#iterate
../theories/html/hydras.Prelude.Iterates.html#iterate

32 CHAPTER 2. HYDRAS AND HYDRA GAMES

: state
*)

Compute test 2000.
(*

= {| round := 2000; n2 := 1; n1 := 90; nh := 1102 |}
: state

*)

The battle we are studying seems to be awfully long. Let us concentrate our
tests on some particular events : the states where nh = 0. From the value of
test 5, it is obvious that at the 10-th round, the counter nh is equal to zero.

Compute test 10.
(*

= {| round := 10; n2 := 2; n1 := 3; nh := 0 |}
: state

*)

Thus, (1 + 11) rounds later, the n1 field is equal to 2, and nh to 0.

Compute test 22.
(*

= {| round := 22; n2 := 2; n1 := 2; nh := 0 |}
: state

*)

Compute test 46.
(*

= {| round := 46; n2 := 2; n1 := 1; nh := 0 |}
: state

*)

Compute test 94.

(*

= {| round := 94; n2 := 2; n1 := 0; nh := 0 |}
: state

*)

Next round, we decrement n2 and set n1 to 95.

Compute test 95.

(*

2.3. A LONG BATTLE 33

= {| round := 95; n2 := 1; n1 := 95; nh := 0 |}
: state

*)

We now have some intuition of the sequence. It looks like the next “nh=0”
event will happen at the 192 = 2(95 + 1)-th round, then at the 2(192 + 1)-th
round, etc.

Definition doubleS (n : nat) := 2 * (S n).

Compute test (doubleS 95).

(**
= {| round := 192; n2 := 1; n1 := 94; nh := 0 |}

: state
*)

Compute test (iterate doubleS 2 95).

(*
= {| round := 386; n2 := 1; n1 := 93; nh := 0 |}

: state
*)

2.3.4 Proving …
We are now able to reason about the sequence of transitions defined by our
hydra battle. Instead of using the data-type state we study the relationship
between different configurations of the battle.

Let us define a binary relation associated with every round of the battle. In
the following definition i is associated with the round number (or date, if we
consider a discrete time), and a, b, c respectively associated with the number
of h2, h1 and heads connected to the hydra’s foot.

Inductive one_step (i: nat) :
nat -> nat -> nat -> nat -> nat -> nat -> Prop :=

| step1: forall a b c, one_step i a b (S c) a b c
| step2: forall a b, one_step i a (S b) 0 a b (S i)
| step3: forall a, one_step i (S a) 0 0 a (S i) 0.

The relation between one_step and the rules of hydra battle is asserted by
the following lemma.

Lemma step_battle : forall i a b c a' b' c',
one_step i a b c a' b' c' ->
battle standard i (hyd a b c) (S i) (hyd a' b' c').

Next, we define “big steps” as the transitive closure of one_step, and reach-
ability (from the initial configuration of figure 2.8 at time 0).

34 CHAPTER 2. HYDRAS AND HYDRA GAMES

Inductive steps : nat -> nat -> nat -> nat ->
nat -> nat -> nat -> nat -> Prop :=

| steps1 : forall i a b c a' b' c',
one_step i a b c a' b' c' -> steps i a b c (S i) a' b' c'

| steps_S : forall i a b c j a' b' c' k a'' b'' c'',
steps i a b c j a' b' c' ->
steps j a' b' c' k a'' b'' c'' ->
steps i a b c k a'' b'' c''.

Definition reachable (i a b c : nat) : Prop :=
steps 3 3 0 0 i a b c.

The following lemma establishes a relation between steps and the predicate
battle.

Lemma steps_battle : forall i a b c j a' b' c',
steps i a b c j a' b' c' ->
battle standard i (hyd a b c) j (hyd a' b' c').

Thus, any result about steps will be applicable to standard battles. Using
the predicate steps our study of the length of the considered battle can be
decomposed into three parts:

1. Characterization of regularities of some events

2. Study of the beginning of the battle

3. Computing the exact length of the battle.

First, we prove that, if at round i the hydra is equal to (hyd a (S b) 0),
then it will be equal to (hyd a b 0) at the 2(i+ 1)-th round.

Lemma LS : forall c a b i, steps i a b (S c) (i + S c) a b 0.
Proof.

induction c.
- intros; replace (i + 1) with (S i).

+ repeat constructor.
+ ring.

- intros; eapply steps_S.
+ eleft; apply rule1.
+ replace (i + S (S c)) with (S i + S c) by ring; apply IHc.

Qed.

Lemma doubleS_law : forall a b i, steps i a (S b) 0 (doubleS i) a b 0.
Proof.

intros; eapply steps_S.
+ eleft; apply step2.
+ unfold doubleS; replace (2 * S i) with (S i + S i) by ring;

apply LS.
Qed.

2.3. A LONG BATTLE 35

Lemma reachable_S : forall i a b, reachable i a (S b) 0 ->
reachable (doubleS i) a b 0.

Proof.
intros; right with (1 := H); apply doubleS_law.

Qed.

From now on, the lemma reachable_S allows us to watch larger steps of the
battle.

Lemma L4 : reachable 4 2 4 0.
Proof.
left; constructor.

Qed.

Lemma L10 : reachable 10 2 3 0.
Proof.
change 10 with (doubleS 4).
apply reachable_S, L4.

Qed.

Lemma L22 : reachable 22 2 2 0.
Proof.
change 22 with (doubleS 10).
apply reachable_S, L10.

Qed.

Lemma L46 : reachable 46 2 1 0.
Proof.
change 46 with (doubleS 22); apply reachable_S, L22.

Qed.

Lemma L94 : reachable 94 2 0 0.
Proof.
change 94 with (doubleS 46); apply reachable_S, L46.

Qed.

Lemma L95 : reachable 95 1 95 0.
Proof.
eapply steps_S.
- eexact L94.
- repeat constructor.

Qed.

2.3.5 Giant Steps
We are now able to make bigger steps in the simulation of the battle. First, we
iterate the lemma reachable_S.

Lemma Bigstep : forall b i a , reachable i a b 0 ->
reachable (iterate doubleS b i) a 0 0.

36 CHAPTER 2. HYDRAS AND HYDRA GAMES

Proof.
induction b.
- trivial.
- intros; simpl; apply reachable_S in H.

rewrite <- iterate_comm; now apply IHb.
Qed.

Applying lemmas BigStep and L95 we make a first jump.

Definition M := (iterate doubleS 95 95).

Lemma L2_95 : reachable M 1 0 0.
Proof.

apply Bigstep, L95.
Qed.

Figure 2.11 represents the hydra at the M -th round. At the (M + 1)-th
round, it will look like in fig 2.12.

•

•

Figure 2.11
The state of the hydra after M rounds.

•

• • • •

. . .

. . . • •

Figure 2.12
The state of the hydra after M + 1 rounds (with M + 1 heads).

Lemma L2_95_S : reachable (S M) 0 (S M) 0.
Proof.

eright.
- apply L2_95.
- left; constructor 3.

Qed.

2.3. A LONG BATTLE 37

Then, applying once more the lemma BigStep, we get the exact time when
Hercules wins!

Definition N := iterate doubleS (S M) (S M).

Theorem SuperbigStep : reachable N 0 0 0 .
Proof.
apply Bigstep, L2_95_S.

Qed.

We are now able to prove formally that the considered battle is composed
of N steps.

Lemma Almost_done :
battle standard 3 (hyd 3 0 0) N (hyd 0 0 0).

Proof.
apply steps_battle, SuperbigStep.

Qed.

Theorem Done :
battle standard 0 hinit N head.

Proof.
eapply battle_trans.
- apply Almost_done.
- apply L_0_3.

Qed.

2.3.6 A Minoration Lemma
Now, we would like to get an intuition of how big the number N is. For that
purpose, we use a minoration of the function doubleS by the function (fun n
=> 2 * n).

Definition exp2 n := iterate (fun n => 2 * n) n 1.

Using some facts (proven in hydras.Hydra.BigBattle),we get several minora-
tions.

Lemma minoration_0 : forall n, 2 * n <= doubleS n.

Lemma minoration_1 : forall n x, exp2 n * x <= iterate doubleS n x.

Lemma minoration_2 : exp2 95 * 95 <= M.

Lemma minoration_3 : exp2 (S M) * S M <= N.

Lemma minoration : exp2 (exp2 95 * 95) <= N.

The number N is greater than or equal to 22
95×95. If we wrote N in base 10,

N would require at least 1030 digits!

../theories/html/hydras.Hydra.BigBattle.html

38 CHAPTER 2. HYDRAS AND HYDRA GAMES

2.4 Generic Properties
The example we just studied shows that the termination of any battle may take
a very long time. If we want to study hydra battles in general, we have to
consider any hydra and any strategy, both for Hercules and the hydra itself.
So, we first give some definitions, generally borrowed from transition systems
vocabulary (see [Tel00] for instance).

2.4.1 Liveliness
Let B be an instance of Battle. We say that B is alive if for any configuration
(i, h), where h is not a head, there exists a further step in class B.

From Module Hydra.Hydra_Definitions

Definition Alive (B : Battle) :=
forall i h,

h <> head -> {h' : Hydra | B i h h'}.

The theorems Alive_free and Alive_standard of the module ../theories/
html/hydras.Hydra.Hydra_Theorems.html show that the classes free and
standard satisfy this property.

Theorem Alive_free: Alive free.

Theorem Alive_standard: Alive standard.

Both theorems are proved with the help of the following strongly specified
function:

From Module Hydra.Hydra_Lemmas

Definition next_round_dec n :
forall h , (h = head) + {h' : Hydra & {R1 h h'} + {R2 n h h'}}.

2.4.2 Termination
The termination of all battles is naturally expressed by the predicate well_founded
defined in the module Coq.Init.Wf of the Standard Library.

Definition Termination := well_founded (transp _ round).

Let B be an instance of class Battle. A variant for B consists in a well-
founded relation < on some type A, and a function (also called a measure)
m:Hydra->A such that for any successive steps (i, h) and (1 + i, h′) of a battle
in B, the inequality m(h′) < m(h) holds.

From Module Hydra.Hydra_Definitions

Class Hvariant {A:Type}{Lt:relation A}(Wf: well_founded Lt)(B : Battle)
(m: Hydra -> A): Prop :=
{variant_decr :forall i h h',

h <> head ->
battle_r B i h h' -> Lt (m h') (m h)}.

../theories/html/hydras.Hydra.Hydra_Definitions.html#Alive
../theories/html/hydras.Hydra.Hydra_Theorems.html
../theories/html/hydras.Hydra.Hydra_Theorems.html
../theories/html/hydras.Hydra.Hydra_Lemmas.html#next_round_dec
https://coq.inria.fr/distrib/current/stdlib/Coq.Init.Wf.html
../theories/html/hydras.Hydra.Hydra_Definitions.html#Hvariant

2.4. GENERIC PROPERTIES 39

Exercise 2.6 Prove that, if there is an instance of (Hvariant Lt wf_Lt B
m), then there exists no infinite battle in B.

2.4.3 A Small Proof of Impossibility
When one wants to prove a termination theorem with the help of a variant,
one has to consider first a well-founded set (A,<), then a strictly decreasing
measure on this set. The following two lemmas show that if the order structure
(A,<) is too simple, it is useless to look for a convenient measure, which simply
no exists. Such kind of result is useful, because it saves you time and effort.

The best known well-founded order is the natural order on the set N of
natural numbers (the type nat of Standard library). It would be interesting to
look for some measure m : nat→nat and prove it is a variant.

Unfortunately, we can prove that no instance of class (WfVariant round
Peano.lt m) can be built, where m is any function of type Hydra → nat.

Let us present the main steps of that proof, the script of which is in the
module Hydra/Omega_Small.v 4.

Let us assume there exists some variant m from Hydra into nat for proving
the termination of all hydra battles.

Section Impossibility_Proof.
Variable m : Hydra -> nat.
Hypothesis Hvar : Hvariant lt_wf free m.

We define an injection from the type nat into Hydra. For any natural number
i, ι(i) is the hydra composed of a foot and i+1 heads at height 1. For instance,
Fig. 2.13 represents the hydra ι(3).

•

Figure 2.13: The hydra ι(3)

Let iota (i: nat) := hyd_mult head (S i).

Let us consider now some hydra big_h out of the range of the injection ι
(see Fig. 2.14 on the following page).

Let big_h := hyd1 (hyd1 head).

Using the functions m and ι, we define a second hydra small_h, and show
there is a one-round battle that transforms big_h into small_h. Please note
that, due to the hypothesis Hvar, we are interested in the termination of free
battles. There is no problem to consider a round with (m big_h) as the repli-
cation factor.

4 The name of this file means “the ordinal ω is too small for proving the termination of
[free] hydra battles ”. In effect, the elements of ω, considered as a set, are just the natural
numbers (see next chapter for more details)

../theories/html/hydras.Hydra.Omega_Small.html

40 CHAPTER 2. HYDRAS AND HYDRA GAMES

•

•

Figure 2.14
The hydra big_h.

Let small_h := iota (m big_h).

Fact big_to_small : big_h -1-> small_h.
Proof.

exists (m big_h); right; repeat constructor.
Qed.

But, by hypothesis, m is a variant. Hence, we infer the following inequality.

Lemma m_lt : m small_h < m big_h.

In order to get a contradiction, it suffices to prove the inequality m big_h
<= m small_h, i.e., m big_h <= m (iota (m big_h)).

More generally, we prove the following lemma:

Lemma m_ge : forall i:nat, i <= m (iota i).

Intuitively, it means that, from any hydra of the form (iota i), the battle
will take (at least) i rounds. Thus the associated measure cannot be less than
i. Technically, we prove this lemma by Peano induction on i.

• The base case i = 0 is trivial

• Otherwise, let i be any natural number and assume the inequality i ≤
m(ι(i)).

1. But the hydra ι(S(i)) can be transformed in one round into ι(i) (by
losing its righmost head, for instance)

2. Since m is a variant, we have m(ι(i)) < m(ι(S(i))), hence i <
m(ι(S(i))), which implies S(i) ≤ m(ι(S(i))).

Then our proof is almost finished.

Theorem Contradiction : False.
Proof.
apply (Nat.lt_irrefl (m big_h));

apply Lt.le_lt_trans with (m small_h).
- apply m_ge.
- apply m_lt.

2.4. GENERIC PROPERTIES 41

Qed.

End Impossibility_Proof.

Exercise 2.7 Prove that there exists no variant m from Hydra into nat for
proving the termination of all standard battles.

2.4.3.1 Conclusion

In order to build a variant for proving the termination of all hydra battles, we
need to consider order structures more complex than the usual order on type
nat. The notion of ordinal number provides a catalogue of well-founded order
types. For a reasonably large bunch of ordinal numbers, ordinal notations are
data-types which allow the Coq user to define functions, to compute and prove
some properties, for instance by reflection.

The next chapter is dedicated to a generic implementation of ordinal nota-
tions, and chapter 4 to a proof of termination of all hydra battles with the help
of an ordinal notation for the interval [0, ε0).

42 CHAPTER 2. HYDRAS AND HYDRA GAMES

Chapter 3

Introduction to Ordinal
Numbers and Ordinal
Notations

The proof of termination of all hydra battles presented in [KP82] is based on or-
dinal numbers. From a mathematical point of view, an ordinal is a representant
of an equivalence class for isomorphims of totally ordered well-founded sets.

More intuitively, let us have a look at Figure 3.1. It presents a small sequence
of ordinal numbers, which extends the sequence of natural numbers.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, . . .

ω, ω + 1, ω + 2, ω + 3, . . .

ω × 2, ω × 2 + 1, . . . , ω × 3, ω × 3 + 1, . . . , ω × 4, . . . ,

ω2, . . . , ω2 × 42, . . . , ω3, . . . , ω4, ω4 + 1, . . . ,

ωω, . . . , ωω + ω7 × 8, . . . , ωω × 2, ωω × 2 + 1, . . . ,

ωω
ω

, . . . , ωω
ω

+ ωω × 42 + ω55 + ω, . . . , ωω
ω+1

, ωω
ω+1

+ 1, . . .

ε0(= ωε0), ε0 + 1, ε0 + 2, ε0 + 3, . . . ,

ε1, . . . , ε2, . . . , εω, . . .

Γ0,Γ0 + 1,Γ0 + 2,Γ0 + 3, . . . ,Γ0 + ω, . . . ,

. . .

Figure 3.1: A short overview of the sequence of ordinal numbers

Let us comment some features of this figure:

43

44CHAPTER 3. INTRODUCTION TO ORDINAL NUMBERS AND ORDINAL NOTATIONS

• The ordinals are listed in a strictly increasing order.

• Dots : “. . .” stand for an infinite sequence of ordinals, not shown for lack
of space. For instance, the ordinal 42 is not shown in the first line, but it
exists, between 17 and ω.

• Each ordinal printed in black is the immediate successor of another ordinal.
We call it a successor ordinal. For instance, 12 is the successor of 11, and
ω4 + 1 the successor of ω4.

• Ordinals (displayed in red) that follow immediately dots are called limit
ordinals. With respect to the order induced by this sequence, any limit
ordinal α is the least upper bound of the set Oα of all ordinals strictly less
than α.

• For instance ω is the least upper bound of the set of all finite ordinals (in
the first line). It is also the first limit ordinal, and the first infinite ordinal,
in the sense that the set Oω is infinite.

• The ordinal ε0 is the first number which is equal to its own exponential
of base ω. It plays an important role in proof theory, and is particularly
studied in chapters 4 to 6.

• Any ordinal is either the ordinal 0, a successor ordinal, or a limit ordinal.

3.1 The Mathematical Point of View

3.1.1 Well-ordered Sets
Let us start with some definitions. A well-ordered set is a set provided with a
binary relation < which has the following properties.

irreflexivity : ∀x ∈ A, x 6< x

transitivity : ∀x y z ∈ A, x < y ⇒ y < z ⇒ x < z

trichotomy : ∀x y ∈ A, x < y ∨ x = y ∨ y < x

well foundedness : < is well-founded (every element of A is accessible)1.

The best known examples of well-ordered sets are the set N of natural num-
bers (with the usual order <), as well as any finite segment [0, i) = {j ∈ N | j <
i}. The disjoint union of two copies of N, i.e. the set {0, 1} × N is also well-
ordered, with respect to the order below:

(i, j) < (i, k) if j < k

(0, k) < (1, l) for any k and l
1In classical mathematics, we would say that there is no infinite sequence a1 > a2 >

. . . an > an+1 . . . in A. Please refer to any documenation on Coq for having more details on
well-foundedness and accessibility.

3.2. ORDINAL NUMBERS IN COQ 45

3.1.2 Ordinal Numbers
Let (A,<A) and (B,<B) two well-ordered sets. A and B are said to have the
same order type if there exists a strictly monotonous bijection b from A to B,
i.e. which verifies the proposition ∀x y ∈ A, x <A y ⇒ b(x) <B b(y).

Having the same order type is an equivalence relation between well-ordered
sets. Ordinal numbers (in short ordinals) are descriptions (names) of the equiv-
alence classes. For instance, the order type of (N, <) is associated with the
ordinal called ω, and the order we considered on the disjoint union of N and
itself is named ω + ω.

In a set-theoretic framework, one can consider any ordinal α as a well-ordered
set, whose elements are just the ordinals strictly less than α, i.e. the segment
Oα = [0, α). So, one can speak about finite, infinite, countable, etc., ordi-
nals. Nevertheless, since we work within type theory, we do not identify or-
dinals as sets of ordinals, but the correspondance between ordinals and sets
of ordinals is the function that maps α to Oα. For instance Oω = N, and
O7 = {0, 1, 2, 3, 4, 5, 6}.

We cannot cite all the litterature published on ordinals since Cantor’s book
[Can55], and leave it to the reader to explore the bibliography.

3.2 Ordinal Numbers in Coq
Two kinds of representation of ordinals are defined herein.

• A “mathematical” representation of the set of countable ordinal numbers,
afer Kurt Schütte [Sch77]. This representation uses several (hopefully
harmless) axioms. We use it as a reference for proving the correctness of
ordinal notations.

• A family of ordinal notations, i.e. data types used to represent segments
[0, µ), where µ is some countable ordinal. Each ordinal notation is defined
inside the Calculus of Inductive Constructions (without axioms). Many
functions are defined, allowing proofs by computation. Note that proofs
of correctness of a given ordinal notation with respect to Schütte’s model
obviously use axioms. Please execute the Print Assumptions command
in case of doubt.

3.3 Countable Ordinals
Chapter 7 of this document presents an adaptation to Coq of an axiomatization
in classical logic of the set of countable ordinals by K. Schütte [Sch77]. That
formalization is quite complex, technical and unshamedly non-constructive, so
we put its description in the last chapter of this document.

Please note that Schütte considers the (uncountable) set O of all count-
able ordinals. This set is well ordered (which is one of Schütte’s axioms), and
associates to any ordinal α the segment Oα of all ordinals strictly less than α.

In our adaptation to Coq, we declare a type Ord, a binary relation lt (with
infix notation "_<_", and assume Schütte’s axiom. In Chapter 7, we derive some
interesting properties of countable ordinals from these axioms. It is interesting
to compare proofs of a given property (for instance the associativity of addition)

46CHAPTER 3. INTRODUCTION TO ORDINAL NUMBERS AND ORDINAL NOTATIONS

in the computatuinal framework of some ordinal notation, and in the axiomatic
model of Schütte.

3.4 Ordinal Notations
Fortunately, the ordinals we need for studying hydra battles are much simpler
than Schütte’s, and can be represented as quite simple data types in Gallina.
So, we will use ordinal notations (also called [ordinal] notation systems).

Let α be some (countable) ordinal; in Coq terms, we call ordinal notation
for α a structure composed of:

• A data type A for representing all ordinals strictly below α,

• A well founded order < on A,

• A correct function for comparing two ordinals. Note that the reflexive
closure of < is thus a total order.

Such a structure can be proved correct relatively to another ordinal notation
or to Schütte’s model.

Ordered Types

The library Coq.Classes.RelationClasses contains some definitions and facts
about binary relations, among them strict orders.

Variable A: Type.

Class StrictOrder (R : relation A) : Prop := {
StrictOrder_Irreflexive :> Irreflexive R ;
StrictOrder_Transitive :> Transitive R }.

3.4.1 A Class for Ordinal Notations
The following class definition, parameterized with a type A, a binary relation
lt on A, specifies that lt is a well-founded strict order. The reflexive closure of
lt, (called le, for “less or equal than”) is a total decidable order, implemented
through a comparison function compare. The correctness of this function is
expressed through Stdlib’s type Datatypes.CompareSpec.

Inductive CompareSpec (Peq Plt Pgt : Prop) : comparison -> Prop :=
CompEq : Peq -> CompareSpec Peq Plt Pgt Eq

| CompLt : Plt -> CompareSpec Peq Plt Pgt Lt
| CompGt : Pgt -> CompareSpec Peq Plt Pgt Gt

From Library OrdinalNotations.Definitions

Class ON {A:Type}(lt: relation A)
(compare : A -> A -> comparison) :=

{
sto :> StrictOrder lt;

https://coq.inria.fr/distrib/current/stdlib/Coq.Classes.RelationClasses.html
../theories/html/hydras.OrdinalNotations.Definitions.html

3.4. ORDINAL NOTATIONS 47

wf : well_founded lt;
compare_correct :

forall alpha beta:A,
CompareSpec (alpha=beta) (lt alpha beta) (lt beta alpha)

(compare alpha beta);
}.

The following definitions allow us to make implicit several guessable argu-
ments.

Definition on_t {A:Type}{lt: relation A}
{compare : A -> A -> comparison}
{on : ON lt compare} := A.

Definition ON_compare {A:Type}{lt: relation A}
{compare : A -> A -> comparison}
{on : ON lt compare} := compare.

Definition ON_lt {A:Type}{lt: relation A}
{compare : A -> A -> comparison}
{on : ON lt compare} := lt.

Infix "o<" := ON_lt : ON_scope.

Definition ON_le {A:Type}{lt: relation A}
{compare : A -> A -> comparison}
{on : ON lt compare} :=

clos_refl _ ON_lt.

Infix "o<=" := ON_le : ON_scope.

Remark 3.1 The infix notations o< and o<= were defined in order to make
apparent the distinction between the various notation scopes that may co-exist
in a same statement. So the infix < and <= are reserved to the natural numbers.
In the mathematical formulas, we still use < and ≤ for comparing ordinals.

3.4.2 Ordinal Notations and Measures for Proving Termi-
nation

The following lemma (together with the type class mechnism) allows us to use
simply measures towards an ordinal notation. It is just an application of the
libraries Coq.Wellfounded.Inverse_Image and Coq.Wellfounded.Inclusion.

Definition measure_lt {A:Type}{lt: relation A}
{compare : A -> A -> comparison}
{on : ON lt compare}
{B : Type} (m : B -> A) : relation B :=
fun x y => on_lt (m x) (m y).

Lemma wf_measure {A:Type}(lt: relation A)
{compare : A -> A -> comparison}
{on : ON lt compare}

48CHAPTER 3. INTRODUCTION TO ORDINAL NUMBERS AND ORDINAL NOTATIONS

{B : Type}
(m : B -> A): well_founded (measure_lt m).

A simple example of application is given in Sect. 3.7.2 on page 54.

3.5 Examples of Ordinal Notations
3.5.1 The Ordinal ω
The simplest example of ordinal notation is built over the type nat of Coq’s
standard library. We have only to apply already proven lemmas about Peano
numbers.
From Library OrdinalNotations.ON_Omega

Global Instance Omega : ON Peano.lt Nat.compare.
Proof.
split.
- apply Nat.lt_strorder.
- apply Wf_nat.lt_wf.
- apply Nat.compare_spec.
Qed.

3.5.2 Sum of two Ordinal Notations
Let NA and NB be two ordinal notations, on the respective types A and B.

We consider a new strict order on the disjoint sum of the associated types, by
putting all elements of A before the elements of B (thanks to Standard Library’s
relation operator le_AsB).

From Library Relations.Relation_Operators.

Inductive
le_AsB (A B : Type) (leA : A -> A -> Prop) (leB : B -> B -> Prop)

: A + B -> A + B -> Prop :=
| le_aa : forall x y : A, leA x y -> le_AsB A B leA leB (inl x) (inl y)
| le_ab : forall (x : A) (y : B), le_AsB A B leA leB (inl x) (inr y)
| le_bb : forall x y : B, leB x y -> le_AsB A B leA leB (inr x) (inr y)

From Library OrdinalNotations.ON_plus

Section Defs.

Context `(ltA: relation A)
(compareA : A -> A -> comparison)
(NA: ON ltA compareA).

Context `(ltB: relation B)
(compareB : B -> B -> comparison)
(NB: ON ltB compareB).

Definition t := (A + B)%type.

../theories/html/hydras.OrdinalNotations/ON_Omega.html
https://coq.inria.fr/distrib/current/stdlib/Coq.Relations.Relation_Operators.html
../theories/html/hydras.OrdinalNotations/ON_plus.html

3.5. EXAMPLES OF ORDINAL NOTATIONS 49

Arguments inl {A B} _.
Arguments inr {A B} _.

Definition lt : relation t := le_AsB _ _ ltA ltB.

Before building an instance of ON, we have to define a comparison function.

Definition compare (alpha beta: t) : comparison :=
match alpha, beta with
inl _, inr _ => Lt

| inl a, inl a' => compareA a a'
| inr b, inr b' => compareB b b'
| inr _, inl _ => Gt

end.

Lemma compare_correct alpha beta :
CompareSpec (alpha = beta) (lt alpha beta) (lt beta alpha)

(compare alpha beta).

The Lemma Wellfounded.Disjoint_Union.wf_disjoint_sum of Standard
Library helps us to prove that our order lt is well-founded.

Global Instance ON_plus : ON lt compare.
Proof.
split.
- apply lt_strorder.
- apply lt_wf.
- apply compare_correct.

Qed.

3.5.3 The Ordinal ω + ω

The ordinal ω+ω (also known as ω×2) may be represented as the concatenation
of two copies of ω (Figure 3.2).

•
0

•
1

•
2

. . . •
n

•
n+ 1

. . . •
0

ω
•
1

ω + 1

•
2

ω + 2
. . . •

p

ω + p

. . .

Figure 3.2: ω + ω

We can define this notation in Coq as an instance of ON_plus.
From Module OrdinalNotations.ON_Omega_plus_omega

Definition Omega_plus_Omega := ON_plus Omega Omega.

Existing Instance Omega_plus_Omega.
Definition t := @ON_plus.t nat nat.

Example ex1 : inl 7 o< inr 0.
Proof. constructor. Qed.

../theories/html/hydras.OrdinalNotations.ON_Omega_plus_omega.html

50CHAPTER 3. INTRODUCTION TO ORDINAL NUMBERS AND ORDINAL NOTATIONS

We can now define abbreviations. For instance, the finite ordinals are rep-
resented by terms built with the constructor inl, and the first infinite ordinal
ω by the term (inr 0).

Definition fin (i:nat) : t := inl i.
Coercion fin : nat >-> t.

Notation "'omega'" := (inr 0:t).

Example ex1' : fin 7 o< omega.
Proof. constructor. Qed.

Lemma lt_omega alpha :
alpha o< omega <-> exists n:nat, alpha = fin n.

(* ... *)

3.6 Limits and Successors
Let us look again at our implementation of ω + ω. We can distinguish between
the three kinds of ordinals seen in Fig 3.1:

• The least ordinal, (inl 0), also written (fin 0).

• The limit ordinal ω.

• The successor ordinals, either of the form (inl (S i)) or (inr (S i))

3.6.1 Definitions
It would be interesting to specify at the most generic level, what is a zero, a
successor or a limit ordinal. Let < be a strict order on a type A.

• A least element is a minorant (in the large sense) of the full set on A,

• y is a successor of x if x < y and there is no element between x and y.
We will also say that x is a predecessor of y.

• x is a limit if x is not a least element, and for any y such that yo < x,
there exists some z such that y < z < x.

The following definitions are in Library Prelude.MoreOrders.

Section A_given.
Variables (A : Type) (lt: relation A).

Local Infix "<" := lt.
Local Infix "<=" := (clos_refl _ lt).

Definition Least {sto : StrictOrder lt} (x : A):=
forall y, x <= y.

Definition Successor {sto : StrictOrder lt} (y x : A):=

../theories/html/hydras.Prelude.MoreOrders.html

3.6. LIMITS AND SUCCESSORS 51

x < y /\ (forall z, x < z -> z < y -> False).

Definition Limit {sto : StrictOrder lt} (x:A) :=
(exists w:A, w < x) /\
(forall y:A, y < x -> exists z:A, y < z /\ z < x).

Exercise 3.1 Prove, that, in any ordinal notation system, that every ordinal
has at most one predecessor, and at most one successor.

Exercise 3.2 Prove, that, in any ordinal notation system, that if β is a suc-
cessor of α, then for any γ, γ < β implies γ ≤ α.

3.6.2 Limits and Successors in ω + ω

Using the definitions above, we can prove the following lemma:
From Module OrdinalNotations.ON_Omega_plus_omega

Lemma limit_iff (alpha : t) : Limit alpha <-> alpha = omega.

Regarding successors, let us introduce the following definition:

Definition succ (alpha : t) :=
match alpha with

inl n => inl (S n)
| inr n => inr (S n)
end.

Lemma Successor_correct alpha beta : Successor beta alpha <->
beta = succ alpha.

We can also check whether an ordinal is a successor by a simple pattern
matching:

Definition succb (alpha: t) : bool := match alpha with
| inr (S _) | inl (S _) => true
| _ => false
end.

Lemma succb_correct (alpha : t) :
succb alpha <-> exists beta: t, alpha = succ beta.

Finally, the nature of any ordinal is decidable(inside this notation system) :
From Module OrdinalNotations.Generic

Definition ZeroLimitSucc_dec {A:Type}{lt: relation A}
{compare : A -> A -> comparison}
{on : ON lt compare} :=

forall alpha,
{Least alpha} +

../theories/html/hydras.OrdinalNotations.ON_Omega_plus_omega.html
../theories/html/hydras.OrdinalNotations.Generic.html

52CHAPTER 3. INTRODUCTION TO ORDINAL NUMBERS AND ORDINAL NOTATIONS

{Limit alpha} +
{beta: A | Successor alpha beta}.

(* ... *)

From Module OrdinalNotations.ON_Omega_plus_omega

Definition Zero_limit_succ_dec : ZeroLimitSucc_dec.

3.7 The Ordinal ω2

The ordinal ω2 (also called φ0(2), see Chap. 7), is represented by the lexico-
graphically ordered cartesian product N× N.
From Module ON_Omega2

Definition t := (nat * nat)%type.

Definition lt : relation t := lexico Peano.lt Peano.lt.
Definition le := clos_refl _ lt.

Infix "o<" := lt : o2_scope.
Infix "o<=" := le : o2_scope.

It is easy to represent finite ordinals, successors and limits.

Definition zero: t := (0,0).

Definition fin (n:nat) : t := (0, n).

Notation "'F'" := fin : o2_scope.

Coercion fin : nat >-> t.

Definition succ (alpha : t) := (fst alpha, S (snd alpha)).

Notation "'omega'" := (1,0) : o2_scope.

Definition limitb (alpha : t) :=
match alpha with
| (S _, 0) => true
| _ => false
end.

In order to build an ordinal notation out of the type t, we have to define a
comparison function, and prove that the order lt is well-founded.

Instance lt_strorder : StrictOrder lt.
(* ... *)

Definition compare (alpha beta: t) : comparison :=
match Nat.compare (fst alpha) (fst beta) with

../theories/html/hydras.OrdinalNotations.ON_Omega_plus_omega.html
../theories/html/hydras.OrdinalNotations.ON_Omega2.html

3.7. THE ORDINAL ω2 53

Eq => Nat.compare (snd alpha) (snd beta)
| c => c
end.

Lemma compare_correct alpha beta :
CompareSpec (alpha = beta) (lt alpha beta) (lt beta alpha)

(compare alpha beta).

Lemma lt_wf : well_founded lt.

Instance Omega2: ON lt compare.
Proof.
split.
- apply lt_strorder.
- apply lt_wf.
- apply compare_correct.

Qed.

3.7.1 Arithmetic of ω2

3.7.1.1 Addition

We can define on ON_omega2 an addition which extends the addition on nat.

Definition plus (alpha beta : t) : t :=
match alpha,beta with
| (0, b), (0, b') => (0, b + b')
| (0,0), y => y
| x, (0,0) => x
| (0, b), (S n', b') => (S n', b')
| (S n, b), (S n', b') => (S n + S n', b')
| (S n, b), (0, b') => (S n, b + b')
end.

Infix "+" := plus : o2_scope.

Please note that this operation is not commutative:

Example non_commutativity_of_plus : omega + 3 <> 3 + omega.
Proof.
cbn.

1 subgoal (ID 237)

============================
(1, 3) <> omega.

discriminate.
Qed.

54CHAPTER 3. INTRODUCTION TO ORDINAL NUMBERS AND ORDINAL NOTATIONS

3.7.1.2 Multiplication

The restriction of ordinal multiplication to the segment [0, ω2) is not a total
function. For instance ω × ω = ω2 is outside the set of represented values.
Nevertheless, we can define two operations mixing natural numbers and ordinals.

(** multiplication of an ordinal by a natural number *)

Definition mult_fin_r (alpha : t) (p : nat): t :=
match alpha, p with

| (0,0), _ => zero
| _, 0 => zero
| (0, n), p => (0, n * p)
| (n, b), n' => (n * n', b)

end.
Infix "*" := mult_fin_r : o2_scope.

(** multiplication of a natural number by an ordinal *)

Definition mult_fin_l (n:nat)(alpha : t) : t :=
match n, alpha with

| 0, _ => zero
| _, (0,0) => zero
| n , (0,n') => (0, (n*n')%nat)
| n, (n',p') => (n', (n * p')%nat)
end.

Example e1 : (omega * 7 + 15) * 3 = omega * 21 + 15.
Proof. reflexivity. Qed.

Example e2 : mult_fin_l 3 (omega * 7 + 15) = omega * 7 + 45.
Proof. reflexivity. Qed.

Multiplication with a finite ordinal and addition are related through the
following lemma:

Lemma unique_decomposition alpha :
exists! i j: nat, alpha = omega * i + j.

3.7.2 A Proof of Termination using ω2

.
Using the lemma of Sect. 3.4.2 on page 47, we can define easily a total

function which merges two lists.

(* adapted from Pascal Manoury et al. *)

Require Import Coq.Program.Wf List.
Require Import FunInd Recdef.

Section Merge.

3.7. THE ORDINAL ω2 55

Variable A: Type.

Local Definition m (p : list A * list A) :=
omega * length (fst p) + length (snd p).

Function merge (ltb: A -> A -> bool)
(xys: list A * list A)
{wf (measure_lt m) xys} :

list A :=
match xys with
(nil, ys) => ys

| (xs, nil) => xs
| (x :: xs, y :: ys) =>
if ltb x y then x :: merge ltb (xs, (y :: ys))
else y :: merge ltb ((x :: xs), ys)

end.

- intros; unfold m, measure_lt; cbn; destruct xs0; simpl; left; lia.
- intros; unfold m, measure_lt; cbn; destruct ys0; simpl; right; lia.
- auto.

Defined.

End Merge.

Goal forall l, merge nat Nat.leb (nil, l) = l.
intro; now rewrite merge_equation.

Qed.

3.7.3 Yet Another Proof of Impossibility
In Sect. 2.4.3 on page 39, we proved that there exists no variant towards nat
(i.e. the ordinal ω) for proving the termination of all hydra battles. We prove
now that the ordinal ω2 is also insufficient for this purpose.

The proof we are going to develop has exactly the same structure as in Sec-
tion 2.4.3. Nevertheless, the proof of technical lemmas is a little more complex,
due to the structure of the lexicographic order on N×N. Consider for instance
that there exists an infinite number of ordinals between ω and ω × 2.

The detailed proof script is in the file ../theories/html/hydras.Hydra.
Omega2_Small.html.

3.7.3.1 Preliminaries

Let us assume there is a variant from Hydra into ω2 for proving the termination
of all hydra battles.

From Module Hydra.Omega2_Small

Section Impossibility_Proof.

Variable m : Hydra -> ON_Omega2.t.

Context (Hvar : Hvariant lt_wf free m).

../theories/html/hydras.Hydra.Omega2_Small.html
../theories/html/hydras.Hydra.Omega2_Small.html
../theories/html/hydras.Hydra.Omega2_Small.html

56CHAPTER 3. INTRODUCTION TO ORDINAL NUMBERS AND ORDINAL NOTATIONS

Let us follow the same pattern as in Sect. 2.4.3. First, we define an injection
from type t into Hydra, by associating to each ordinal ω × i + j = (i, j) the
hydra with i branches of length 2 and j branches of length 1.

From Module Hydra.Omega2_Small

Let iota (p: ON_Omega2.t) :=
node (hcons_mult (hyd1 head) (fst p)

(hcons_mult head (snd p) hnil)).

For instance, Figure 3.3 shows the hydra associated to the ordinal (3, 5),
a.k.a. ω × 3 + 5.

•

• • •

Figure 3.3: The hydra ι(ω × 3 + 5)

Like in Sect. 2.4.3, we build a hydra out of the range of iota (represented
in Fig. 3.4).

•

•

Figure 3.4
The hydra big_h.

Let big_h := hyd1 (hyd2 head head).

In a second step, we build a “smaller” hydra.

Let small_h := iota (m big_h).

Like in Sect. 2.4.3, we prove the double inequality m big_h o<= m small_h
o< m big_h, which is impossible.

3.7.3.2 Proof of the Inequality m small_h o< m big_h

In order to prove the inequality m_lt: m small_h o< m big_h, it suffices to
build a battle transforming big_h into small_h.

First we prove that small_h is reachable from big_h in one or two steps. Let
us decompose m big_h as (i, j). If j = 0, then one round suffices to transform

../theories/html/hydras.Hydra.Omega2_Small.html#iota

3.7. THE ORDINAL ω2 57

big_h into ι(i, j). If j > 0, then a first round transforms big_h into ι(i+ 1, 0)
and a second round into ι(i, j). So, we have the following result.

Lemma big_to_small: big_h -+-> small_h.

Since m is a variant, we infer the following inequality:

Corollary m_lt : m small_h o< m big_h.

3.7.3.3 Proof of the Inequality m big_h o<= m small_h

The proof of the inequality m big_h o<= m small_h is quite more complex than
in Sect 2.4.3. If we consider any ordinal α = (i, j), where i > 0, there exists
an infinite number of ordinals stricly less than α, and there exists an infinite
number of battles that start from ι(α). Indeed, at any configuration ι(k, 0),
where k > 0, the hydra can freely choose any replication number. Intuitively,
the measure of such a hydra must be large enough for taking into account all the
possible battles issued from that hydra. Let us now give more technical details.

• The proof of the lemma m_ge : m big_h o<= m small_h uses well-founded
induction on big_h.

• For any pair p, we have to distinguish between three cases, according to
the value of p’s components.

– p = (0, 0)

– p = (i, 0), where i > 0 : p corresponds to a limit ordinal
– p = (i, j), where j > 0 : p is the successor of (i, j − 1).

Let us define the notion of elementary “step” of decreasing sequences in t

Inductive step : t -> t -> Prop :=
| succ_step : forall i j, step (i, S j) (i, j)
| limit_step : forall i j, step (S i, 0) (i, j).

The following lemma establishes a correspondance between the relation step
and hydra battles.

Lemma step_to_battle : forall p q, step p q -> iota p -+-> iota q.

Thus, starting from any inequality q < p on type t, we can build by transfi-
nite induction (i.e. well-founded) over p a battle that transforms the hydra ι(p)
into ι(q).

From Module Hydra.Omega2_Small

Lemma m_ge : forall p : t, p o<= m (iota p).
Proof.
unfold small_h; pattern (m big_h) .
apply well_founded_induction with (R := lt) (1:= lt_wf).

intro p ; pattern p;
apply well_founded_induction with

(R := lt2) (1:= wf_lexico lt_wf lt_wf);
intros (i,j) IHij.

../theories/html/hydras.Hydra.Omega2_Small.html#m_ge

58CHAPTER 3. INTRODUCTION TO ORDINAL NUMBERS AND ORDINAL NOTATIONS

i, j : nat
IHij : forall y : t, y o< (i, j) -> y o<= m (iota y)
============================
(i, j) o<= m (iota (i, j))

Then we have three cases to consider, according to the values of i and j.

• If p = (0, 0) then obviously, ι(p) ≥ p = (0, 0)

• If p = (i + 1, 0) for some i ∈ N, we remark that p is strictly greater than
any pair (i, j), where j is any natural number.
Applying the battle rules, for any j, we have ι(i + 1, j) -1-> ι(i, j), thus
m(ι(p)) > m(ι(i, j) since m is assumed to be a variant.
Applying the induction hypothesis, we get the inequalitym(ι(i, j)) ≥ (i, j)
for any j.
Thus, m(ι(p)) > (i, j) for any j. Applying the lemma limit_is_lub, we
get the inequality m(ι(i+ 1, 0)) ≥ (i+ 1, 0)

• If p = (i, j + 1) with j ∈ N, we have ι(p) -1-> ι(i, j), hence m(ι(p)) >
m(ι(i, j)) ≥ (i, j), thus m(ι(p)) ≥ (i, j + 1) = p

(* ... *)
Qed.

3.7.3.4 End of the Proof

Since < is a strict order (irreflexive and transitive) on nat*nat, we infer that
there is no variant for termination on the lexicographic square of (N, <).

1. From m_lt, we infer the strict inequality m small_h o< m big_h

2. from m_ge, we get m big_h o<= m (iota (m big_h)) = m small_h

From Module Hydra.Omega2_Small

Theorem Impossible : False.
Proof.

destruct (StrictOrder_Irreflexive (m big_h)).
apply le2_lt2_trans with (m small_h).
- unfold small_h; apply m_ge.
- apply m_lt.

Qed.

End Impossibility_Proof.

Exercise 3.3 Prove that there exists no variant m from Hydra into ω2 for
proving the termination of all standard battles.

../theories/html/hydras.Hydra.Omega2_Small.html

3.8. A NOTATION FOR FINITE ORDINALS 59

Remark 3.2 In Chapter 5, we prove a generalization of the impossibility lem-
mas of Sect. 2.4.3 and this section, with the same proof structure, but with
much more complex technical details.

Exercise 3.4 Write direct proofs (i.e., without applying the result and tools of
Chap. 5) that the following data structures are too simple for defining a variant
for any hydra battle.

• ωn : the set of all n-uples of natural numbers, ordered by lexicographic
ordering

• ωω: the set of all decreasing sequences (with respect to ≤) of natural
numbers, ordered by lexicographic ordering on lists.
For instance, the following inequality holds:

〈4, 3, 3, 3, 3, 3, 3, 2, 2, 2〉 < 〈4, 4, 2〉

3.8 A Notation for Finite Ordinals
Let n be some natural number. The segment associated with n is the interval
[0, n) = {0, 1, . . . , n− 1}. One may represent the ordinal n by a sigma type.
From Module OrdinalNotations.ON_Finite

Coercion is_true: bool >-> Sortclass.

Definition t (n:nat) := {i:nat | Nat.ltb i n}.

The order on type (t n) is defined through the projection on nat.

Definition lt {n:nat} : relation (t n) :=
fun alpha beta => Nat.ltb (proj1_sig alpha) (proj1_sig beta).

For instance, let us build two elements of the segment [0, 7), i.e. two inhab-
itants of type (t 7), and prove a simple inequality (see Fig. 3.5).

•
0

•
1

•
2

•
3

•
4

•
5

•
6

α1 β1

Figure 3.5: The segment O7

Program Example alpha1 : t 7 := 2.

Program Example beta1 : t 7 := 5.

Example i1 : lt alpha1 beta1.
Proof. now compute. Qed.

../theories/html/hydras.OrdinalNotations.ON_Finite.html

60CHAPTER 3. INTRODUCTION TO ORDINAL NUMBERS AND ORDINAL NOTATIONS

Note that the type (t 0) is empty, and that, for any natural number n, n
does not belong to (t n).

Lemma t0_empty (alpha: t 0): False.
Proof.

destruct alpha.
destruct x; cbn in i; discriminate.

Qed.

Program Definition bad : t 10 := 10.
Next Obligation.

compute.

1 subgoal (ID 162)

============================
false = true

Abort.

Note also that attempting to compare a term of type (t n) with a term of
type (t p) leads to an error if n and p are not convertible.

Program Example gamma1 : t 8 := 7.

Fail Goal lt alpha1 gamma1.

The command has indeed failed with message:
The term "gamma1" has type "t 8" while it is expected to have type "t 7".

In order to build an instance of OrdinalNotation, we define a compari-
son function, by delegation to standard library’s Nat.compare, and prove its
correction.

Definition compare {n:nat} (alpha beta : t n) :=
Nat.compare (proj1_sig alpha) (proj1_sig beta).

Lemma compare_correct {n} (alpha beta : t n) :
CompareSpec (alpha = beta) (lt alpha beta) (lt beta alpha)

(compare alpha beta).

Remark 3.3 The proof of compare_correct uses a well-known pattern of Coq.
Let us consider the following subgoal.

1 subgoal (ID 110)

n, x0 : nat
i, i0 : x0 <? S n

3.8. A NOTATION FOR FINITE ORDINALS 61

============================
exist (fun i1 : nat => i1 <=? n) x0 i =
exist (fun i1 : nat => i1 <=? n) x0 i0

Applying the tactic f_equal generates a simpler subgoal.

1 subgoal (ID 112)

n, x0 : nat
i, i0 : x0 <? S n
============================
i = i0

We have now to prove that there exists at most one proof of (Nat.ltb x0
(S n)). This is not obvious, but a consequence of the following lemma of library
Coq.Logic.Eqdep_dec.

eq_proofs_unicity_on :
forall (A : Type) (x : A),
(forall y : A, x = y \/ x <> y) ->
forall (y : A) (p1 p2 : x = y), p1 = p2

Thus unicity of proofs of Nat.ltb x0 (S n) comes from the decidability
of equality on type bool. This is why we used the boolean function Nat.ltb
instead of the inductive predicate Nat.lt in the definition of type t n (see
page 59). For more information about this pattern, please look at the numerous
mailing lists and FAQs on Coq).

Applying lemmas of the libraries Coq.Wellfounded.Inverse_Image,
Coq.Wellfounded.Inclusion, and Coq.Arith.Wf_nat, we prove that our rela-
tion lt is well founded.

Lemma lt_wf (n:nat) : well_founded (@lt n).

Now we can build our instance of OrdinalNotation.

Global Instance sto n : StrictOrder (@lt n).

Global Instance FinOrd (n:nat) : OrdinalNotation (sto n) compare.
Proof.
split.
- apply compare_correct.
- apply lt_wf.

Qed.

Remark 3.4 It is important to keep in mind that the integer n is not an “ele-
ment” of FinOrd n. In set-theoretic presentations of ordinals, the set associated
with the ordinal n is {0, 1, . . . , n − 1}. In our formalization, the interpretation
of an ordinal as a set is realized by the following definition (in OrdinalNota-
tions.Generic).

https://coq.inria.fr/distrib/current/stdlib/Coq.Logic.Eqdep_dec.html
../theories/html/hydras.OrdinalNotations.Generic.html
../theories/html/hydras.OrdinalNotations.Generic.html

62CHAPTER 3. INTRODUCTION TO ORDINAL NUMBERS AND ORDINAL NOTATIONS

Definition bigO `{nA : @OrdinalNotation A ltA stoA compareA}
(a: A) : Ensemble A :=

fun x: A => ltA x a.

Remark 3.5 There is no interesting arihmetic on finite ordinals, since functions
like successor, addition, etc., cannot be represented in Coq as total functions.

Remark 3.6 Finite ordinals are also formalized in MathComp [MT]. See also
Adam Chlipala’s CPDT [Chl11] for a thorough study of the use of dependent
types.

3.9 Comparing two Ordinal Notations
It is sometimes useful to compare two ordinal notations with respect to expres-
sive power (the segment of ordinals they represent).

The following class specifies a strict inclusion of segments. The notation OA
describes a segment [0, α(, and OB is a larger segment (which contains a notation
for α, whilst α is not represented in OA). We require also that the comparison
functions of the two notation systems are compatible.

If OB is presumed to be correct, the we can consider that OA “inherits” its
correcteness from the bigger notation system OB.

Class SubON
`(OA : @ON A ltA compareA)
`(OB : @ON B ltB compareB)
(alpha : B)
(iota : A -> B):=

{
SubON_compare: forall x y : A, compareB (iota x) (iota y) =

compareA x y;
SubON_incl : forall x, ltB (iota x) alpha;
SubON_onto : forall y, ltB y alpha -> exists x:A, iota x = y}.

For instance, we prove that Omega is a sub-notation of Omega_plus_Omega
(with ω as the first “new” ordinal, and fin as the injection).

Instance Incl : SubON Omega Omega_plus_Omega omega fin.

We can also show that, if i < j, then the segment [0, i) is a “sub-segment”
of [0, j). Since the terms (t i) and (t j) are not convertible, we consider a “cast”
function ι from (t i) into (t j), and prove that this function is a monotonous
bijection from (t i) to the segment [0, i) of (t j).

We are now able to build an instance of SubON.
From Module OrdinalNotations.ON_Finite

Section Inclusion_ij.

Variables i j : nat.

../theories/html/hydras.OrdinalNotations.ON_Finite.html

3.10. COMPARING AN ORDINAL NOTATION WITH SCHÜTTE’S MODEL63

A •
0

•
1

•
2

. . .

B •
0

•
1

•
2

. . . •
b

•
b+ 1

. . .

ι ι ι ι

Figure 3.6: A is a sub-segment of B

Hypothesis Hij : (i < j)%nat.

Remark Ltb_ij : Nat.ltb i j.

Program Definition iota_ij (alpha: t i) : t j := alpha.

Let b : t j := exist _ i Ltb_ij.

Global Instance F_incl_ij : SubON (FinOrd i) (FinOrd j) b iota_ij.
(* ... *)

End Inclusion_ij.

Exercise 3.5 Prove that Omega_plus_Omega cannot be a sub-notation of Omega.

Project 3.1 Adapt the definition of Hvariant (Sect. 2.4.2) in order to have an
ordinal notation as argument. Prove that if OA is a sub-notation of OB , then
any variant defined on OA can be automatically transformed into a variant on
OB .

3.10 Comparing an Ordinal Notation with Schütte’s
Model

Finally, it may be interesting to compare an ordinal notation with the more
theoretical model from Schütte (well, at least with our formalization of that
model). This would be a relative proof of correctenss of the considered ordinal
notation.

The following class specifies that a notation OA describes a segment [0, α),
where α is a countable ordinal à la Schütte.

Class ON_correct `(alpha : Schutte_basics.Ord)
`(OA : @ON A ltA compareA)
(iota : A -> Schutte_basics.Ord) :=

{ ON_correct_inj : forall a, Schutte_basics.lt (iota a) alpha;
ON_correct_onto : forall beta, Schutte_basics.lt beta alpha ->

exists b, iota b = beta;
On_compare_spec : forall a b:A,

match compareA a b with
Datatypes.Lt => Schutte_basics.lt (iota a) (iota b)

64CHAPTER 3. INTRODUCTION TO ORDINAL NUMBERS AND ORDINAL NOTATIONS

| Datatypes.Eq => iota a = iota b
| Datatypes.Gt => Schutte_basics.lt (iota b) (iota a)
end}.

For instance, the following theorem tells that Epsilon0, our notation system
for the segment [0, ε0) is a correct implementation of the theoretically defined
ordinal ε0 (see chapter 7 for more details).

Instance Epsilon0_correct :
ON_correct epsilon0 Epsilon0 (fun alpha => inject (cnf alpha)).

Project 3.2 When you have read Chapter 7, prove that the sum of two ordinal
notations ON_plus implements the addition of ordinals.

3.11 Isomorphism of Ordinal Notations
In some cases we want to show that two notation systems describe the same
segment (for instance [0, 3 + ω) and [0, ω(). For this purpose, one may prove
that the two notation systems are order-isomorphic.

Class ON_Iso
`(OA : @ON A ltA compareA)
`(OB : @ON B ltB compareB)
(f : A -> B)
(g : B -> A):=

{
iso_compare: forall x y : A,

compareB (f x) (f y) = compareA x y;
iso_inv1 : forall a, g (f a)= a;
iso_inv2 : forall b, f (g b) = b}.

Exercise 3.6 Let i be some natural number. Prove that the notation systems
Omega and ON_plus (OrdFin i) Omega are isomorphic.

Note: This property reflects the equality i + ω = ω, that we will prove in
larger notation systems, as well as in Schütte’s model.

This exercise is partially solved for i = 3 (in OrdinalNotations.Exam-
ple_3PlusOmega).

Project 3.3 Define in Coq the product of two ordinal notations NA and NB . If
A [resp. B] is the underlying type of NA [resp. NB], the product ON_mult NA

NB is implemented over the cartesian product B × A (with the lexicographic
ordering).

For instance, the elements of the product ON_mult Omega (FinOrd 3) are
ordered as follows.

(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), . . . , (1, 0),(1, 1), (1, 2), . . . , (2, 0), (2, 1), (2, 2), . . .

../theories/html/hydras.OrdinalNotations.Example_3PlusOmega.html
../theories/html/hydras.OrdinalNotations.Example_3PlusOmega.html

3.12. OTHER ORDINAL NOTATIONS 65

Note that the elements of (ON_mult (FinOrd 3) Omega) are differently or-
dered (without limit ordinals):

(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (2, 2), (0, 3), . . .

Prove that ON_mult (FinOrd i) Omega is isomorphic to Omega whilst Omega
is a sub-notation of ON_mult Omega (FinOrd i), for any strictly positive i.

Project 3.4 Consider two isomorphic ordinal notations OA and OB. Prove that,
if OA [resp. OB] is a correct implementation of α [resp. β], then α = β.

Project 3.5 Add to the class ON the requirement that for any α it is decidable
whether α is 0, a successor or a limit ordinal.

Hint: Beware of the instances associated with sum and product of notations!
You may consider additional fields to make the sum and product of notations
“compositional”.

Project 3.6 Reconsider the class ON, with an equivalence instead of Leibniz
equality.

3.12 Other Ordinal Notations
Project 3.7 The directory theories/OmegaOmega contains an ad-hoc formal-
ization of ωω, contributed by Pascal Manoury. Every ordinal α is represented
by a list l whose elements are the coefficients of ω in the Cantor normal form of
α (in reverse order). For instance, the ordinal ω8 × 5+ω6 × 8+ω2 × 10+ω+7
is represented by the list [5;0;8;0;0.0;10,1,7].

Develop this representation and compare it with the other ordinal notations.

Project 3.8 Let NA be a notation system for ordinals strictly less than α, with
the strict order (A,<A). Please build the notation system ON_Expl NA, on the
type of multisets of elements of A (or, if preferred, the type of non-increasing
finite sequences on A, provided with the lexicographic ordering on lists).

For instance, let us take NA = Omega, and take α = 〈4, 4, 2, 1, 0〉, β =
〈4, 3, 3, 3, 3, 3, 2〉, and γ = 〈5〉. Then β < α < γ.

In contrast the list 〈5, 6, 3, 3〉 is not non-increasing (i.e. sorted w.r.t. ≥), so
it is not to be considered.

Note that if the notation NA implements the ordinal α, the new notation
ωNA must implement the ordinal φ0(α), a.k.a. ωα (see chapter 7)

Remark 3.7 The set of ordinal terms in Cantor normal form (see Chap. 4)
and in Veblen normal form (see Gamma0.Gamma0) are shown to be ordinal
notation systems, but there is a lot of work to be done in order to unify ad-hoc
definitions and proofs which were written before the definition of the ON type
class.

../theories/html/hydras.Gamma0.Gamma0.html

66CHAPTER 3. INTRODUCTION TO ORDINAL NUMBERS AND ORDINAL NOTATIONS

Chapter 4

A Proof of Termination,
using Ordinals below ε0

In this chapter, we adapt to Coq the well-known [KP82] proof that Hercules
eventually wins every battle, whichever the strategy of each player. In other
words, we present a formal and self contained proof of termination of all [free]
hydra battles. First, we take from Manolios and Vroon [MV05] a representation
of the ordinal ε0 as terms in Cantor normal form. Then, we define a variant for
hydra battles as a measure that maps any hydra to some ordinal strictly less
than ε0.

4.1 The Ordinal ε0
4.1.1 Cantor Normal Form
The ordinal ε0 is the least ordinal number that satisfies the equation α = ωα,
where ω is the least infinite ordinal. Thus, we can consider ε0 as an infinite ω-
tower. Nevertheless, any ordinal strictly less that ε0 can be finitely represented
by a unique Cantor normal form, that is, an expression which is either the
ordinal 0 or a sum ωα1 × n1 + ωα2 × n2 + · · · + ωαp × np where all the αi are
ordinals in Cantor normal form, α1 > α2 > αp, and all the ni are positive
integers.

An example of Cantor normal form is displayed in Fig 4.1: Note that any
ordinal of the form ω0 × i+ 0 is just written i.

ω(ωω + ω2×8 + ω) + ωω + ω4 + 6

Figure 4.1: An ordinal in Cantor normal form

In the rest of this section, we define an inductive type for representing in
Coq all the ordinals strictly less than ε0, then extend some arithmetic opera-
tions to this type, and finally prove that our representation fits well with the
expected mathematical properties: the order we define is a well order, and the

67

68 CHAPTER 4. A PROOF OF TERMINATION, USING EPSILON0

decomposition into Cantor normal form is consistent with the implementation
of the arithmetic operations of exponentiation of base ω and addition.

Remark Unless explicitly mentionned, the term “ordinal” will be used in-
stead of “ordinal strictly less than ε0” (except in Chapter 7 where it stands for
“countable ordinal”).

4.1.2 A Data Type for Ordinals in Cantor Normal Form
Let us define an inductive type whose constructors are respectively associated
with the ways to build Cantor normal forms:

• the ordinal 0

• the construction (α, n, β) 7→ ωα × (n+ 1) + β (n ∈ N)

From Module Epsilon0.T1

Inductive T1 : Set :=
| zero : T1
| ocons : T1 -> nat -> T1 -> T1.

Remark

The name T1 we gave to this data-type is proper to this development and refers
to a hierarchy of ordinal notations. For instance, in [CC06], the following type
is used to represent ordinals strictly less than Γ0, in Veblen normal form (see
also [Sch77]).

Please look also at the library Gamma0.T2.html.

Inductive T2 : Set :=
zero : T2

| gcons : T2 -> T2 -> nat -> T2 -> T2.

4.1.2.1 Example

For instance, the ordinal ωω + ω3 × 5 + 2 is represented by the following term:

Example alpha_0 : T1 :=
ocons (ocons (ocons zero 0 zero)

0
zero)

0
(ocons (ocons zero 2 zero)

4
(ocons zero 1 zero)).

../theories/html/hydras.Epsilon0.T1.html#T1
../theories/html/hydras.Gamma0.T2.html

4.1. THE ORDINAL ε0 69

ocons

ocons

ocons

zero 0 zero

0 zero

0 ocons

ocons

zero 2 zero

4 ocons

zero 1 zero

Figure 4.2: The tree-like representation of the ordinal ωω + ω3 × 5 + 2

4.1.2.1.1 Remark For simplicity’s sake, we chosed to forbid expressions of
the form ωα × 0 + β. Thus, the contruction (ocons α n β) is intented to
represent the ordinal ωα × (n+ 1) + β and not ωα × n+ β. In a future version,
we should replace the type nat with positive in T1’s definition. But this
replacement would take a lot of time …

4.1.3 Abbreviations
Some abbreviations may help to write more concisely complex ordinal terms.

4.1.3.1 Finite Ordinals

For representing finite ordinals, i.e. natural numbers, we first introduce a nota-
tion for terms of the form n+ 1, then define a coercion from type nat into T1.

Notation "'FS' n" :=
(ocons zero n zero) (at level 10) : t1_scope.

Definition fin (n:nat) : T1 :=
match n with 0 => zero | S p => FS p end.

Coercion fin : nat >-> T1.

Example ten : T1 := 10.

4.1.3.2 The Ordinal ω

Since ω’s Cantor normal form is i.e. ωω0 × 1 + 0, we can define the following
abbreviation:

Notation omega := (ocons (ocons zero 0 zero) 0 zero): t1_scope.

Note that omega is not an identifier, thus any tactic like unfold omega would
fail.

4.1.3.3 The Ordinal ωα, a.k.a. φ0(α)

We provide also a notation for ordinals of the form ωα.

70 CHAPTER 4. A PROOF OF TERMINATION, USING EPSILON0

Notation "'phi0' alpha" := (ocons alpha 0 zero) (at level 29) : t1_scope.

Remark 4.1 The name φ0 comes from ordinal numbers theory. In [Sch77],
Schütte defines φ0 as the ordering (i.e. enumerating) function of the set of
additive principal ordinals i.e. strictly positive ordinals α that verify ∀β <
α, β + α = α. For Schütte, ωα is just a notation for φ0(α). See also Chapter 7
of this document.

4.1.3.4 The Hierarchy of ω-towers:

The ordinal ε0, although not represented by a finite term in Cantor normal form,
is approximed by the sequence of ω-towers (see also Sect 7.6.3 on page 139).

From Module Epsilon0.T1

Fixpoint omega_tower (height:nat) : T1 :=
match height with
| 0 => 1
| S h => phi0 (omega_tower h)
end.

For instance, Figure 4.3 represents the ordinal returned by the evaluation of
the term omega_tower 7.

ωωωωωωω

Figure 4.3: The ω-tower of height 7

4.1.4 Comparison between Ordinal Terms
In order to compare two terms of type T1, we define a recursive function compare
that maps two ordinals α and β to a value of type comparison. This type is
defined in Coq’s standard library Init.Datatypes and contains three construc-
tors: Lt (less than), Eq (equal), and Gt (greater than).

From Module Epsilon0.T1

Fixpoint compare (alpha alpha':T1):comparison :=
match alpha, alpha' with
zero, zero => Eq

| zero, ocons a' n' b' => Lt
| _ , zero => Gt
| (ocons a n b),(ocons a' n' b') =>

(match compare a a' with
| Lt => Lt
| Gt => Gt

../theories/html/hydras.Epsilon0.T1.html
../theories/html/hydras.Epsilon0.T1.html#compare

4.1. THE ORDINAL ε0 71

| Eq => (match lt_eq_lt_dec n n'
with

inleft (left _) => Lt
| inright _ => Gt
| _ => compare b b'

end)
end)

end.

It is now easy to define the boolean predicate lt_b α β: “ α is strictly less
than β ”. By coercion to sort Prop we define also the predicate lt.

From Module Epsilon0.T1

Definition lt_b alpha beta : bool :=
match compare alpha beta with

Lt => true
| _ => false

end.

Definition lt alpha beta : Prop := lt_b alpha beta.

Please note that this definition of lt makes it easy to write proofs by reflec-
tion, as shown by the following exampgles.

Example E1 : lt (ocons omega 56 zero) (tower 3).
Proof. reflexivity. Qed.

Example E2 : ~ lt (tower 3) (tower 3).
Proof. discriminate. Qed.

The following lemmas establish relations between compare, the predicate lt
and Leibniz equality eq.

From Module Epsilon0.T1

Lemma compare_refl : forall alpha, compare alpha alpha = Eq.

Lemma compare_reflect : forall alpha beta,
match compare alpha beta with
| Lt => lt alpha beta
| Eq => alpha = beta
| Gt => lt beta alpha
end.

We prove also that the relation lt is a strict total order.
From Module Epsilon0.T1

Theorem lt_irrefl (alpha: T1): ~ lt alpha alpha.

Theorem lt_trans (alpha beta gamma : T1) :
lt alpha beta -> lt beta gamma -> lt alpha gamma.

../theories/html/hydras.Epsilon0.T1.html
../theories/html/hydras.Epsilon0.T1.html#compare_refl
../theories/html/hydras.Epsilon0.T1.html#lt_irrefl

72 CHAPTER 4. A PROOF OF TERMINATION, USING EPSILON0

Definition lt_eq_lt_dec :
forall alpha beta : T1,

{lt alpha beta} + {alpha = beta} + {lt beta alpha}.

Note that the order lt is not reflected in the structure (size and/or height)
of the terms of T1. For instance the ordinal of Fig 4.1 is strictly less than the
structurally simpler ωωω × 2.

4.1.4.1 A Predicate for Characterizing Normal Forms

Our data-type T1 allows us to write expressions that are not properly in Cantor
normal form as specified in Section 4.1. For instance, consider the following
term of type T1.

Example bad_term : T1 := ocons 1 1 (ocons omega 2 zero).

This term would have been written ω1 × 2+ ωω × 3 in the usual mathemat-
ical notation. We note that the exponents of ω are not in the right (strictly
decreasing) order.

With the help of the order lt on T1, we are now able to characterize the set
of all well-formed ordinal terms:

From Module Epsilon0.T1

Fixpoint nf_b (alpha : T1) : bool :=
match alpha with
| zero => true
| ocons a n zero => nf_b a
| ocons a n ((ocons a' n' b') as b) =>

(nf_b a && nf_b b && lt_b a' a)%bool
end.

Definition nf alpha: Prop := nf_b alpha.

Compute nf_b alpha_0.

= true
: bool

Compute nf_b bad_term.

= false
: bool

4.1.5 Making Normality Implicit
We would like to get rid of terms of type T1 which are not in Cantor normal
form. A simple way to do this is to consider statements of the form forall
alpha: T1, nf alpha -> P alpha, where P is a predicate over type T1, like
in the following lemma 1.

1Ordinal addition is formally defined a little later (page 4.1.7.2)

../theories/html/hydras.Epsilon0.T1.html#nf_b

4.1. THE ORDINAL ε0 73

Lemma plus_is_zero alpha beta :
nf alpha -> nf beta ->
alpha + beta = zero -> alpha = zero /\ beta = zero.

But this style leads to clumsy statements, and generates too many sub-goals
in interactive proofs (although often solved with auto or eauto).

One may encapsulate conditions of the form (nf α) in the most used predi-
cates. For instance, we introduce the restriction of lt to terms in normal form,
and provide a handy notation for this restriction.

From Module Ordinals.Prelude.Restriction

Definition restrict {A:Type}(E: Ensemble A)(R: relation A) :=
fun a b => E a /\ R a b /\ E b.

From Module Epsilon0.T1

Definition LT := restrict nf lt.
Infix "t1<" := LT : t1_scope.

Definition LE := restrict nf le.
Infix "t1<=" := LE : t1_scope.

For instance, in the following lemma, the condition that α is in normal form
is included in the condition α < 1.

Lemma LT_one : forall alpha, alpha t1< one -> alpha = zero.

4.1.5.1 A Sigma Type for ε0

As we noticed in Sect. 4.1.4.1, the type T1 is not a correct ordinal notation,
since it contains terms that are not in Cantor normal form. In certain contexts
(for instance in Sections 6.2.4, 6.3, and 6.4), we need to define total recursive
functions on well-formed ordinal terms less than ε0, using the Equations plug-
in [SM19]. In order to define a type whose inhabitants represent just ordinals,
we build a type gathering a term of type T1 and a proof that this term is in
normal form.

From Module Epsilon0.E0

Class E0 : Type := t1_2o {cnf : T1; cnf_ok : nf cnf}.

Many constructs : types, predicates, functions, notations, etc., on type T1
are adapted to E0.

First, we declare a notation scope for E0.

Declare Scope E0_scope.
Delimit Scope E0_scope with e0.
Open Scope E0_scope.

../theories/html/hydras.Prelude.Restriction.html
../theories/html/hydras.Epsilon0.T1.html#LT
../theories/html/hydras.Epsilon0.E0.html

74 CHAPTER 4. A PROOF OF TERMINATION, USING EPSILON0

Then we redefine the predicates of comparison.

Definition Lt (alpha beta : E0) := T1.LT (@cnf alpha) (@cnf beta).
Definition Le (alpha beta : E0) := T1.LE (@cnf alpha) (@cnf beta).

Infix "o<" := Lt : E0_scope.
Infix "o<=" := Le : E0_scope.

Equality in E0 is just Leibniz equality. Note that, since nf is defined by a
Boolean function, for any term α : T1, there exists at most one proof of nf α,
thus two ordinals of type E0 are equal if and only iff their projection to T1 are
equal (see also Sect. 3.3 on page 61).

Require Import Logic.Eqdep_dec.

Lemma nf_proof_unicity :
forall (alpha:T1) (H H': nf alpha), H = H'.

Lemma E0_eq_iff alpha beta : alpha = beta <-> cnf alpha = cnf beta.

Exercise 4.1 In earlier versions of this development, the predicate nf was de-
fined inductively, with various constructors describing all possible cases.

1. Please give such a definition, in a dedicated module.

2. Prove the logical equivalence between your definition and ours.

3. Define a variant of the type E0 (with your definition of nf).

4. Can you still prove a lemma like E0_eq_iff ? With the help of an axiom
from some module of the standard library ?

For upgrading constants and fonctions of T1, we have to prove that the term
they build is in normal form. For instance, let us represent the ordinals 0 and
ω as instances of the class E0.

Instance Zero : E0.
Proof.

now exists T1.zero.
Defined.

Instance _Omega : E0.
Proof. now exists omega%t1.
Defined.

Notation "'omega'" := _Omega : E0_scope.

4.1.6 Syntactic Definition of Limit and Successor Ordinals
Pattern matching and structural recursion allow us to define the notions of
successor and limit ordinal with the help of boolean functions on type T1.

From Module Epsilon0.T1

../theories/html/hydras.Epsilon0.T1.html#succb

4.1. THE ORDINAL ε0 75

Fixpoint succb alpha :=
match alpha with

zero => false
| ocons zero _ _ => true
| ocons alpha n beta => succb beta

end.

Fixpoint limitb alpha :=
match alpha with

zero => false
| ocons zero _ _ => false
| ocons alpha n zero => true
| ocons alpha n beta => limitb beta

end.

Compute limitb omega.

= true
: bool

Compute succb 42.

= true
: bool

The correctness of these definitions with respect to the mathematical no-
tions of limit and successor ordinals is established through several lemmas. For
instance, Lemma canonS_limit, page 93, shows that if α is (syntactically) a
limit ordinal, then it is the least upper bound of a strictly increasing sequence
of ordinals.

The following function is very useful in constructions by cases (proofs and
function definitions).

Definition zero_succ_limit (alpha: T1) :
{succb alpha} + {limitb alpha} + {alpha=zero}.
(* ... *)

Defined.

4.1.7 Arithmetic on ε0

4.1.7.1 Successor

The successor of any ordinal α < ε0 is defined by structural recursion on its
Cantor normal form.

From Module Epsilon0.T1

Fixpoint succ (alpha:T1) : T1 :=
match alpha with
| zero => 1

../theories/html/hydras.Epsilon0.T1.html#succ

76 CHAPTER 4. A PROOF OF TERMINATION, USING EPSILON0

| ocons zero n _ => ocons zero (S n) zero
| ocons beta n gamma => ocons beta n (succ gamma)

end.

The following lemma establishes the connection between the function succ
and the Boolean predicate succb.

Lemma succb_iff alpha (Halpha : nf alpha) :
succb alpha <-> exists beta : T1, nf beta /\ alpha = succ beta.

Exercise 4.2 Prove in Coq that for any ordinal α < ε0, α is a limit if and only
if for all β < α, the interval [β, α) is infinite.

4.1.7.2 Addition and Multiplication

Ordinal addition and multiplication are also defined by structural recursion over
the type T1. Please note that they use the compare function on some subterms
of their arguments.

Fixpoint plus (alpha beta : T1) : T1 :=
match alpha,beta with

| zero, y => y
| x, zero => x
| ocons a n b, ocons a' n' b' =>

(match compare a a' with
| Lt => ocons a' n' b'
| Gt => (ocons a n (plus b (ocons a' n' b')))
| Eq => (ocons a (S(n+n')) b')
end)

end
where "alpha + beta" := (plus alpha beta) : t1_scope.

Fixpoint mult (alpha beta : T1) :T1 :=
match alpha,beta with

| zero, y => zero
| x, zero => zero
| ocons zero n _, ocons zero n' _ =>

ocons zero (Peano.pred((S n) * (S n'))) zero
| ocons a n b, ocons zero n' b' =>

ocons a (Peano.pred((S n) * (S n'))) b
| ocons a n b, ocons a' n' b' =>

ocons (a + a') n' ((ocons a n b) * b')
end
where "alpha * beta" := (mult alpha beta) : t1_scope.

4.1.7.3 Examples

The following examples are instances of proofs by computation. Please note
that addition and multiplication on T1 are not commutative. Moreover, both
operations fail to be strictly monotonous in their first argument.

4.1. THE ORDINAL ε0 77

Example e2 : 6 + omega = omega.
Proof. reflexivity. Qed.

Example e'2 : omega t1< omega + 6.
Proof. now compute. Qed.

Example e''2 : 6 * omega = omega.
Proof. reflexivity. Qed.

Example e'''2 : omega t1< omega * 6.
Proof. now compute. Qed.

Lemma plus_not_monotonous_l : exists alpha beta gamma : T1,
alpha t1< beta /\ alpha + gamma = beta + gamma.

Proof.
exists 3, 5, omega; now compute.

Qed.

Lemma mult_not_monotonous : exists alpha beta gamma : T1,
alpha t1< beta /\ alpha * gamma = beta * gamma.

Proof.
exists 3, 5, omega; now compute.

Qed.

4.1.8 Pretty Printing Ordinals in Cantor Normal Form
Let us consider again the ordinal α0 defined in section 4.1.2.1 on page 68 If we
ask Coq to print its normal form, we get a hardly readable term of type T1.

Compute alpha_0.

= ocons omega 0 (ocons (FS 2) 4 (FS 1))
: T1

The following data type defines an abstract syntax for more readable ordinals
terms in Cantor normal form:

Inductive ppT1 : Set :=
P_fin : nat -> ppT1

| P_add : ppT1 -> ppT1 -> ppT1
| P_mult : ppT1 -> nat -> ppT1
| P_exp : ppT1 -> ppT1 -> ppT1
| P_omega : ppT1

The function pp: T1 -> ppT1 converts any closed term of type T1 into a
human-readable expression. For instance, let us convert the term alpha_0.

Compute pp alpha_0.

78 CHAPTER 4. A PROOF OF TERMINATION, USING EPSILON0

= (omega ^ omega + omega ^ 3 * 5 + 2)%pT1
: ppT1

Project 4.1 Design (in OCaml?) a set of tools for systematically pretty print-
ing ordinal terms in Cantor normal form.

4.1.8.1 Arithmetic on Type E0

We define an addition in type E0, using the functionT1.plus and its properties.

Search (nf (_ + _)%t1).

plus_nf: forall a : T1, nf a -> forall b : T1, nf b -> nf (a + b)

Instance plus (alpha beta : E0) : E0.
Proof.

refine (@mkord (T1.plus (@cnf alpha) (@cnf beta))_);
apply plus_nf; apply cnf_ok.

Defined.

Infix "+" := plus : E0_scope.

Check omega + omega.

omega + omega
: E0

Exercise 4.3 Let α be an ordinal. We say that α is infinite iff the segment
[0, α) is an infinite set.

1. Adapt this definition to the type E0.

2. Prove that being infinite is decidable on type E0.

3. Prove that α is infinite if and only if for all finite ordinal i, i+ α = α.

4.2 Well-foundedness and Transfinite Induction
4.2.1 About Well-foundedness
In order to use T1 for proving termination results, we need to prove that our
order < is well-founded. Then we will get transfinite induction for free.

The proof of well-foundedness of the strict order < on Cantor normal forms is
already available in the Cantor contribution by Castéran and Contejean [CC06].
That proof relies on a library on recursive path orderings written by E. Conte-
jean. We present here a direct proof of the same result, which does not require
any knowledge on r.p.o.s.

Exercise 4.4 Prove that the total order lt on T1 is not well-founded. Hint:
You will have to build a counter-example with terms of type T1 which are not
in Cantor normal form.

4.2. WELL-FOUNDEDNESS AND TRANSFINITE INDUCTION 79

4.2.1.1 A First Attempt

It is natural to try to prove by structural induction over T1 that every term in
normal form is accessible through LT.

Unfortunately, it won’t work. Let us consider some well-formed term α =
ocons β n γ, and assume that β and γ are accessible through LT. For proving
the accessibility of α, we have to consider any well formed term δ such that
δ < α. But nothing guarantees that δ is strictly less than β nor γ, and we
cannot use the induction hypotheses on β nor γ.

Section First_attempt.

Lemma wf_LT : forall alpha, nf alpha -> Acc LT alpha.
Proof.
induction alpha as [| beta IHbeta n gamma IHgamma].
- split.

inversion 1.
destruct H2 as [H3 _];not_neg H3.

- split; intros delta Hdelta.

1 subgoal (ID 560)

beta : T1
n : nat
gamma : T1
IHbeta : nf beta -> Acc LT beta
IHgamma : nf gamma -> Acc LT gamma
H : nf (ocons beta n gamma)
delta : T1
Hdelta : delta t1< ocons beta n gamma
============================
Acc LT delta

Abort.

The problem comes from the hypothesis Hdelta. It does not prevent δ to
be bigger that β or γ; for instance δ may be of the form ocons β′ p′ γ′, where
β′ ≤ β and p′ < n. Thus, the induction hypotheses IHbeta and IHgamma are
useless for finishing our proof.

4.2.1.2 Using a Stronger Inductive Predicate.

Instead of trying to prove directly that any ordinal term α in normal form is
accessible through LT, we propose to show first that any well formed term of
the form ωα × (n+ 1) + β is accessible (which is a stronger result).

Let Acc_strong (alpha:T1) :=
forall n beta,

nf (ocons alpha n beta) -> Acc LT (ocons alpha n beta).

The following lemma is an application of the strict inequality α < ωα . If
ωα is accessible, then α is a fortiori accessible.

80 CHAPTER 4. A PROOF OF TERMINATION, USING EPSILON0

Lemma Acc_strong_stronger : forall alpha,
nf alpha -> Acc_strong alpha -> Acc LT alpha.

Proof.
intros alpha H H0; apply acc_imp with (phi0 alpha).
- repeat split; trivial.
+ now apply lt_a_phi0_a.

- apply H0; now apply single_nf.
Qed.

Thus, it remains to prove that every ordinal strictly less than ε0 is strongly
accessible.

4.2.1.2.1 A helper First, we prove that, for any LT-accessible term α ,
α is strongly accessible too (i.e. any well formed term (ocons α n β) is
accessible).

Lemma Acc_implies_Acc_strong :
forall alpha, Acc LT alpha -> Acc_strong alpha.

The proof is structured as an induction on α ’s accessibility. Let us consider
an accessible term α.

subgoal 1

alpha : T1
Aalpha : forall y : T1, y t1< alpha -> Acc LT y
IHalpha : forall y : T1,

LT y alpha ->
forall (n : nat) (beta : T1),
nf (ocons y n beta) -> Acc LT (ocons y n beta)

============================
forall (n : nat) (beta : T1),
nf (ocons alpha n beta) -> Acc LT (ocons alpha n beta)

Let n:nat and beta:T1 such that ocons alpha n beta is in normal form.
We prove first that beta is accessible, which allows us to by well-founded induc-
tion on beta, and natural induction on n, that (ocons alpha n beta) is acces-
sible. The proof, quite long, can be consulted in ../theories/html/hydras.
Epsilon0.T1.html

4.2.1.2.2 Accessibility of any well-formed ordinal term Our goal is
still to prove accessibility of any well formed ordinal term. Thanks to our
previous lemmas, we are almost done.

(* A (last) structural induction *)

Theorem nf_Acc : forall alpha, nf alpha -> Acc LT alpha.
Proof.
induction alpha.
- intro; apply Acc_zero.

../theories/html/hydras.Epsilon0.T1.html
../theories/html/hydras.Epsilon0.T1.html

4.2. WELL-FOUNDEDNESS AND TRANSFINITE INDUCTION 81

- intros; eapply Acc_implies_Acc_strong;auto.
apply IHalpha1;eauto.
apply nf_inv1 in H; auto.

Defined.

Corollary T1_wf : well_founded LT.

Definition transfinite_recursor :
forall (P:T1 -> Type),

(forall x:T1,
(forall y:T1, nf x -> nf y -> lt y x -> P y) -> P x) ->
forall alpha:T1, P alpha.

Proof.
intros; apply well_founded_induction_type with LT.
- exact T1_wf;auto.
- intros. apply X. intros; apply X0. repeat split;auto.
Defined.

The following tactic starts a proof by transfinite induction on any ordinal
α < ε0 .

Ltac transfinite_induction alpha :=
pattern alpha; apply transfinite_recursor;[| try assumption].

Remark 4.2 The alternate proof of well-foundedness using Évelyne Conte-
jean’s work on recursive path ordering [Der82, CCF+10] is available in the
library Epsilon0rpo.

4.2.2 An Ordinal Notation for ε0

We build an instance of ON, and prove its correction w.r.t. Schutte’s model.

Instance Epsilon0 : ON Lt compare.
(* ... *)

From Module Schutte.Schutte.Correctness_E0

Instance Epsilon0_correct :
ON_correct epsilon0 Epsilon0 (fun alpha => inject (cnf alpha)).

Project 4.2 This exercise is a continuation of Project 3.11 on page 64. Use
ON_mult to define an ordinal notation Omega2 for ω2 = ω × ω.

Prove that Omega2 is a sub-notation of Epsilon0.
Define on Omega2 an addition compatible with the addition on Epsilon0.
Hint. You may use the following definition (in OrdinalNotations.Defini-

tions).

../theories/html/hydras.Epsilon0.Epsilon0rpo.html
../theories/html/hydras.Schutte.Schutte.Correctness_E0.html
../theories/html/hydras.OrdinalNotations.Definitions.html
../theories/html/hydras.OrdinalNotations.Definitions.html

82 CHAPTER 4. A PROOF OF TERMINATION, USING EPSILON0

Definition SubON_same_op `{OA : @ON A ltA compareA}
`{OB : @ON B ltB compareB}
{iota : A -> B}
{alpha: B}
{_ : SubON OA OB alpha iota}
(f : A -> A -> A)
(g : B -> B -> B)

:=
forall x y, iota (f x y) = g (iota x) (iota y).

Project 4.3 The class ON of ordinal notations has been defined long after this
chapter, and is not used yet in the development of the type E0. A better inte-
gration of both notions should simplify the development on ordinals in Cantor
normal form. This integration is planned for the future versions.

4.3 A Variant for Hydra Battles

4.3.1 Natural Sum (a.k.a. Hessenberg’s Sum)
Natural sum (Hessenberg’s sum) is a commutative and monotonous version of
addition. It is used as an auxiliary operation for defining variants for hydra
battles, where Hercules is allowed to chop off any head of the hydra.

In the litterature, the natural sum of ordinals α and β is often denoted by
α#β or α⊕ β. Thus we called oplus the associated Coq function.

4.3.1.1 Definition of oplus

The definition of oplus is recursive in both of its arguments, which makes a
structural recursive definition a little complex. We used the same pattern as for
the merge function on lists of library Coq.Sorting.Mergesort.

1. Define a nested recursive function, using the Fix construct

2. Build a principle of induction dedicated to oplus

3. Establish equations associated to each case of the definition.

4.3.1.1.1 Nested recursive definition The following definition is com-
posed of

• A main function oplus, structurally recursive in its first argument alpha

• An auxiliary function oplus_aux within the scope of alpha, structurally
recursive in its argument beta; oplus_aux beta is supposed to compute
oplus alpha beta.

From Module Epsilon0.Hessenberg

../theories/html/hydras.Epsilon0.Hessenberg.html#oplus

4.3. A VARIANT FOR HYDRA BATTLES 83

Fixpoint oplus (alpha beta : T1) : T1 :=
let fix oplus_aux beta {struct beta} :=

match alpha, beta with
| zero, _ => beta
| _, zero => alpha
| ocons a1 n1 b1, ocons a2 n2 b2 =>
match compare a1 a2 with
| Gt => ocons a1 n1 (oplus b1 beta)
| Lt => ocons a2 n2 (oplus_aux b2)
| Eq => ocons a1 (S (n1 + n2)%nat) (oplus b1 b2)

end
end

in oplus_aux beta.

Infix "o+" := oplus (at level 50, left associativity).

The reader will note that each recursive call of the functions oplus and
oplus_aux satisfies Coq’s constraint on recursive definitions. The function
oplus is recursively called on a sub-term of its first argument, and oplus_aux
on a sub-term of its unique argument. Thus, oplus’s definition is accepted by
Coq as a structurally recursive function.

4.3.1.2 Rewriting Lemmas

Coq’s constraints on recursive definitions result in the quite complex form of
oplus’s definition. Proofs of properties of this function can be simpler if we
derive rewriting lemmas that will help to simplify expressions of the form (oplus
a b).

A first set of lemmas correspond to the various cases of oplus’s definition.
They can be proved almost immediately, using cbn and reflexivity tactics.

Lemma oplus_alpha_0 (alpha : T1) : alpha o+ zero = alpha.
Proof.
destruct alpha; reflexivity.

Qed.

Lemma oplus_0_beta (beta : T1): zero o+ beta = beta.
Proof.
destruct beta; reflexivity.

Qed.

Project 4.4 Compare oplus’s definition (with inner fixpoint) with other pos-
sibilities (coq-equations, Function, etc.).

4.3.2 More Theorems on Hessenberg’s Sum
We need to prove some properties of ⊕, particularly about its relation with the
order < on T1.

84 CHAPTER 4. A PROOF OF TERMINATION, USING EPSILON0

4.3.2.1 Boundedness

If α and β are both strictly less than ωγ , then so is their natural sum α ⊕ β.
This result can be proved by structural induction on γ.

Lemma lt_phi0_oplus : forall gamma alpha beta,
lt_phi0 alpha gamma ->
lt_phi0 beta gamma ->
lt_phi0 (alpha o+ beta) gamma.

Proof with auto.
induction gamma; destruct alpha, beta.

(* ... *)

4.3.2.2 Commutativity, Associativity

We prove the commutativity of ⊕ in two steps.
First, we prove by transfinite induction on α that the restriction of ⊕ to the

interval [0..α) is commutative.

Lemma oplus_comm_0 : forall alpha, nf alpha ->
forall a b, nf a -> nf b ->

lt a alpha ->
lt b alpha ->
a o+ b = b o+ a.

Proof with eauto with T1.
intros alpha Halph; transfinite_induction alpha.

(* rest of proof omitted *)

Then, we infer ⊕’s commutativity for any pair of ordinals: Let α and β be
two ordinals strictly less than ε0. Both ordinals α and β are strictly less than
max(α, β) + 1. Thus, we have just to apply the lemma oplus_comm_0.

Lemma oplus_comm : forall alpha beta,
nf alpha -> nf beta ->
alpha o+ beta = beta o+ alpha.

Proof with eauto with T1.
intros alpha beta Halpha Hbeta;
apply oplus_comm_0 with (succ (max alpha beta)) ...

(* ... *)

The associativity of Hessenberg’s sum is proved the same way.

Lemma oplus_assoc_0 :
forall alpha,

nf alpha ->
forall a b c, nf a -> nf b -> nf c ->

lt a alpha ->
lt b alpha -> lt c alpha ->
a o+ (b o+ c) = (a o+ b) o+ c.

Proof with eauto with T1.
intros alpha Halpha.

4.3. A VARIANT FOR HYDRA BATTLES 85

transfinite_induction alpha.
(* ... *)

Lemma oplus_assoc : forall alpha beta gamma,
nf alpha -> nf beta -> nf gamma ->

alpha o+ (beta o+ gamma) =
alpha o+ beta o+ gamma.

Proof with eauto with T1.
intros;
apply oplus_assoc_0 with (succ (max alpha (max beta gamma))) ...
(* ... *)

4.3.2.3 Monotonicity

At last, we prove that ⊕ is strictly monotonous in both of its arguments.

Lemma oplus_strict_mono_LT_l (alpha beta gamma : T1) :
nf gamma -> alpha t1< beta ->
alpha o+ gamma t1< beta o+ gamma.

Lemma oplus_strict_mono_LT_r (alpha beta gamma : T1) :
nf alpha -> beta t1< gamma ->
alpha o+ beta t1< alpha o+ gamma.

Project 4.5 The library Hessenberg looks too long (proof scripts and compi-
lation). Please try to make it simpler and more efficient! Thanks!

4.3.3 A Measure for Hydra-battle Termination
Let us define a measure from type Hydra into T1.

From Module Hydra.Hydra_Termination

Fixpoint m (h:Hydra) : T1 :=
match h with head => zero

| node hs => ms hs
end
with ms (s:Hydrae) : T1 :=
match s with hnil => zero

| hcons h s' => phi0 (m h) o+ ms s'
end.

First, we prove that the measurem(h) of any hydra h is a well-formed ordinal
term of type T1.

Lemma m_nf : forall h, nf (m h).
Proof.
intro h; elim h using Hydra_rect2

with (P0 := fun s => nf (ms s)).
(* ... *)

../theories/html/hydras.Hydra.Hydra_Termination.html#m

86 CHAPTER 4. A PROOF OF TERMINATION, USING EPSILON0

Lemma ms_nf : forall s, nf (ms s).
Proof with auto with T1.
(* ... *)

For proving the termination of all hydra battles, we have to prove that m is
a variant. First, a few technical lemmas follow the decomposition of round into
several relations. Then the lemma round_decr gathers all the cases.

Lemma S0_decr :
forall s s', S0 s s' -> ms s' t1< ms s.

Lemma R1_decr : forall h h',
R1 h h' -> m h' t1< m h.

Lemma S1_decr n:
forall s s', S1 n s s' -> ms s' t1< ms s.

Lemma R2_decr n : forall h h', R2 n h h' -> m h' t1< m h.

Lemma round_decr : forall h h', h -1-> h' -> m h' t1< m h.
Proof.

destruct 1 as [n [H | H]].
- now apply R1_decr.
- now apply R2_decr with n.

Qed.

Finally, we prove the termination of all (free) battles.

Global Instance HVariant : Hvariant lt_wf free var.
Proof.
split; intros; eapply round_decr; eauto.
Qed.

Theorem every_battle_terminates: Termination.
Proof.

red; apply Inclusion.wf_incl with
(R2 := fun h h' => m h t1< m h').

red; intros; now apply round_decr.
apply Inverse_Image.wf_inverse_image, T1_wf.

Qed.

Conclusion
Let us recall three results we have proved so far.

• There exists a strictly decreasing variant which maps Hydra into the seg-
ment [0, ε0) for proving the termination of any hydra battle

• There exists no such variant from Hydra into [0, ω2), a fortiori into [0, ω).

4.3. A VARIANT FOR HYDRA BATTLES 87

So, a natural question is “ Does there exist any strictly decreasing variant
mapping type Hydra into some interval [0, α[(where α < ε0) for proving the
termination of all hydra battles”. The next chapter is dedicated to a formal
proof that there exists no such α, even if we consider a restriction to the set of
“standard” battles.

88 CHAPTER 4. A PROOF OF TERMINATION, USING EPSILON0

Chapter 5

Strolling inside ε0: The
Ketonen-Solovay Machinery

5.1 Introduction
The reader may think that our proof of termination in the previous chapter
requires a lot of mathematical tools and may be too complex. So, the question
is “is there any simpler proof” ?

In their article [KP82], Kirby and Paris show that this result cannot be
proved in Peano arithmetic. Their proof uses some knowledge about model
theory and non-standard models of Peano arithmetic. In this chapter, we focus
on a specific class of proofs of termination of hydra battles: construction of some
variant mapping the type Hydra into a given initial segment of ordinals. Our
proof relies only on the Calculus of Inductive Constructions and is a natural
complement of the results proven in the previous chapter.

• There is no variant mapping the type Hydra into the interval [0, ω2) (sec-
tion 3.7.3 on page 55), and a fortiori [0, ω) (section 2.4.3 on page 39).

• There exists a variant which maps the type Hydra into the interval [0, ε0)
(theorem every_battle_terminates, in section 4.3.3 on page 86).

Thus, a very natural question is the following one:

“ Is there any variant from Hydra into some interval [0, µ), where
µ < ε0, for proving the termination of all hydra battles ?”

We prove in Coq the following result:

There is no variant for proving the termination of all hydra battles
from Hydra into the interval [0..µ), where µ < ε0. The same im-
possibility holds even if we consider only standard battles (with the
successive replication factors 0, 1, 2, . . . , t, t+ 1, . . .).

Our proofs are constructive and require no axioms: they are closed terms
of the CIC, and are mainly composed on function definitions and proofs of
properties of these functions. They share much theoretical material with Kirby

89

90 CHAPTER 5. THE KETONEN-SOLOVAY MACHINERY

and Paris’, although they do not use any knowledge about Peano arithmetic nor
model theory. The combinatorial arguments we use and implement come from
an article by J. Ketonen and R. Solovay [KS81], already cited in the work by
L. Kirby et J. Paris.Section 2 of this article: ”A hierarchy of probably recursive
functions”, contains a systematic study of canonical sequences, which are closely
related to rounds of hydra battles. Nevertheless, they have the same global
structure as the simple proofs described in sections 2.4.3 on page 39 and 3.7.3
on page 55. We invite the reader to compare the three proofs step by step,
lemma by lemma.

5.2 Canonical Sequences
Canonical sequences are functions that associate an ordinal {α}(i) to every
ordinal α < ε0 and positive integer i. They satisfy several nice properties:

• If α 6= 0, then {α}(i) < α. Thus canonical sequences can be used for proofs
by transfinite induction or function definition by transfinite recursion

• If λ is a limit ordinal, then λ is the least upper bound of the set {{λ}(i) | i ∈
N1}

• If β < α < ε0, then there is a “path” from α to β, i.e. a sequence
α0 = α, α1, . . . , αn = β, where for every k < n, there exists some ik such
that αk+1 = {αk}(ik)

• Canonical sequences correspond tightly to rounds of hydra battles: if
α 6= 0, then ι(α) is transformed into ι({α}(i+ 1)) in one round with
the replication factor i (Lemma Hydra.O2H.canonS_iota_i).

• From the two previous properties, we infer that whenever β < α < ε0,
there exists a (free) battle from ι(α) to ι(β).

Remark 5.1 In [KS81], canonical sequences are defined for any ordinal α < ε0,
by stating that if α is a successor ordinal β + 1, the sequence associated with
α is simply the constant sequence whose terms are equal to β. Likewise, the
canonical sequence of 0 maps any natural number to 0.

This convention allows us to make total the function that maps any ordinal
α and natural number i to the ordinal {α}(i).

First, let us recall how canonical sequences are defined in [KS81]. For effi-
ciency’s sake, we decided not to implement directly K.&S’s definitions, but to
define in Gallina simply typed structurally recursive functions which share the
abstract properties which are used in the mathematical proofs1.

5.2.0.1 Mathematical Definition of Canonical Sequences

In [KS81] the definition of {α}(i) is based on the following remark:

Any non-zero ordinal α can be decomposed in a unique way as the
product ωβ × (γ + 1).

1With a small difference: the 0-th term of the canonical sequence is not the same in our
development as in [KS81].

../theories/html/hydras.Hydra.O2H.html#canonS_iota_i

5.2. CANONICAL SEQUENCES 91

Thus the {α}(i) s are defined in terms of this decomposition:

Definition 5.1 (Canonical sequences: mathematical definition)

• Let λ < ε0 be a limit ordinal

– If λ = ωα+1 × (β + 1), then {λ}(i) = ωα+1 × β + ωα × i

– If λ = ωγ×(β+1), where γ < λ is a limit ordinal, then {λ}(i) =
ωγ × β + ω{γ}(i)

• For successor ordinals, we have {α+ 1}(i) = α

• Finally, {0}(i) = α.

5.2.0.2 Canonical Sequences in Coq

Our definition may look more complex than the mathematical one, but uses
plain structural recursion over the type T1. Thus, tactics like cbn, simpl,
compute, etc., are applicable. For simplicity’s sake, we use an auxiliary func-
tion canonS of type T1 -> nat -> T1 such that (canonS α i) is equal to {α}(i+ 1).

From Module Epsilon0.Canon

Fixpoint canonS alpha (i:nat) :=
match alpha with

zero => zero
| ocons zero 0 zero => zero
| ocons zero (S k) zero => FS k
| ocons gamma 0 zero =>
match pred gamma with

Some gamma' => ocons gamma' i zero
| None => ocons (canonS gamma i) 0 zero

end
| ocons gamma (S n) zero =>

match pred gamma with
Some gamma' => ocons gamma n (ocons gamma' i zero)

| None => ocons gamma n (ocons (canonS gamma i) 0 zero)
end

| ocons alpha n beta => ocons alpha n (canonS beta i)
end.

The following function computes {α}(i), except for the case i = 0, where it
simply returns 0 2.

Definition canon alpha i :=
match i with 0 => zero | S j => canonS alpha j end.

2This restriction did not prevent us from proving all the main theorems of [KS81, KP82].
Nevertheless, in a future version of this development, we may define {α}(0) exactly as
in [KS81]. But we are afraid this would be done at the cost of making some proofs much
more complex.

../theories/html/hydras.Epsilon0.Canon.html#canonS

92 CHAPTER 5. THE KETONEN-SOLOVAY MACHINERY

For instance Coq’s computing facilities allow us to verify the equalities
{ωω}(3) = ω3 and {ωω ∗ 3}(42) = ωω ∗ 2 + ω42 .

Compute (canon (omega ^ omega) 3).

= phi0 (FS 2) : T1

Example canon3 : canon (omega ^ omega) 3 = omega ^ 3.
Proof. reflexivity. Qed.

Compute pp (canon (omega ^ omega * 3) 42).

= (omega ^ omega * 2 + omega ^ 42)%pT1
: ppT1

Project 5.1 Many lemmas presented in this chapter were stated and proved
before the introduction of the type class ON of ordinal notations, and in particular
its instance Epsilon0. Thus definitions and lemmas refer to the type T1 of
possibly not well-formed terms. This should be fixed in a future version.

5.2.1 Basic Properties of Canonical Sequences
We did not try to prove that our definition really implements Ketonen and
Solovay’s [KS81]’s canonical sequences. The most important is that we were
able to prove the abstract properties of canonical sequences that are really used
in our proof. The complete proofs are in the module Epsilon0.Canon

Proving the equality {α+ 1}(i) = α is not as simple as suggested by the
equations of definition 5.1 . Nevertheless, we can prove it by plain structural
induction on α.

Lemma canonS_succ i alpha :
nf alpha -> canonS (succ alpha) i = alpha.

Proof.
induction alpha.
(* ... *)

5.2.1.1 Canonical Sequences and the Order <

We prove by transfinite induction over α that {α}(i+ 1) is an ordinal strictly
less than α (assuming α 6= 0). This property allows us to use the function
canonS and its derivates in function definitions by transfinite recursion.

Lemma canonS_LT i alpha :
nf alpha -> alpha <> zero -> canonS alpha i t1< alpha.

../theories/html/hydras.Epsilon0.Canon.html

5.3. ACCESSIBILITY INSIDE ε0 : PATHS 93

5.2.1.2 Limit Ordinals are Really Limits

The following theorem states that any limit ordinal λ < ε0 is the limit of the
sequence {λ}(i) (1 ≤ i) .

From Module Epsilon0.Canon

Lemma canonS_limit_strong (lambda : T1) :
nf lambda ->
limitb lambda ->
forall beta, beta t1< lambda ->

{i:nat | beta t1< canonS lambda i}.

Proof.
transfinite_induction_LT lambda.
(* ... *)

Defined.

Note the use of Coq’s sig type in the theorem’s statement, which relates
the boolean function limitb defined on the T1 data-type with a constructive
view of the limit of a sequence: for any β < λ, we can compute an item of the
canonical sequence of λ which is greater than β. We can also state directly that
λ is a (strict) least upper bound of the elements of its canonical sequence.

Lemma canonS_limit_lub (lambda : T1) :
nf lambda -> limitb lambda ->
strict_lub (fun i => canonS lambda i) lambda.

Exercise 5.1 Instead of using the sig type, define a simply typed function
that, given two ordinals α and β, returns a natural number i such that, if α is a
limit ordinal and β < α, then β < {α}(i+ 1). Of course, you will have to prove
the correctness of your function.

5.3 Accessibility inside ε0 : Paths
Let us consider a kind of accessibility problem inside ε0: given two ordinals
α and β, where β < α < ε0, find a path consisting of a finite sequence γ0 =
α, . . . , γl = β, where, for every i < l, γi 6= 0 3 and there exists some strictly
positive integer si such that γi+1 = {γ}(si),

Let s be the sequence 〈s0, s1, . . . , sl−1〉. We describe the existence of such a
path with the notation α −→

s
β.

For instance, we have ω ∗ 2 −−−−−→
2,2,2,4,5

3, through the path 〈ω × 2, ω + 2, ω +

1, ω, 4, 3〉.

Remark 5.2 Note that, given α and β, where β < α, the sequence s which
leads from α to β is not unique.

3This condition allows us to ignore paths which end by a lot of useless 0s.

../theories/html/hydras.Epsilon0.Canon.html#canonS_limit_strong

94 CHAPTER 5. THE KETONEN-SOLOVAY MACHINERY

Indeed, if α is a limit ordinal, the first element of s can be any integer i such
that β < {α}(i), and if α is a successor ordinal, then the sequence s can start
with any positive integer.

For instance, we have also ω ∗ 2 −−−−→
3,4,5,6

ω. Likewise, ω ∗ 2 −−−−→
1,2,1,4

0 and
ω ∗ 2 −−−−−−−−−→

3,3,3,3,3,3,3,3
0.

5.3.1 Formal Definition
In Coq, the notion of path can be simply defined as an inductive predicate
parameterized by the destination β.

From Module Epsilon0.Paths

(Definition transition_S i : relation T1 :=
fun alpha beta => alpha <> zero /\ beta = canonS alpha i.

Definition transition i : relation T1 :=
match i with 0 => fun _ _ => False | S j => transition_S j end.

Inductive path_to (beta: T1) : list nat -> T1 -> Prop :=
path_to_1 : forall (i:nat) alpha ,
i <> 0 ->
transition i alpha beta ->
path_to beta (i::nil) alpha

| path_to_cons : forall i alpha s gamma,
i <> 0 ->
transition i alpha gamma ->
path_to beta s gamma ->
path_to beta (i::s) alpha.

Remark 5.3 The definition above is parameterized with the destination of the
path and indexed by the origin, hence the name path_to. The rationale behind
this choice is a personal preference of the developer for the kind of eliminators
generated by Coq in this case. The symmetric option could have been also
considered (see also Remark 2.1 on page 27).

Remark 5.4 In the present version of our library, we use a variant path_toS
of path_to, where the proposition (path_toS β s α) is equivalent to (path_to
β (shift s) α). This variant is scheduled to be deprecated.

Exercise 5.2 Write a tactic for solving goals of the form (path_to β s α)
where α, β and s are closed terms. You should solve automatically the following
goals:

path_to omega (2::2::2::nil) (omega * 2).

path_to omega (3::4::5::6::nil) (omega * 2).

path_to zero (interval 3 14) (omega * 2).

path_to zero (repeat 3 8) (omega * 2).

../theories/html/hydras.Epsilon0.Paths.html

5.3. ACCESSIBILITY INSIDE ε0 : PATHS 95

5.3.2 Existence of a Path
By transfinite induction on α, we prove that for any β < α, one can build a
path from α to β (in other terms, β is accessible from α).

Lemma LT_path_to (alpha beta : T1) :
beta t1< alpha -> {s : list nat | path_to beta s alpha}.

Exercise 5.3 (continuation of exercise 5.1 on page 93) Define a simply
typed function for computing a path from α to β.

From the lemma canonS_LT 5.2.1.1 on page 92, we can convert any path into
an inequality on ordinals (by induction on paths).

Lemma path_to_LT beta s alpha :
path_to beta s alpha -> nf alpha -> beta t1< alpha.

5.3.3 Paths and Hydra Battles
In order to apply our knowledge about ordinal numbers less than ε0 to the study
of hydra battles, we define an injection from the interval [0, ε0) into the type
Hydra.

From Module Hydra.O2H

Fixpoint iota (alpha : T1) : Hydra :=
match alpha with
| T1.zero => head
| ocons gamma n beta =>

node (hcons_mult (iota gamma) (S n) (iotas beta))
end

with iotas (alpha : T1) : Hydrae :=
match alpha with
| T1.zero => hnil
| ocons alpha0 n beta =>

hcons_mult (iota alpha0) (S n) (iotas beta)
end.

For instance Fig. 5.1 shows the image by ι of the ordinal ωω+2+ωω×2+ω+1

•
• •• •

• • •

Figure 5.1: The hydra ι(ωω+2 + ωω × 2 + ω + 1)

The following lemma (proved in Hydra.O2H.v) maps canonical sequences
to rounds of hydra battles.

../theories/html/hydras.Hydra.O2H.html
../theories/html/hydras.Hydra.O2H.html

96 CHAPTER 5. THE KETONEN-SOLOVAY MACHINERY

Lemma canonS_iota i alpha :
nf alpha -> alpha <> 0 ->
iota alpha -1-> iota (canonS alpha i).

The next step of our development extends this relationship to the order <
on [0, ε0) on one side, and hydra battles on the other side.

Lemma path_to_battle alpha s beta :
path_to beta s alpha -> nf alpha ->
iota alpha -+-> iota beta.

As a corollary, we are now able to transform any inequality β < α < ε0 into
a (free) battle.

Lemma LT_to_battle alpha beta :
beta t1< alpha -> iota alpha -+-> iota beta.

5.4 A Proof of Impossibility
We now have the tools for proving that there exists no variant bounded by some
µ < ε0 for proving the termination of all battles. The proof we are going to
show is a proof by contradiction. It can be considered as a generalization of the
proofs described in sections 2.4.3 on page 39 and 3.7.3 on page 55.

In the module Hydra.Epsilon0_Needed_Generic, we assume there exists
some variant m bounded by some ordinal µ < ε0. This part of the development
is parameterized by some class B of battles, which will be instantiated later to
free or standard.

Class BoundedVariant (B:Battle) :=
{
mu:T1 ;
m: Hydra -> T1;
mu_nf: nf mu;
Hvar: Hvariant T1_wf B m;
m_bounded: forall h, m h t1< mu

}.

Let us assume there exists such a variant:

Section Bounded.
Context (B: Battle) (Hy : BoundedVariant B).

Hypothesis m_decrease : forall i h h',
round_n i h h' -> m h' t1< m h.

Remark 5.5 The hypothesis m_decrease is not provable in general, but is sat-
isfied by the free and standard kinds of battles. This trick allows to “factorize”
our proofs of impossibility.

../theories/html/hydras.Hydra.Epsilon0_Needed_Generic.html

5.4. A PROOF OF IMPOSSIBILITY 97

First, we prove that m(ι(α)) is always greater than or equal to α, by trans-
finite induction over α.

Lemma m_ge_0 alpha: nf alpha -> alpha t1<= m (iota alpha).

• If α = 0, the inequality trivially holds

• If α is the successor of some ordinal β, the inequality β ≤ m(ι(β)) holds
(by induction hypothesis). But the hydra ι(α) is transformed in one round
into ι(β), thus m(ι(β)) < m(ι(α)). Hence β < m(ι(α)), which implies
α ≤ m(ι(α))

• If α is a limit ordinal, then α is the least upper bound of the set of all the
{α}(i). Thus, we have just to prove that {α}(i) < m(ι(α)) for any i.

– Let i be some natural number. By the induction hypothesis, we
have {α}(i) ≤ m(ι({α}(i))). But the hydra ι(α) is transformed into
ι({α}(i)) in one round, thus m(ι({α}(i))) < m(ι(α)), by our hypoth-
esis m_decrease.

Please note that the impossibility proofs of sections 2.4.3 on page 39 and 3.7.3
on page 55 contain a similar lemma, also called m_ge. We are now able to build
a counter-example.

Definition big_h := iota mu.
Definition beta_h := m big_h.
Definition small_h := iota beta_h.

From Lemma m_ge_0 we infer the following inequality :

Corollary m_ge_generic : m big_h t1<= m small_h.

The (big) rest of the proof is dedicated to prove formally the converse in-
equality m small_h t1< m big_h.

5.4.1 The case of Free Battles
Let us now consider that B is instantiated to free (which means that we are
considering proofs of termination of all battles). The following lemmas are
proved in Module Hydra.Epsilon0_Needed_Free. The case B = standard is
studied in section 5.5 on the following page.

Section Impossibility_Proof.

Context (Var : BoundedVariant free).

1. The following lemma is an application of m_ge_generic, since free sat-
isfies trivially the hypothesis m_decrease (see page 96).

../theories/html/hydras.Hydra.Epsilon0_Needed_Free.html

98 CHAPTER 5. THE KETONEN-SOLOVAY MACHINERY

Lemma m_ge : m big_h t1<= m small_h.
Proof.

apply m_ge_generic.
(* ... *)

2. From the hypothesis m_bounded, we have m big_h t1< mu

3. By Lemma LT_to_battle, we get a (free) battle from big_h = iota mu
to small_h = iota (m big_h).

Lemma big_to_small : big_h -+-> small_h.

4. From the hypotheses on m, we infer:

Lemma m_lt : m small_h t1< m big_h.

5. From lemmas m_ge and m_lt, and the irreflexivity of <, we get a contra-
diction.

Theorem Impossibility_free : False.

End Impossibility_Proof.

We have now proved there exists no bounded variant for the class of free
battles.

Check Impossibility_free.

Impossibility_free
: BoundedVariant free -> False

5.5 The Case of Standard Battles
One may wonder if our theorem holds also in the framework of standard battles.
Unfortunately, its proof relies on the lemma LT_to_round_plus of Module Hy-
dra.O2H.

Lemma LT_to_round_plus alpha beta :
beta t1< alpha -> iota alpha -+-> iota beta.

This lemma builds a battle out of any inequality β < α. It is a straightfor-
ward application of LT_path_to of Module Epsilon0.Paths:

Lemma LT_path_to (alpha beta : T1) :
beta t1< alpha -> {s : list nat | path_to beta s alpha}.

../theories/html/hydras.Hydra.O2H.html
../theories/html/hydras.Hydra.O2H.html
../theories/html/hydras.Epsilon0.Paths.html

5.5. THE CASE OF STANDARD BATTLES 99

The sequence s, used to build the sequence of replication factors of the
battle depends on β, so we cannot be sure that the generated battle is a genuine
standard battle.

The solution of this issue comes once again from Ketonen and Solovay’s arti-
cle [KS81]. Instead of considering plain paths, i.e. sequences α0 = α, α1, . . . , αk =
β where αj+1 is equal to {αj}(ij) where ij is any natural number, we consider
various constraints on these sequences. In particular, a path is called standard
if ij+1 = ij +1 for every j < k. It corresponds to a “segment” of some standard
battles. Please note that the vocabulary on paths is ours, but all the concepts
come really from [KS81].

In Coq, standard paths can be defined as follows.
From Module Epsilon0.KS

(** standard path from (i, alpha) to (j, beta) *)

Inductive standard_pathR(j:nat)(beta:T1): nat -> T1 -> Prop :=
std_1 : forall i alpha,

beta = canon alpha i -> j = S i ->
standard_pathR j beta i alpha

| std_S : forall i alpha,
standard_pathR j beta (S i) (canon alpha i) ->
standard_pathR j beta i alpha.

Definition standard_path i alpha j beta :=
standard_pathR j beta i alpha.

In the mathematical text and figures, we shall use the notation α −→
i,j

β for

the proposition (standard_path i α j β). In [KS81] the notation is α ∗−→
i
β

for the proposition ∃j, i < j ∧ α −→
i,j

β.
Our goal is now to transform any inequality β < α < ε0 into a standard

path α −→
i,j

β for some i and j, then into a standard battle from ι(α+ i) to ι(β).

Following [KS81], we proceed in two stages:

1. we simulate plain (free) paths from α to β with paths made of steps
(γ, {γ}(n)), with the same n all along the path

2. we simulate any such path by a standard path.

5.5.1 Paths with a Constant Index
First of all, paths with a constant index enjoy nice properties. They are defined
as paths where all the ij are equal to the same natural number i, for some i > 0.

Like in [KS81], we shall use the notation α −→
i
β for denoting such a path,

also called an i-path.

Definition const_pathS i :=
clos_trans_1n T1 (fun alpha beta => beta = canonS alpha i).

Definition const_path i alpha beta :=

../theories/html/hydras.Epsilon0.KS.html

100 CHAPTER 5. THE KETONEN-SOLOVAY MACHINERY

match i with
0 => False

| S j => const_pathS j alpha beta
end.

A most interesting property of i-paths is that we can “upgrade” their index,
as stated by K.&S.’s Corollary 12.

Corollary Cor12 (alpha : T1) : nf alpha ->
forall beta i n, beta t1< alpha ->

i < n ->
const_pathS i alpha beta ->
const_pathS n alpha beta.

Proof.
transfinite_induction_lt alpha.
(* (long) proof skipped *)

We also use a version of Cor12 with large inequalities.

Corollary Cor12_1 (alpha : T1) :
nf alpha ->
forall beta i n, beta t1< alpha ->

i <= n ->
const_pathS i alpha beta ->
const_pathS n alpha beta.

5.5.1.1 Sketch of Proof of Cor12

We prove this lemma by transfinite induction on α. Let us consider a path
α −→

i
β (i > 0). Its first step is the pair (α, {α}(i)), We have {α}(i) < α and

{α}(i) −→
i
β. Let n be any natural number such that n > i. By the induction

hypothesis, there exists a path {α}(n) −→
i
β.

• If α is a successor ordinal γ+1, then {α}(n) = {α}(i) = γ. Thus we have
a path α −→

n
γ −→

n
β

• If α is a limit ordinal, we apply the following theorem (numbered 2.4 in
Ketonen and Solovay’s article).

Theorem Theorem_2_4 (lambda : T1) :
nf lambda ->
limitb lambda ->
forall i j, (i < j)%nat ->

const_pathS 0 (canonS lambda j)
(canonS lambda i).

We build the following paths :

1. α −→
n

{α}(n)

5.5. THE CASE OF STANDARD BATTLES 101

2. {α}(n) −→
1

{α}(i) (by Theorem_2_4),

3. {α}(n) −→
n

{α}(i) (applying the induction hypothesis to the preceding
path);

4. {α}(i) −→
n
β (applying the induction hypothesis)

5. α −→
n
β (by composition of 1, 3, and 4).

Remark 5.6 Cor12 “casts” i-paths into n-paths for any n > i. But the ob-
tained n-path can be much longer than the original i-path. The following exer-
cise will give an idea of this increase.

Exercise 5.4 Prove that the length of the i+ 1-path from ωω to ωi is 1 + (i+
1)(i+1), for any i. Note that the i-path from ωω to ωi is only one step long.

Why is Cor12 so useful? Let us consider two ordinals β < α < ε0. By
induction on α, we decompose any inequality β < α into β < {α}(i) < α, where
i is some integer. Applying collorary Cor12' we build a n-path from β to α,
where n is the maximum of the indices i met in the induction.

Lemma 1, Section 2.6 of [KS81] is naturally expressed in terms of Coq’s sig
construct.

Lemma Lemma2_6_1 (alpha : T1) :
nf alpha -> forall beta, beta t1< alpha ->
{n:nat | const_pathS n alpha beta}.

Proof.
transfinite_induction alpha.
(* ... *)

Intuitively, lemma L2_6_1 shows that if β < α < ε0, then there exists a
battle from ι(α) to ι(β) where the replication factor is constant, although large
enough.

5.5.2 Casting Paths with a Constant Index into a Stan-
dard Path

The article [KS81] contains the following lemma, the proof of which is quite
complex, which allows to simulate i-paths by [i + 1, j]-paths, where j is large
enough.

(* Lemma 1 page 300 of [KS] *)

Lemma constant_to_standard_path
(alpha beta : T1) (i : nat):
nf alpha -> const_pathS i alpha beta -> zero t1< alpha ->
{l:nat | standard_path (S i) alpha j beta}.

5.5.2.1 Sketch of Proof of constant_to_standard_path

Our proof follows the proof by Ketonen and Solovay, including its organization
as a sequence of lemma. Since it is a non-trivial proof, we will comment its
main steps below.

102 CHAPTER 5. THE KETONEN-SOLOVAY MACHINERY

Préliminaries

Please note that, given an ordinal α : T1, and two natural numbers i and l, there
exists at most a standard path α ∗−−−→

i,i+l
β. The following function computes β

from α, i and l.

Fixpoint standard_gnaw (i:nat)(alpha : T1)(l:nat): T1 :=
match l with
| 0 => alpha
| S m => standard_gnaw (S i) (canon alpha i) m
end.

Compute standard_gnaw 2 omega 15.
(* = zero

: T1 *)
Compute pp (standard_gnaw 2 (omega^omega) 10).
(*
= (omega + 7)%pT1

: ppT1
*)
Compute pp (standard_gnaw 4 (omega^omega) 100).
(*
= (omega ^ 3 * 4 + omega ^ 2 * 5 + omega * 3 + 39)%pT1

: ppT1 *)

By transfinite induction over α, we prove that the ordinal 0 is reachable from
any ordinal α < ε0 by some standard path.

Lemma standard_path_to_zero :
forall alpha i, nf alpha ->

{j: nat | standard_path (S i) alpha j zero}.

Noq, let us consider two ordinals β < α < ε0. Let p be some (n + 1)-path
from α to β.

Section Constant_to_standard_Proof.

Variables (alpha beta: T1) (n : nat).
Hypotheses (Halpha: nf alpha) (Hpos : zero t1< beta)

(p : const_pathS n alpha beta).

Applying standard_path_to_zero, 0 is reachable from α by some standard
path (see figure 5.2 on the next page).

Since comparison on T1 is decidable, one can compute the last step γ of the
standard path from (α, n+ 1) such that β ≤ γ. Let l be the length of the path
from α to γ. This step of the proof is illustrated in figure 5.3 on the facing page.

5.5. THE CASE OF STANDARD BATTLES 103

α β
n+ 1

+
0

n
+
1

n+ 2 n+ 3
. . .

n+ p+ 1

Figure 5.2: A nice proof (1)

α β

. . .

γ δ
n+

1
n+ 2

n
+

l

n+ l + 1

n+ 1

+

≥ >

Figure 5.3: A nice proof (2)

• If β = γ, its OK! We have got a standard path from α to β with successive
indices n+ 1, n+ 2, . . . , n+ l + 1

• Otherwise, β < γ. Let us consider δ = {γ}(n+ l + 1). By applying several
times lemma Cor12, one converts every path of Fig 5.3 into a n+l+1-path
(see figure 5.4).
But γ is on the n + l + 1-path from α to β. As shown by figure 5.5 on
the next page, the ordinal δ, reachable from γ in one single step, must be
greater than or equal to β, which contradicts our hypothesis β < γ.

α β

. . .

γ δ
n
+

l
+

1+

n + l + 1

+

n
+

l
+

1

+
n + l + 1

1

n+ l + 1

+

> >

Figure 5.4: A nice proof (3)

The only possible case is thus β = γ, so we have got a standard path from α to
β.

Lemma constant_to_standard_0 :
{l : nat | standard_fun (S n) alpha l = beta}.

(* ... *)

End Constant_to_standard_Proof.

104 CHAPTER 5. THE KETONEN-SOLOVAY MACHINERY

α β

. . .

γ δ
n
+

l
+

1+

n + l + 1

+

n
+

l +
1

+

n+ l + 1

1

n+ l + 1

+

n + l + 1

+ >

Figure 5.5: A nice proof (4)

Here is the full statement of the conversion from constant to standard paths.

Lemma constant_to_standard_path
(alpha beta : T1) (i : nat):
nf alpha -> const_pathS i alpha beta -> zero t1< alpha ->
{j:nat | standard_path (S i) alpha j beta}.

Applying Lemma2_6_1 and constant_to_standard_path, we get the follow-
ing corollary.

Corollary LT_to_standard_path (alpha beta : T1) :
beta t1< alpha ->
{n : nat & {j:nat | standard_path (S n) alpha j beta}}.

5.5.3 Back to Hydras
We are now able to complete our proof that there exists no bounded variant for
proving the termination of standard hydra battles. This proof can be consulted
in the module ../theories/html/hydras.Hydra.Epsilon0_Needed_Std.html.
Please note that it has the same global structure as in section5.4.1 Applying the
lemmas Lemma2_6_1 of the module Lemma2_6_1 and constant_to_standard_path,
we can convert any inequality β < α < ε0 into a standard path from α to β,
then into a fragment of a standard battle from ι(α) to ι(β).

From Module Hydra.Epsilon0_Needed_Std

Lemma LT_to_standard_battle :
forall alpha beta,

beta t1< alpha ->
exists n i, battle standard n (iota alpha) i (iota beta).

Next, please consider the following context:

Section Impossibility_Proof.

Context (Var : BoundedVariant standard).

../theories/html/hydras.Hydra.Epsilon0_Needed_Std.html
../theories/html/hydras.Epsilon0.Paths.html#Lemma2_6_1
../theories/html/hydras.Epsilon0.Paths.html#constant_to_standard_path
../theories/html/hydras.Hydra.Epsilon0_Needed_Std.html#LT_to_standard_battle

5.5. THE CASE OF STANDARD BATTLES 105

In the same way as for free battles, we import a large inequality from the
module Hydra.Epsilon0_Needed_Generic.

Lemma m_ge : m big_h t1<= m small_h.

If remains to prove the following strict inequality, in order to have a contra-
diction.

Lemma m_lt : m small_h t1< m big_h.

Sketch of proof: Let us recall that big_h = ι(µ) and small_h = ι(m(big_h)).
Since m(big_h) < µ, there exists a standard path from µ to m(big_h),

hence a standard battle from ι(µ) to ι(m(big_h)), i.e. from big_h to small_h.
Sincem is assumed to be a variant for standard battles, we get the inequality

m(small_h) < m(big_h).

5.5.4 Remarks
We are grateful to J. Ketonen and R. Solovay for the high quality of their
explanations and proof details. Our proof follows tightly the sequence of lemmas
in their article, with a focus on constructive aspects. Roughly steaking, our
implementation builds, out of a hypothetic variant m, bounded by some ordinal
µ < ε0, a hydra big_h which verifies the impossible inequality m(big_h) <
m(big_h).

On may ask whether the preceding results are not too restrictive, since
they refer to a particular data type T1. In fact, our representation of ordi-
nals strictly less than ε0 is faithful to their mathematical definition, at least
Kurt Schütte’s [Sch77], as proved in Chapter 7 on page 127. (please see also the
module Ordinals.Schutte.Correctness_E0).

Thus, we can infer that our theorems can be applied to any well order.

Project 5.2 Study a possible modification of the definition of a variant (for
standard battles).

• The variant is assumed to be strictly decreasing on configurations reachable
from some initial configuration where the replication factor is equal to 0

• The variant may depend on the number of the current round.

In other words, its type should be nat -> Hydra -> T1, and it must verify
the inequality m (S i)h′ < mih whenever the configuration (i, h) is reachable
from some initial configuration (0, h0) and h is transformed into h' in the con-
sidered round. Can we still prove the theorems of section 5.5 with this new
definition?

../theories/html/hydras.Hydra.Epsilon0_Needed_Generic.html
../theories/html/hydras.Schutte.Correctness_E0.html
../theories/html/hydras.Schutte.Correctness_E0.html

106 CHAPTER 5. THE KETONEN-SOLOVAY MACHINERY

Chapter 6

Large Sets and Rapidly
Growing Functions

In this chapter, we try to feel how long a standard battle can be. To be precise,
for any ordinal α < ε0 and any positive integer k, we give a minoration of the
number of steps of a standard battle which starts with the hydra ι(α) and the
replication factor k.

We express this number in terms of the Hardy hierarchy of fast-growing
functions [BW85, Wai70, KS81, Prő13]. From the Coq user’s point of view,
such functions are very attractive: they are defined as functions in Gallina, and
we can apply them in theory, but they are so complex that you will never be
able to look at the result of the computation. Thus, our knowledge on these
functions must rely on proofs. In our development, we use often the rewriting
rules generated by Coq’s Equations plug-in.

6.1 Definitions
Definition 6.1 Let 0 < α < ε0 be any ordinal, and s a sequence of strictly
positive natural numbers. We say that s is minimally α-large (in short: α-
mlarge) if s if s is α-large and every strict prefix of s leads to a non-zero ordinal
(cf Sect. 5.3.1 on page 94).

From Module Epsilon0.Large_Sets

Definition mlarge alpha (s:list nat) := path_to zero s alpha.

Remark 6.1 Ketonen and Solovay [KS81] consider large finite sets of natural
numbers, but they are mainly used as sequences. Thus, we chosed to represent
them explicitely as (sorted) lists.

They also consider large (but not minimally large) sets. They can be defined
in Coq as follows:
From Module Epsilon0.Paths

Fixpoint gnaw (alpha : T1) (s: list nat) :=
match s with

107

../theories/html/hydras.Epsilon0.Large_Sets.html#mlarge
../theories/html/hydras.Epsilon0.Paths.html#gnaw

108 CHAPTER 6. LARGE SETS AND RAPIDLY GROWING FUNCTIONS

| nil => alpha
| (0::s') => gnaw alpha s'
| (S i :: s') => gnaw (canonS i alpha) s'

end.

Definition large alpha (s:list nat) := gnaw alpha s = zero.

Let us consider two integers k and l, such that 0 < k < l. In order to check
whether the interval [k, l] is minimally large for α, it is enough to follow from
α the path associated with the interval [k, l(and verify that the last ordinal we
obtain is equal to 1.

6.1.1 Example
For instance the interval [6, 70] leads ω2 to ω× 2+ 56. Thus this interval is not
ω2-mlarge.

Compute pp (gnaw (omega * omega) (interval 6 70)).

= (omega * 2 + 56)%pT1
: ppT1

Let us try another computation.

Compute (gnaw (omega * omega) (interval 6 700)).

= zero : T1

We may say that the interval [6, 700] is ω2-large, since it leads to 0, but
nothing assures us that the condition of minimality is satisfied.

The following lemma relates minimal largeness with the function gnaw.

Lemma mlarge_iff alpha x (s:list nat) :
s <> nil -> ~ In 0 (x::s) ->
mlarge alpha (x::s) <-> gnaw alpha (but_last x s) = one.

For instance, we can verify that the interval [6, 510] is ω2-mlarge.
From Module Epsilon0.Large_Sets_Examples

Example Ex1 : mlarge (omega * omega) (interval 6 510).

6.2 The Length of Minimal Large Sequences
Now, consider any natural number k > 0. We would like to compute a number
l such that the interval [k, l] is α-mlarge. So, the standard battle starting with
ι(α) and the replication factor k will end after (l − k + 1) steps.

First, we notice that this number l exists, since the segment [0, ε0) is well-
founded and {α}(i) < α for any i and α > 0. Moreover, it is unique:
From Module Epsilon0.Large_Sets

../theories/html/hydras.Epsilon0.Large_Sets_Examples.html
../theories/html/hydras.Epsilon0.Large_Sets.html

6.2. THE LENGTH OF MINIMAL LARGE SEQUENCES 109

Lemma mlarge_unicity alpha k l l' :
mlarge alpha (interval (S k) l) ->
mlarge alpha (interval (S k) l') ->
l = l'.

Thus, it seems obvious that there must exist a function, parameterized by
α which associates to any strictly positive integer k the number l such that the
interval [k, l] is α-mlarge. It would be fine to write in Gallina a definition like
this:

Function L (alpha: E0) (i:nat) : nat := ...

But we do not know how to fill the dots yet … In the next section, we will
use Coq to reason about the specification of L, prove properties of any function
which satisfies this specification. In Sect. 6.2.4, we use the coq-equations
plug-in to define a function L_, and prove its correctness w.r.t. its specification.

Let 0 < α < ε0 be an ordinal term. We consider the functions which
associate to each stritly positive integer k the number l, where the interval [k, l)
is α-mlarge.

Remark 6.2 The upper bound of the considered interval has been chosen to be
l− 1 and not l, in order to simplify some statements and proofs in composition
lemmas associated to ordinals of the form α × i and ωα × i + β. In order to
consider any ordinal below ε0, we consider a special case for α = 0.

6.2.1 Formal Specification
Our specification of the function L is as follows:

Inductive L_spec : T1 -> (nat -> nat) -> Prop :=
| L_spec0 : forall f, (forall k, f k = k) -> L_spec zero f
| L_spec1 : forall alpha f,

alpha <> zero ->
(forall k, mlarge alpha (interval (S k) (Nat.pred (f (S k))))) ->
L_spec alpha f.

Note that, for α 6= 0, the value of f(0) is not specified. Nevertheless, the
restriction of f to the set of strictly positive integers is unique (up to extension-
nality).

Lemma L_spec_unicity alpha f g :
L_spec alpha f -> L_spec alpha g -> forall k, f (S k) = g (S k).

6.2.2 Abstract Properties
Let us now prove properties of any function f (if any) which satisfies L_spec.
We are looking for properties which could be used for writing equations and
prove the correctness of the function generated by the coq-equations plug-in.
Moreover, they will give us some examples of Lα for small values of α.

Our exploration of the Lαs follows the usual scheme : transfinite induction,
and proof-by-cases : zero, successors and limit ordinals.

110 CHAPTER 6. LARGE SETS AND RAPIDLY GROWING FUNCTIONS

6.2.2.1 The Ordinal Zero

The base case is directly a consequence of the specification.

Lemma L_zero_inv f : L_spec zero f -> forall k, f (S k) = S k.

6.2.2.2 Successor Ordinals

Let β be some ordinal, and assume the arithmetic function f satisfies the spec-
ification (L_spec β). Let k be any natural number. Any path from succβ to
0 starting at k + 1 can be decomposed into a first step from succβ to β, then
a path from β at k + 2 to 0. By hypothesis the interval [k + 2, f(k + 2)− 1] is
β-mlarge. But the interval [k + 1, f(k + 2)− 1] is the concatenation of the sin-
gleton {k+1} and the interval [k+2, f(k+2)−1]. So, the function λ k. f(k+1)
satisfies the specification L_specβ.

Note that our decomposition of intervals works only if the intervals we con-
sider are not empty. In order to ensure this property, we assume that f k
is always greater than k, which we note S <<= f, or (fun_le S f) (defined
in Prelude.Iterates).

Definition fun_le f g := forall n:nat, f n <= g n.

It looks also natural to show that the functions we consider are strictly
monotonous. The section on successor ordinals has thus the following structure.

Section succ.
Variables (beta : T1) (f : nat -> nat).

Hypotheses (Hbeta : nf beta)
(f_mono : strict_mono f)
(f_Sle : S <<= f)
(f_ok : L_spec beta f).

Definition L_succ := fun k => f (S k).

Lemma L_succ_mono : strict_mono L_succ.

Lemma L_succ_Sle : S <<= L_succ.

Lemma L_succ_ok : L_spec (succ beta) L_succ.

End succ.

6.2.2.3 Limit Ordinals

Let λ < ε0 be any limit ordinal. In a similar way as for successors, we decompose
any path from λ (at k) into a step to {λ}(k), then to 0. In the following section,
we assume that there exists à correct function for {λ}(k), for any strictly positive
k.

../theories/html/hydras.Prelude.Iterates.html#fun_le

6.2. THE LENGTH OF MINIMAL LARGE SEQUENCES 111

Section lim.
Variables (lambda : T1)

(Hnf : nf lambda)
(Hlim : limitb lambda)
(f : nat -> nat -> nat)
(H : forall k, L_spec (canonS lambda k) (f (S k))).

Let L_lim k := f k (S k).

Lemma L_lim_ok : L_spec lambda L_lim.

End lim.

6.2.3 First Results
Applying the previous lemmas on successors and limit ordinals, we get several
correct implementations of (L_spec α) for small values of α.

6.2.3.1 Finite Ordinals

By iterating the functional L_succ, we get a realization of (L_spec (fin i))
for any natural number i.

Definition L_fin i := fun k => (i + k)%nat.

Lemma L_fin_ok i : L_spec (fin i) (L_fin i).

6.2.3.2 The First Limit Ordinal ω

The lemmas L_fin_ok and L_lim_ok allow us to get by diagonalization a correct
implementation for L_spec omega.

Definition L_omega k := S (2 * k)%nat.

Lemma L_omega_ok : L_spec omega L_omega.

6.2.3.3 Towards ω2

We would like to get exact formulas for the ordinal ω2, a.k.a. φ0(2). This ordinal
is the limit of the sequence ω× i (i ∈ N. Thus, we have to study ordinals of this
form, then use our lemma on limits.

The following lemma establishes a path from ω × (i+ 1) to ω × i.

Lemma path_to_omega_mult (i k:nat) :
path_to (omega * i) (interval (S k) (2 * (S k))) (omega * (S i)).

Let us consider a path from ω × (i + 1) to 0 starting at k + 1. A first “big
step” will lead to ω × i at 2(k + 1). If i > 0, the next jump leads to ω × (i− 1)
at 2(2(k + 1)) + 1, etc.

The following lemma expresses the length of the mlarge sequences associated
with the finite multiples of ω.

112 CHAPTER 6. LARGE SETS AND RAPIDLY GROWING FUNCTIONS

Lemma omega_mult_mlarge_0 i : forall k,
mlarge (omega * (S i))

(interval (S k)
(Nat.pred (iterate (fun p => S (2 * p)%nat)

(S i)
(S k)))).

Thus, we infer the following result:
From Module Epsilon0.Large_Sets

Definition L_omega_mult i (x:nat) := iterate L_omega i x.

Lemma L_omega_mult_ok (i: nat) : L_spec (omega * i) (L_omega_mult i).

For instance, let us consider the ordinal ω × 8, and a sequence starting at
k = 5.

Compute L_omega_mult 8 5.

= 1535
: nat

More generally, we prove the equality Lω×i(k) = 2i × (k + 1)− 1.

Lemma L_omega_mult_eqn (i : nat) :
forall (k : nat), (0 < k)%nat ->

L_omega_mult i k = (exp2 i * S k - 1)%nat.

By diagonalization, we obtain a simple formula for Lω2 .

Definition L_omega_square k := iterate (fun z => S (2 * z)%nat)
k
(S k).

Lemma L_omega_square_eqn k :
(0 < k)%nat ->
L_omega_square k = (exp2 k * (k + 2) - 1)%nat.

Lemma L_omega_square_ok: L_spec (omega * omega)
L_omega_square.

Compute L_omega_square 8.

= 2559
: nat

../theories/html/hydras.Epsilon0.Large_Sets.html#L_omega_mult

6.2. THE LENGTH OF MINIMAL LARGE SEQUENCES 113

6.2.3.4 Going Further

Let us consider a last example, “computing” Lω3 . Since the canonical sequence
associated with this ordinal is composed of the ω2× i (i ∈ N1), we have to study
this sequence.

To this end, we prove a generic lemma, which expresses Lωα×i as an iterate
of Lωα . Note that in this lemma, we assume that the fonction associated with
α is stritly monotonous and greater or equal than the successor function, and
prove that Lωα×isatisfies the same properties.

Section phi0_mult.
Variables (alpha : T1) (f : nat -> nat).
Hypotheses (Halpha : nf alpha)

(f_mono : strict_mono f)
(f_Sle : S <<= f)
(f_ok : L_spec (phi0 alpha) f).

Definition L_phi0_mult i := iterate f i.

Lemma L_phi0_mult_ok i:
L_spec (ocons alpha i zero) (L_phi0_mult (S i)).

Lemma L_phi0_mult_smono i: strict_mono (L_phi0_mult i).

Lemma L_phi0_mult_Sle i: S <<= L_phi0_mult (S i).

End phi0_mult.

Let us look at the ordinal ω2 × i, using L_phi0_mult

Definition L_omega_square_times i := iterate L_omega_square i.

Lemma L_omega_square_times_ok i :
L_spec (ocons 2 i zero) (L_omega_square_times (S i)).

Proof.
apply L_phi0_mult_ok.
- auto with T1.
- apply L_omega_square_Sle.
- apply L_omega_square_ok.
Qed.

We are now ready to get an exact formula for Lω3 .

Definition L_omega_cube := L_lim L_omega_square_times .

Lemma L_omega_cube_ok : L_spec (phi0 3) L_omega_cube.

The function Lω3 is just obtained by diagonalization upon Lω2×i.

Lemma L_omega_cube_eqn i :
L_omega_cube i = L_omega_square_times i (S i).

Proof. reflexivity. Qed.

114 CHAPTER 6. LARGE SETS AND RAPIDLY GROWING FUNCTIONS

Thus, for instance, Lω3(3) = Lω2×4(3). Thus, we obtain an exact expression
of this number.

Lemma L_omega_cube_3_eq:
let N := exp2 95 in
let P := (N * 97 - 1)%nat in
L_omega_cube 3 = (exp2 P * (P + 2) - 1)%nat.

This number is quite big. Using Ocaml’s float arithmetic, we can [under-
]approximate it by 23.8×1030 × 3.8× 1030.

let exp2 x = 2.0 ** x;;

val exp2 : float -> float = <fun>
exp2 95.0 *. 97.0 -. 1.0;;
- : float = 3.84256588194182037e+30
let n = exp2 95.0 ;;
let p = n *. 97.0 -. 1.0;;
val p : float = 3.84256588194182037e+30

Estimation :
2 ** (3.84 e+30) * 3.84 e+30.

6.2.4 Using Equations

Note that we did not define any function Lα for any α < ε0 yet. We have got
no more than a collection of proved realizations of L_spec α for several values
of α.

Using the coq-equations plug-in by M. Sozeau [SM19], we will now define a
function L_ which maps any ordinal α < ε0 to a proven realization of L_spec α.

6.2.5 Definition
In order to get a total function, we use our type E0 of well-formed ordinal
terms,(see Sect 4.1.5.1 on page 73). Our definition is structured along a well-
founded recursion and a case-study (zero, limit and successor ordinals).
From Module L_alpha).

From Equations Require Import Equations.
Require Import ArithRing Lia.

Instance Olt : WellFounded Lt := Lt_wf.
Hint Resolve Olt : E0.

(** Using Coq-Equations for building a function which satisfies
Large_sets.L_spec *)

Equations L_ (alpha: E0) (i:nat) : nat by wf alpha Lt :=
L_ alpha i with E0_eq_dec alpha Zero :=
{ | left _ => i ;

| right nonzero

../theories/html/hydras.Epsilon0.L_alpha.html#L_

6.2. THE LENGTH OF MINIMAL LARGE SEQUENCES 115

with Utils.dec (Limitb alpha) :=
{ | left _ => L_ (Canon alpha i) (S i) ;
| right notlimit => L_ (Pred alpha) (S i)}}.

Solve All Obligations with auto with E0.

It is worth looking at the answer from Equations and check (with About
) all the lemmas this plug-in gives you for free. We show here only a part of
Coq’s anwer.

L__obligations_obligation_1 is defined
L__obligations_obligation_2 is defined
L__obligations is defined
L__clause_1 is defined
L__functional is defined
L_ is defined
...
L__equation_1 is defined
L__graph_mut is defined
L__graph_rect is recursively defined
L__graph_correct is defined
L__elim has type-checked, generating 1 obligation
L__elim is defined
FunctionalElimination_L_ is defined
FunctionalInduction_L_ is defined

Sometimes, these automatically generated statements may look cryptic.

About L__equation_1.

L__equation_1 :
forall (alpha : E0) (i : nat),
L_ alpha i = L__unfold_clause_1 alpha (E0_eq_dec alpha Zero) i

In most cases, it may be useful to write human-readable paraphrases of these
statements.

Lemma L_zero_eqn : forall i, L_ Zero i = i.
Proof. intro i; now rewrite L__equation_1. Qed.

Lemma L_lim_eqn alpha i : Limitb alpha -> L_ alpha i =
L_ (Canon alpha i) (S i).

Lemma L_succ_eqn alpha i : L_ (Succ alpha) i = L_ alpha (S i).

Hint Rewrite L_zero_eqn L_succ_eqn : L_rw.

Using these three lemmas as rewrite rules, we can prove more properties of
the functions L_α.

116 CHAPTER 6. LARGE SETS AND RAPIDLY GROWING FUNCTIONS

Lemma L_finite : forall i k :nat, L_ i k = (i+k)%nat.
(* Proof by induction on i, using L_zero_eqn and L_succ_eqn *)

Lemma L_omega : forall k, L_ omega%e0 k = S (2 * k)%nat.
(* Proof using L_finite and L_lim_eqn *)

By well-founded induction on α, we prove the following lemmas:

Lemma L_ge_S alpha : alpha <> Zero -> S <<= L_ alpha.

Theorem L_correct alpha : L_spec (cnf alpha) (L_ alpha).

Please note that the proof of L_correct applies the lemmas proven in Sec-
tions 6.2.2.1, 6.2.2.2 and 6.2.2.3. Our previous study of L_spec allowed us to
pave the way for the definition by Equations and the correctness proof.

6.2.5.1 Back to Hydra Battles

Theorem battle_length_std of Module Hydra.Hydra_Theorems relates the
length of standard battles with the functions Lα.

Theorem battle_length_std (alpha : E0) :
alpha <> Zero ->
forall k, (1 <= k)%nat ->

battle_length standard k (iota (cnf alpha))
(L_ alpha (S k) - k).

Project 6.1 Instead of considering standard paths and battles, consider “con-
stant” paths and the corresponding battles. Please use Equations in order to
define the function that computes the length of the k-path which leads from α
to 0. Prove a few exact formulas and minoration lemmas.

6.3 The Wainer-Hardy Hierarchy (Functions Hα)
In order to give an idea of the complexity of the functions Lαs, we compare them
with a better known family of functions, the so called Wainer-Hardy hierarchy
of fast growing functions, presented for instance in [Prő13].

For each ordinal α below ε0, Hα is a total arithmetic function, defined by
transfinite recursion on α, according to three cases:

• If α = 0, then Hα(k) = k for any natural number k.

• If α = succ(β), then Hα(k) = Hβ(k + 1) for any k ∈ N

• If α is a limit ordinal, then Hα(k) = H
({α}(k + 1))(k) for any k ∈ N.

../theories/html/hydras.Hydra.Hydra_Theorems.html#battle_length_std

6.3. THE WAINER-HARDY HIERARCHY (FUNCTIONS Hα) 117

6.3.1 Hardy Functions in Coq

We define a function H_ of type E0 -> nat -> nat by transfinite induction over
the type E0 of the well formed ordinals below ε0.

From Module Epsilon0.H_alpha

Equations H_ (alpha: E0) (i:nat) : nat by wf alpha lt :=
H_ alpha i with E0_eq_dec alpha Zero :=

{ | left _ => i ;
| right nonzero

with Utils.dec (Limitb alpha) :=
{ | left _ => H_ (Canon alpha (S i)) i ;
| right notlimit => H_ (Pred alpha) (S i)}}.

Solve All Obligations with auto with E0.

Lemma H_eq1 : forall i, H_ Zero i = i.
Proof. intro i; now rewrite H__equation_1. Qed.

Lemma H_eq2 alpha i : Is_Succ alpha ->
H_ alpha i = H_ (Pred alpha) (S i).

Lemma H_eq3 alpha i : Limitb alpha ->
H_ alpha i = H_ (Canon alpha (S i)) i.

Lemma H_eq4 alpha i : H_ (Succ alpha) i = H_ alpha (S i).

6.3.2 First Steps of the Hardy hierarchy
Using rewrite rules from H_eq1 to H_eq4, we can explore the functions Hα for
some small values of α.

6.3.2.1 Finite Ordinals

By induction on i, we prove a simple expression of H_ (Fin i), where Fin i is
the i-th finite ordinal.

Lemma H_Fin : forall i k: nat, H_ (Fin i) k = (i+k)%nat.
Proof with eauto with E0.
induction i.
- intros; simpl OF; simpl; autorewrite with H_rw E0_rw ...
- intros ;simpl; autorewrite with H_rw E0_rw ...

rewrite IHi; lia.
Qed.

6.3.2.2 Multiples of ω

Since the canonical sequence of ω is composed of finite ordinals, it is easy to get
the formula associated with Hω.

Lemma H_omega : forall k, H_ Omega k = S (2 * k)%nat.
Proof with auto with E0.

../theories/html/hydras.Epsilon0.H_alpha.html#H_

118 CHAPTER 6. LARGE SETS AND RAPIDLY GROWING FUNCTIONS

intro k; rewrite H_eq3 ...
- replace (Canon omega (S k)) with (Fin (S k)).
+ rewrite H_Fin; lia.
+ now autorewrite with E0_rw.

Qed.

Before going further, we prove a useful rewriting lemma:

Lemma H_Plus_Fin alpha : forall i k : nat,
H_ (alpha + i)%e0 k = H_ alpha (i + k)%nat.

(* Proof by induction on i *)

Then, we get easily formulas for Hω+i, and Hω×i for any natural number i.

Lemma H_omega_double k : H_ (omega * 2)%e0 k = (4 * k + 3)%nat.
Proof.
rewrite H_lim_eqn; simpl Canon.
- ochange (CanonS (omega * 2)%e0 k) (omega + (S k))%e0.
+ rewrite H_Plus_Fin, H_omega; lia.
- now compute.

Qed.

Lemma H_omega_3 k : H_ (omega * 3)%e0 k = (8 * k + 7)%nat.

Lemma H_omega_4 k : H_ (omega * 4)%e0 k = (16 * k + 15)%nat.

Lemma H_omega_i i : forall k,
H_ (omega * i)%e0 k = (exp2 i * k + Nat.pred (exp2 i))%nat.

Crossing a new limit, we prove the following equality:

Hω2(k) = 2k+1 × (k + 1)− 1

.

Lemma H_omega_sqr : forall k,
H_ (Phi0 2)%e0 k = (exp2 (S k) * S k - 1)%nat.

Proof.
intro k;
rewrite H_lim_eqn; auto with E0.
- ochange (Canon (Phi0 2) (S k)) (omega * (S k))%e0.
+ rewrite H_omega_i; simpl (exp2 (S k)).

* rewrite Nat.add_pred_r.
-- lia.
-- generalize (exp2_not_zero k); lia.

+ cbn; f_equal; lia.
Qed.

6.3.2.3 New Limits

Our next step would be to prove an exact formula for Hωω (k). Since the canon-
ical sequence of ωω is composed of all the ωi, we first need to express Hωi for
any natural number i.

6.3. THE WAINER-HARDY HIERARCHY (FUNCTIONS Hα) 119

Let i and k be two natural numbers. The ordinal {ω(i+ 1)}(k) is the product
ωi × k, so we need also to consider ordinals of this form.

1. First, we express Hωα×(i+2) in terms of Hωα×(i+1).

Lemma H_Omega_term_1 : alpha <> Zero -> forall k,
H_ (Omega_term alpha (S i)) k =
H_ (Omega_term alpha i) (H_ (Phi0 alpha) k).

2. Then, we prove by induction on i that Hωα×(i+1) is just the (i + 1)-th
iterate of Hωα .

Lemma H_Omega_term (alpha : E0) :
alpha <> Zero -> forall i k,

H_ (Omega_term alpha i) k = iterate (H_ (Phi0 alpha)) (S i) k.

3. In particular, we have got a formula for Hωi+1 .

Definition H_succ_fun f k := iterate f (S k) k.

Lemma H_Phi0_succ alpha : alpha <> Zero -> forall k,
H_ (Phi0 (Succ alpha)) k = H_succ_fun (H_ (Phi0 alpha)) k.

Lemma H_Phi0_Si : forall i k,
H_ (Phi0 (S i)) k = iterate H_succ_fun i (H_ omega) k.

We get now a formula for Hω3 :

Lemma H_omega_cube : forall k,
H_ (Phi0 3)%e0 k = iterate (H_ (Phi0 2)) (S k) k.

Proof.
intro k; rewrite <-FinS_eq, -> Fin_Succ, H_Phi0_succ; auto.
compute; injection 1; discriminate.

Qed.

6.3.2.4 A Numerical Example

It seems hard to capture the complexity of this function by looking only at this
“exact” formula. Let us consider a simple example, the number Hω3(3).

Section H_omega_cube_3.

Let f k := (exp2 (S k) * (S k) - 1)%nat.

Remark R0 k : H_ (Phi0 3)%e0 k = iterate f (S k) k.

Thus, the number Hω3(3) can be written as four nested applications of f .

Fact F0 : H_ (Phi0 3) 3 = f (f (f (f 3))).
rewrite R0; reflexivity.
Qed.

120 CHAPTER 6. LARGE SETS AND RAPIDLY GROWING FUNCTIONS

In order to make this statement more readable, we can introduce a local
définition.

Let N := (exp2 64 * 64 - 1)%nat.

This number looks quite big; let us compute an approximation in Ocaml:

(2.0 ** 64.0 *. 64.0 -. 1.0);;

- : float = 1.1805916207174113e+21

Fact F1 : H_ (Phi0 3) 3 = f (f N).
Proof.
rewrite H_omega_cube_0; reflexivity.
Qed.

Lemma F1_simpl : H_ (Phi0 3) 3 =
(exp2 (exp2 (S N) * S N) * (exp2 (S N) * S N) - 1)%nat.

In a more classical writing, this number is displayed as follows:

Hω3(3) = 2(2
N+1×(N+1))× (2N+1 × (N + 1))− 1

We leave as an exercise to determine the best approximation as possible of
the size of this number (for instance its number of digits). For instance, if we
do not take into account the multiplications in the formula above, we obtain
that, in base 2, the number Hω3(3) has at least 210

21 digits. But it is still an
under-approximation !

End H_omega_cube_3.

Now, we have got at last an exact formula for Hωω .

Lemma H_Phi0_omega : forall k, H_ (Phi0 omega) k =
iterate H_succ_fun k (H_ omega) k.

Proof with auto with E0.
intro k; rewrite H_lim_eqn, <- H_Phi0_Si ...
- rewrite CanonS_Canon, CanonS_Phi0_lim; f_equal ...

Qed.

Using extensionality of the functional iterate, we can get a closed formula.

Lemma H_Phi0_omega_closed_formula k :
H_ (Phi0 omega) k =
iterate (fun (f: nat -> nat) (l : nat) => iterate f (S l) l)

k
(fun k : nat => S (2 * k)%nat)
k.

6.3. THE WAINER-HARDY HIERARCHY (FUNCTIONS Hα) 121

Note that this short formula contains two occurences of the functional iterate,
the outer one is in fact a second-order iteration (on type nat -> nat) and the
inner one first-order (on type nat).

6.3.3 Abstract Properties of H-functions

Since pure computation seems to be useless for dealing with expressions of
the form Hα(k), even for small values of α and k, we need to prove theorems
for comparing Hα(k) and Hβ(l), in terms of comparison between α and β on
the one hand, k and l on the other hand.

But beware of non-theorems! For instance, one could believe that H is
monotonous in its first argument. The following proof shows this is false.

Remark H_non_mono1 :
~ (forall alpha beta k, (alpha o<= beta)%e0 ->

(H_ alpha k <= H_ beta k)%nat).
Proof.
intros H ;specialize (H 42 omega 3).
assert (H0 :(42 o<= omega)%e0) by (repeat split; auto).
apply H in H0; rewrite H_Fin, H_omega in H0; lia.
Qed.

On the contrary, the fonctions of the Hardy hierarchy have the following five
properties [KS81]: for any α < ε0,

• the function Hα is strictly monotonous : For all n, p ∈ N, n < p ⇒
Hα(n) < Hα(p).

• If α 6= 0, then for every n, n < Hα(n).

• The function Hα is pointwise less or equal than Hα+1

• For any n ≥ 1, Hα(n) < Hα+1(n). We say that Hα+1 dominates Hα from
1.

• For any n and β, if α −→
n
β, then Hβ(n) ≤ Hα(n).

In Coq, we follow the proof in [KS81]. This proof is mainly a single proof by
transfinite induction on α of the conjonction of the five properties. For each α,
the three cases : α = 0, α is a limit, and α is a successor are considered. Inside
each case, the five sub-properties are proved sequentially.

Definition 6.2 Let f zand g be two arithmetic functions; f is said to dominate
g if f(p) > g(p) for any all sufficiently large p.

Section Proof_of_Abstract_Properties.
Record P (alpha:E0) : Prop :=

mkP {
PA : strict_mono (H_ alpha);
PB : alpha <> Zero -> forall n, (n < H_ alpha n)%nat;
PC : H_ alpha <<= H_ (Succ alpha);
PD : dominates_from 1 (H_ (Succ alpha)) (H_ alpha);

122 CHAPTER 6. LARGE SETS AND RAPIDLY GROWING FUNCTIONS

PE : forall beta n, Canon_plus n alpha beta ->
(H_ beta n <= H_ alpha n)%nat}.

Theorem P_alpha : forall alpha, P alpha.
Proof.
intro alpha; apply well_founded_induction with lt.
(* rest of proof skipped *)

Section Proof_of_Abstract_Properties.

6.3.4 Comparison between L_ and H_

By well-founded induction on α, we prove that our L hierachy is “almost” the
Hardy hierarchy (up to a small shift).

From Module Epsilon0.L_alpha

Theorem H_L_ alpha: forall i:nat, (H_ alpha i <= L_ alpha (S i))%nat.

6.3.4.1 Back to Hydras

The following theorem relates the length of (standard) battles with the Hardy
hierarchy.

From Module Epsilon0.L_alpha

Theorem battle_length_std_Hardy (alpha : E0) :
alpha <> Zero ->
forall k , 1 <= k -> exists l: nat,

H_ alpha k - k <= l /\
battle_length standard k (iota (cnf alpha)) l.

6.4 The Wainer Hierarchy (Functions Fα)
The Wainer hierarchy [BW85, Wai70, KS81], is also a family of fast growing
functions, indexed by ordinals below ε0, by the following equations:

• F0(i) = i+ 1

• Fβ+1(i) = (Fβ)
(i+1)(i), where f (i) is the i-th iterate of f .

• Fα(i) = F{α}(i)(i) if α is a limit ordinal.

A first attempt is to write a definition of Fα by equations, in the same as for
H_alpha. We use the functional iterate defined in Module Prelude.Iterates.

Fixpoint iterate {A:Type}(f : A -> A) (n: nat)(x:A) :=
match n with
| 0 => x
| S p => f (iterate f p x)
end.

../theories/html/hydras.Epsilon0.L_alpha.html#H_L_
../theories/html/hydras.Epsilon0.L_alpha.html
../theories/html/hydras.Prelude.Iterates.html#iterate

6.4. THE WAINER HIERARCHY (FUNCTIONS Fα) 123

The following code comes from ../theories/html/hydras.Epsilon0.F_
alpha.html.

Fail Equations F_ (alpha: E0) (i:nat) : nat by wf alpha Lt :=
F_ alpha i with E0_eq_dec alpha Zero :=

{ | left _ => i ;
| right nonzero

with Utils.dec (Limitb alpha) :=
{ | left _ => F_ (Canon alpha i) i ;
| right notlimit => iterate (F_ (Pred alpha)) (S i) i}}.

The command has indeed failed with message:
In environment
alpha : E0
notlimit : Limitb alpha = false
nonzero : alpha <> Zero
i : nat
F_ : forall x : E0, nat -> x o< alpha -> nat
The term "F_ (Pred alpha) ?x" has type "Pred alpha o< alpha -> nat"
while it is expected to have type "Pred alpha o< alpha -> Pred alpha o< alpha"
(cannot unify "nat" and "Pred alpha o< alpha").

We presume that this error comes from the recursive call of F_ inside an ap-
plication of iterate. The workaround we propose is to define first the iteration
of F_ as an helper F ∗, then to define the function F as a “iterating F ∗ once”.

Equations accepts the following definition, relying on lexicographic ordering
on pairs (α, n).

Definition call_lt (c c' : E0 * nat) :=
lexico Lt (Peano.lt) c c'.

Lemma call_lt_wf : well_founded call_lt.
unfold call_lt; apply Inverse_Image.wf_inverse_image, wf_lexico.
- apply E0.Lt_wf.
- unfold Peano.lt; apply Nat.lt_wf_0.

Qed.

Instance WF : WellFounded call_lt := call_lt_wf.

Equations F_star (c: E0 * nat) (i:nat) : nat by wf c call_lt :=
F_star (alpha, 0) i := i;
F_star (alpha, 1) i
with E0_eq_dec alpha Zero :=

{ | left _ => S i ;
| right nonzero

with Utils.dec (Limitb alpha) :=
{ | left _ => F_star (Canon alpha i,1) i ;
| right notlimit =>
F_star (Pred alpha, S i) i}};

F_star (alpha,(S (S n))) i :=
F_star (alpha, 1) (F_star (alpha, (S n)) i).

(* Finally, F_ alpha is defined as its first iterate ! *)

../theories/html/hydras.Epsilon0.F_alpha.html
../theories/html/hydras.Epsilon0.F_alpha.html

124 CHAPTER 6. LARGE SETS AND RAPIDLY GROWING FUNCTIONS

Definition F_ alpha i := F_star (alpha, 1) i.

It is quite easy to prove that our function F_ satisfies the equations on
page 123.

Lemma F_zero_eqn : forall i, F_ Zero i = S i.

Lemma F_lim_eqn : forall alpha i, Limitb alpha ->
F_ alpha i = F_ (Canon alpha i) i.

Lemma F_succ_eqn : forall alpha i,
F_ (Succ alpha) i = iterate (F_ alpha) (S i) i.

As for the Hardy functions, we can use these equalities as rewrite rules for
“computing” some values of Fα(i), for small values of α.

Lemma LF1 : forall n, F_ 1 n = S (2 * n).

Lemma LF2 : forall i, (exp2 i * i < F_ 2 i)%nat.

Like in Sect 6.3.3, we prove by induction the following properties (see [KS81]).

Theorem F_alpha_mono alpha : strict_mono (F_ alpha).

Theorem F_alpha_ge_S alpha : forall n, (n < F_ alpha n)%nat.

Theorem F_alpha_Succ_le alpha : F_ alpha <<= F_ (Succ alpha).

Theorem F_alpha_dom alpha : dominates_from 1 (F_ (Succ alpha)) (F_ alpha).

Theorem F_alpha_beta alpha : forall beta n, Canon_plus n alpha beta ->
(F_ beta n <= F_ alpha n)%nat.

As a corollary, we prove the following proposition, p. 284 of [KS81].

If β < α, Fα dominates Fβ .

Lemma Propp284 : forall alpha beta : E0,
beta o< alpha -> dominates (F_ alpha) (F_ beta).

Exercise 6.1 Let us quote a theorem from [KS81] (page 297).

Hωα(n+ 1) ≥ Fα(n) (n ≥ 1, α < ε0)

Fα(n+ 1) ≥ Hωα(n) (n ≥ 1, α < ε0)

Thus Hωα and Fα have essentially the same order of growth.

6.4. THE WAINER HIERARCHY (FUNCTIONS Fα) 125

But, before trying to prove these facts, look at the definition of function
H in Ketonen and Solovay’s paper ! Is it really the same as the definition
we quote from Prőmel’s chapter [Prő13], whereas [KS81] define Hα(n) as “the
least integer k such that [n, k] is α-large”. Thus, it may be useful to adapt the
statement above.

Exercise 6.2 Prove the following result [KS81](p. 298).

For n ≥ 2 and α ≥ 3, Fα(n+ 1) ≥ 2Fα(n).

126 CHAPTER 6. LARGE SETS AND RAPIDLY GROWING FUNCTIONS

Chapter 7

Kurt Schütte’s Axiomatic
Definition of Countable
Ordinals

In the present chapter, we compare our implementation of the segment [0, ε0)
with a mathematical text in order to “validate” our constructions. Our reference
here is the axiomatic definition of the set of countable ordinals, in chapter V of
Kurt Schütte’s book “ Proof Theory ” [Sch77].

Remark 7.1 In all this chapter, the word “ordinal” will be considered as a
synonymous of “countable ordinal”

Schütte’s definition of countable ordinals relies on the following three axioms:
There exists a strictly ordered set , such that
1. (O, <) is well-ordered

2. Every bounded subset of O is countable

3. Every countable subset of O is bounded.
Starting with these three axioms, Schütte re-defines the vocabulary about

ordinal numbers: the null ordinal 0, limits and successors, the addition of ordi-
nals, the infinite ordinals ω, ε0, Γ0, etc.

This chapter describes an adaptation to Coq of Schütte’s axiomatization.
Unlike the rest of our libraries, our library Ordinals.Schutte is not constructive,
and relies on several axioms.

• First, please keep in mind that the set of countable ordinals is not count-
able. Thus, we cannot hope to represent all countable ordinals as finite
terms of an inductive type, which was possible with the set of ordinals
strictly less than ε0 (resp. Γ0)

• We tried to be as close as possible to K. Schütte’s text, which uses “clas-
sical” mathematics : excluded middle, Hilbert’s ε (choice) and Russel’s
ι (definite description) operators. Both operators allow us to write defi-
nitions close to the natural mathematical language, such as “succ is the
least ordinal strictly greater than α”

127

../theories/html/hydras.Schutte.Schutte.html

128 CHAPTER 7. COUNTABLE ORDINALS (AFTER SCHÜTTE)

• Please note that only the library Schutte/*.v is “contaminated” by axioms,
and that the rest of our libraries remain constructive.

7.1 Declarations and Axioms
Let us declare a type Ord for representing countable ordinals, and a binary
relation lt. Note that, in our development, Ord is a type, while the set of
countable ordinals (called O by Schütte) is the full set over the type Ord.

We use Florian Hatat’s library on countable sets, written as he was a student
of École Normale Supérieure de Lyon. A set A is countable if there is an injective
function from A to N (see Library Schutte.Countable).

From ModuleSchutte.Schutte_basics

Parameter Ord : Type.
Parameter lt : relation Ord.
Infix "<" := lt : schutte_scope.

Definition ordinal := Full_set Ord.

Schütte’s first axiom tells that lt is a well order on the set ordinal (The
class WO is defined in Module Well_Orders.v).

Variables (M:Type)
(Lt : relation M).

Class WO : Type:=
{

Lt_trans : Transitive Lt;
Lt_irreflexive : forall a:M, ~ (Lt a a);
well_order : forall (X:Ensemble M)(a:M),

In X a ->
exists a0:M, least_member X a0

}.

Axiom AX1 : WO lt.

The second and third axioms say that a subset X of O is (strictly) bounded
if and only if it is countable.

Axiom AX2 : forall X: Ensemble Ord,
(exists a, (forall y, In X y -> y < a)) ->
countable X.

Axiom AX3 : forall X : Ensemble Ord,
countable X ->
exists a, forall y, In X y -> y < a.

AX2 and AX3 could have been replaced by a single axiom (using the iff con-
nector), but we decide to respect as most as possible the structure of Schütte’s
definitions.

../theories/html/hydras.Schutte.Schutte.html
../theories/html/hydras.Schutte.Countable.html
../theories/html/hydras.Schutte.Schutte_basics.html
../theories/html/hydras.Schutte.Well_Orders.html

7.2. ADDITIONAL AXIOMS 129

7.2 Additional Axioms
The adaptation of Schütte’s mathematical discourse to Coq led us to import
a few axioms from the standard library. We encourage the reader to consult
Coq’s FAQ about the safe use of axioms https://github.com/coq/coq/wiki/
The-Logic-of-Coq#axioms.

7.2.0.1 Classical Logic

In order to work with classical logic, we import the module Coq.Logic.Classical
of Coq’s standard library, specifially the following axiom:

Axiom classic : forall P:Prop, P \/ ~P.

7.2.0.2 Description Operators

In order to respect Schütte’s style, we imported also the library Coq.Logic.Epsilon.
The rest of this section presents a few examples of how Hilbert’s choice operator
and Church’s definite description allow us to write understandable definitions
(close to the mathematical natural language).

7.2.0.3 The Definition of zero

According to the definition of a well order, every non-empty subset of Ord has
a least element. Furthermore, this least element is unique.

Remark R : exists! z : Ord, least_member lt ordinal z.
Proof.
destruct inh_Ord as [a]; apply (well_order (WO:=AX1)) with a .
split.

Qed.

Assume we want to call this element zero.

Definition zero : Ord.
Proof.
Fail destruct R.

The command has indeed failed with message:
Case analysis on sort Type is not allowed for inductive
definition ex.

Indeed, the basic logic of Coq does not allow us to eliminate a proof of a
proposition ∃x : A, P (x) for building a term whose type lies in the sort Type.
The reasons for this impossibility are explained in many documents [BC04,
Chl11, Coq].

Let us import the library Coq.Logic.Epsilon, which contains the following
axiom and lemmas.

Axiom epsilon_statement:
forall (A : Type) (P : A->Prop), inhabited A ->

{x : A | (exists x, P x) -> P x}.

https://github.com/coq/coq/wiki/The-Logic-of-Coq#axioms
https://github.com/coq/coq/wiki/The-Logic-of-Coq#axioms
https://coq.inria.fr/distrib/current/stdlib/Coq.Logic.Classical.html
https://coq.inria.fr/distrib/current/stdlib/Coq.Logic.Epsilon.html

130 CHAPTER 7. COUNTABLE ORDINALS (AFTER SCHÜTTE)

Hilbert’s ε operator is derived from this axiom.

Definition epsilon (A : Type) (i:inhabited A) (P : A->Prop) : A
:= proj1_sig (epsilon_statement P i).

Lemma constructive_indefinite_description :
forall (A : Type) (P : A->Prop),
(exists x, P x) -> { x : A | P x }.

If we consider the unique existential quantifier ∃!, we obtain Church’s definite
description operator.

Definition iota (A : Type) (i:inhabited A) (P : A->Prop) : A
:= proj1_sig (iota_statement P i).

Lemma constructive_definite_description :
forall (A : Type) (P : A->Prop),
(exists! x, P x) -> { x : A | P x }.

Definition iota_spec (A : Type) (i:inhabited A) (P : A->Prop) :
(exists! x:A, P x) -> P (iota i P)
:= proj2_sig (iota_statement P i).

Indeed, the operators epsilon and iota allowed us to make our defini-
tions quite close to Schütte’s text. Our libraries Schutte.MoreEpsilonIota
and Schutte.PartialFun are extensions of Coq.logic.Epsilon for making
easier such definitions. See also an article in french [Cas07].

Class InH (A: Type) : Prop :=
InHWit : inhabited A.

Definition some {A:Type} {H : InH A} (P: A -> Prop) :=
epsilon (@InHWit A H) P.

Definition the {A:Type} {H : InH A} (P: A -> Prop) :=
iota (@InHWit A H) P.

In order to use these tools, we had to tell Coq that the type Ord is not
empty:

Axiom inh_Ord : inhabited Ord.

We are now able to define zero as the least ordinal. For this purpose, we
define a function returning the least element of any [non-empty] subset.

Definition the_least {M: Type} {Lt}
{inh : InH M} {WO: WO Lt} (X: Ensemble M) : M :=

the (least_member Lt X).

From Module Schutte.Schutte_basics

../theories/html/hydras.Schutte.MoreEpsilonIota.html
../theories/html/hydras.Schutte.PartialFun.html
../theories/html/hydras.Schutte.Schutte_basics.html

7.2. ADDITIONAL AXIOMS 131

Definition zero: Ord :=the_least ordinal.

We want to prove now that zero is less than or equal to any ordinal number.

Lemma zero_le (alpha : Ord) : zero <= alpha.
Proof.
unfold zero, the_least, the; apply iota_ind.

According to the use of the description operator iota, we have to solve two
trivial sub-goals.

1. Prove that there exists a unique least member of Ord

2. Prove that being a least member of Ord entails the announced inequality

2 subgoals (ID 155)

alpha : Ord
============================
exists ! x : Ord, least_member lt ordinal x

subgoal 2 (ID 156) is:
forall a : Ord, unique (least_member lt ordinal) a ->

a <= alpha

- apply the_least_unicity, Inh_ord.
- destruct 1 as [[_ H1] _]; apply H1; split.

Qed.

7.2.0.4 Remarks on epsilon and iota

What would happen in case of a misuse of epsilon or iota ? For instance, one
could give a unsatisfiable specification to epsilon or a specification for iota
that admits several realizations.

Let us consider an example:

Module Bad.

Definition bottom := the_least (Empty_set Ord).

bottom is defined

Since we won’t be able to prove the proposition
{exists! a: Ord, least_member (Empty_set Ord) a, the only properties we
would be able to prove about bottom would be trivial properties, i.e., satisfied
by any element of type Ord, like for instance bottom = bottom, or zero <=
bottom.

132 CHAPTER 7. COUNTABLE ORDINALS (AFTER SCHÜTTE)

Lemma le_zero_bottom : zero <= bottom.
Proof. apply zero_le. Qed.

Lemma bottom_eq : bottom = bottom.
Proof. trivial. Qed.

Lemma le_bottom_zero : bottom <= zero.
Proof.

unfold bottom, the_least, the; apply iota_ind.

2 subgoals (ID 413)

============================
exists ! x : Ord, least_member lt (Empty_set Ord) x

subgoal 2 (ID 414) is:
forall a : Ord, unique (least_member lt (Empty_set Ord)) a ->

a <= zero

Abort.
End Bad.

In short, using epsilon and iota in our implementation of countable ordi-
nals after Schütte has two main advantages.

• It allows us to give a name (using Definition) two witnesses of existential
quantifiers (let us recall that, in classical logic, one may consider non-
constructive proofs of existential statements)

• By separating definitions from proofs of [unique] existence, one may make
definitions more concise and readable. Look for instance at the definitions
of zero, succ, plus, etc. in the rest of this chapter.

7.3 The Successor Function
The definition of the function succ:Ord -> Ord is very concise. The successor
of any ordinal α is the smallest ordinal strictly greater than α.

Definition succ (alpha : Ord) := the_least (fun beta => alpha < beta).

Using succ, we define the folloing predicates.

Definition is_succ (alpha:Ord) := exists beta, alpha = succ beta.

Definition is_limit (alpha:Ord) := alpha <> zero /\ ~ is_succ alpha.

How do we prove properties of the successor function? First, we make its
specification explicit.

7.3. THE SUCCESSOR FUNCTION 133

Definition succ_spec (alpha:Ord) :=
least_member lt (fun z => alpha < z).

Then, we prove that our function succ meets this specification.

Lemma succ_ok : forall alpha, succ_spec alpha (succ alpha).
Proof.
intros; unfold succ, the_least, the; apply iota_spec.

1 subgoal (ID 172)

alpha : Ord
============================
exists ! x : Ord, succ_spec alpha x

We have now to prove that the set of all ordinals strictly greater than α has
a unique least element. But the singleton set {α} is countable, hence bounded
(by the axiom AX3). Hence; the set {β ∈ O|α < β} is not empty and therefore
has a unique least element.

The Coq proof script is quite short.

destruct (@AX3 (Singleton _ alpha)).
- apply countable_singleton.
- unfold succ_spec; apply the_least_unicity; exists x; intuition.

Qed.

We can “uncap” the description operator for proving properties of the succ
function.

Lemma lt_succ (alpha : Ord) : alpha < succ alpha.
Proof.
destruct (succ_ok alpha); tauto.

Qed.

Hint Resolve lt_succ : schutte.

Lemma lt_succ_le (alpha beta : Ord):
alpha < beta -> succ alpha <= beta.

Proof with eauto with schutte.
intros H; pattern (succ alpha); apply the_least_ok ...
exists (succ alpha); red;apply lt_succ ...

Qed.

Lemma lt_succ_le_2 (alpha beta : Ord):
alpha < succ beta -> alpha <= beta.

Lemma succ_mono (alpha beta : Ord):
alpha < beta -> succ alpha < succ beta.

Lemma succ_monoR (alpha beta : Ord) :

134 CHAPTER 7. COUNTABLE ORDINALS (AFTER SCHÜTTE)

succ alpha < succ beta -> alpha < beta.

Lemma lt_succ_lt (alpha beta : Ord) :
is_limit beta -> alpha < beta -> succ alpha < beta.

7.4 Finite Ordinals
Using succ, it is now easy to define recursively all the finite ordinals.

Reserved Notation "'F' n" (at level 29) .

Fixpoint finite (i:nat) : Ord :=
match i with

| 0 => zero
| S i => succ (F i)

end
where "'F' i" := (finite i) : schutte_scope.

Coercion finite : nat >-> Ord.

7.5 The Definition of omega
In order to define ω, the first infinite ordinal, we use an operator which “returns”
the least upper bound (if it exists) of a subset X ⊆ O. For that purpose, we
first use a predicate: (is_lub D lt X a) if a belongs to D and is the least
upper bound of X (with respect to lt).

Definition is_lub (M:Type)
(D : Ensemble M)
(lt : relation M)
(X:Ensemble M)
(a:M) :=

In _ D a /\ upper_bound D lt X a /\
(forall y, In _ D y -> upper_bound D lt X y ->

y = a \/ lt a y).

Definition sup_spec X lambda := is_lub ordinal lt X lambda.

Definition sup (X: Ensemble Ord) : Ord := the (sup_spec X).

Notation "'|_|' X" := (sup X) (at level 29) : schutte_scope.

Then, we define the function omega_limit which returns the least upper
bound of the (denumerable) range of any sequence s: nat -> Ord. By AX3
this range is bounded, hence the set of its upper bounds is not empty and has
a least element.

Definition omega_limit (s:nat->Ord) : Ord
:= |_| (seq_range s).

7.5. THE DEFINITION OF OMEGA 135

Then we define omega as the limit of the sequence of finite ordinals.

Definition _omega := omega_limit finite.

Notation "'omega'" := (_omega) : schutte_scope.

Among the numerous properties of the ordinal ω, les us quote the following
ones (proved in Module Schutte.Schutte_basics)

Lemma finite_lt_omega : forall i: nat, i < omega.

Lemma lt_omega_finite alpha : Ord) :
alpha < omega -> exists i:nat, alpha = i.

Lemma is_limit_omega : is_limit omega.

7.5.1 Ordering Functions and Ordinal Addition
After having defined the finite ordinals and the infinite ordinal ω, we define the
sum α+β of two countable ordinals. Schütte’s definition looks like the following
one:

“α+ β is the β-th ordinal greater than or equal to α”

The purpose of this section is to give a meaning to the construction “the
α-th element of X” where X is any non-empty subset of O. We follow Schütte’s
approach, by defining the notion of ordering functions, a way to associate a
unique ordinal to each element of X. Complete definitions and proofs can be
found in Module Schutte.Ordering_Functions).

7.5.2 Definitions
A segment is a set A of ordinals such that, whenever α ∈ A and β < α, then
β ∈ A; a segment is proper if it strictly included in O.

Definition segment (A: Ensemble Ord) :=
forall alpha beta, In A alpha -> beta < alpha -> In A beta.

Definition proper_segment (A: Ensemble Ord) :=
segment A /\ ~ Same_set A ordinal.

Let A be a segment, and B a subset of O : an ordering function for A and B
is a strictly increasing bijection from A to B. The set B is said to be an ordering
segment of A. Our definition in Coq is a direct translation of the mathematical
text of [Sch77].

Definition ordering_function (f : Ord -> Ord)(A B : Ensemble Ord) :=
segment A /\
(forall a, In A a -> In B (f a)) /\
(forall b, B b -> exists a, In A a /\ f a = b) /\
forall a b, In A a -> In A b -> a < b -> f a < f b.

../theories/html/hydras.Schutte.Schutte_basics.html#finite_lt_omega
../theories/html/hydras.Schutte.Ordering_Functions.html

136 CHAPTER 7. COUNTABLE ORDINALS (AFTER SCHÜTTE)

Definition ordering_segment (A B : Ensemble Ord) :=
exists f : Ord -> Ord, ordering_function f A B.

We are now able to associate with any subset B of O its ordering segment
and ordering function.

Definition the_ordering_segment (B : Ensemble Ord) :=
the (fun x => ordering_segment x B).

Definition ord (B : Ensemble Ord) :=
some (fun f => ordering_function f (the_ordering_segment B) B).

Thus (ord B α) is the α-th element of B. Please note that the last definition
uses the epsilon-based operator some and not the. This is due to the fact that we
cannot prove the unicity (w.r.t. Leibniz’ equality) of the ordering function of a
given set. By contrast, we admit the axiom Extensionality_Ensembles, from
the library Coq.Sets.Ensembles, so we use the operator the in the definition of
the_ordering_segment.

One of the main theorems of Ordering_Functions associates a unique seg-
ment and a unique (up to extensionality) ordering function to every subset B
of O.

About ordering_function_ex.

forall B : Ensemble Ord,
exists ! S : Ensemble Ord,

exists f : Ord -> Ord, ordering_function f S B

ordering_function_unicity :
forall (B S1 S2 : Ensemble Ord) (f1 f2 : Ord -> Ord),
ordering_function f1 S B ->
ordering_function f2 S2 B ->
fun_equiv f1 f2 S1 S2

Thus, our function ord which enumerates the elements of B is defined
in a non-ambiguous way. Let us quote the following theorems (see Library
Schutte.Ordering_Functions for more details).

Theorem ordering_le : forall f A B,
ordering_function f A B ->
forall alpha, In A alpha -> alpha <= f alpha.

Th_13_5_2 :
forall (A B : Ensemble Ord) (f : Ord -> Ord),
ordering_function f A B -> Closed B -> continuous f A B

https://coq.inria.fr/distrib/current/stdlib/Coq.Sets.Ensembles.html
../theories/html/hydras.Schutte.Ordering_Functions.html#ordering_function_ex
../theories/html/hydras.Schutte.Ordering_Functions.html

7.5. THE DEFINITION OF OMEGA 137

7.5.3 Ordinal Addition
We are now ready to define and study addition on the type Ord. The following
definitions and proofs can be consulted in Module Schutte.Addition.v.

Definition plus alpha := ord (ge alpha).
Notation "alpha + beta " := (plus alpha beta) : schutte_scope.

In other words, α+β is the β-th ordinal greater than or equal to α. Thanks
to generic properties of ordering functions, we can show the following properties
of addition on O. First, we prove a useful lemma:

Lemma plus_elim (alpha : Ord) :
forall P : (Ord->Ord)->Prop,

(forall f: Ord->Ord,
ordering_function f ordinal (ge alpha)-> P f) ->

P (plus alpha).

Lemma alpha_plus_zero (alpha: Ord): alpha + zero = alpha.
Proof.
pattern (plus alpha); apply plus_elim; eauto.

1 subgoal (ID 24)

alpha : Ord
============================
forall f : Ord -> Ord,
ordering_function f ordinal (ge alpha) ->
f zero = alpha

(* rest of proof skipped *)

The following lemmas are proved the same way.

Lemma zero_plus_alpha (alpha : Ord) : zero + alpha = alpha.

Lemma le_plus_l (alpha beta : Ord) : alpha <= alpha + beta.

Lemma le_plus_r (alpha beta : Ord) : beta <= alpha + beta.

Lemma plus_mono_r (alpha beta gamma : Ord) :
beta < gamma -> alpha + beta < alpha + gamma.

Lemma plus_of_succ (alpha beta : Ord) :
alpha + (succ beta) = succ (alpha + beta).

Theorem plus_assoc (alpha beta gamma : Ord) :
alpha + (beta + gamma) = (alpha + beta) + gamma.

Lemma one_plus_omega : 1 + omega = omega.

../theories/html/hydras.Schutte.Addition.html

138 CHAPTER 7. COUNTABLE ORDINALS (AFTER SCHÜTTE)

Lemma finite_plus_infinite (n : nat) (alpha : Ord) :
omega <= alpha -> n + alpha = alpha.

It isinteresting to compare the proof of these lemmas with the computational
proofs of the corresponding statements in Module Epsilon0.T1. For instance,
the proof of the lemma one_plus_omega uses the continuity of ordering func-
tions (applied to (plus 1)) and compares the limit of the ω-sequences i(i∈N)
and (1+ i)i(i∈N), whereas in the library Epsilon0/T1, the equality 1+ω = ω is
just proved with reflexivity!

7.5.3.1 Multiplication by a Natural Number

The multiplication of an ordinal by a natural number is defined in terms of
addition. This operation is useful for the study of Cantor normal forms.

Fixpoint mult_Sn (alpha:Ord)(n:nat){struct n}: Ord :=
match n with

| 0 => alpha
| S p => mult_Sn alpha p + alpha

end.

Definition mult_fin_r alpha n :=
match n with

0 => zero
| S p => mult_Sn alpha p

end.

Notation "alpha * n" := (mult_fin_r alpha n) : schutte_scope.

7.6 The Exponential of Basis ω

In this section, we define the function which maps any α ∈ O to the ordinal
ωα, also written φ0(α). It is an opportunity to apply the definitions and results
of the preceding section. Indeed, Schütte first defines a subset of O: the set of
additive principal ordinals, and φ0 is just defined as the ordering function of
this set.

7.6.1 Additive Principal Ordinals
Definition 7.1 A non-zero ordinal α is said to be additive principal if, for all
β < α, β + α is equal to α. We call AP the set of additive principal ordinals.

From Module Schutte.AP

Definition AP : Ensemble Ord :=
fun alpha =>
zero < alpha /\
(forall beta, beta < alpha -> beta + alpha = alpha).

../theories/html/hydras.Epsilon0.T1.html
../theories/html/hydras.Schutte.AP.html

7.6. THE EXPONENTIAL OF BASIS ω 139

7.6.2 The Function phi0

Let us call φ0 the ordering function of AP. In the mathematical text, we shall
use indifferently the notations ωα andφ0(α).

Definition phi0 := ord AP.

Notation "'omega^'" := phi0 (only parsing) : schutte_scope.

7.6.3 Omega-towers and the Ordinal ε0
Using φ0, we can define recursively the set of finite omega-towers.

Fixpoint omega_tower (i : nat) : Ord :=
match i with

0 => 1
| S j => phi0 (omega_tower j)
end.

Then, the ordinal ε0 is defined as the limit of the sequence of all finite towers
(a kind of infinite tower).

Definition epsilon0 := omega_limit omega_tower.

The rest of our library AP is devoted to the proof of properties of additive
principal ordinals, hence of the ordering function φ0 and the ordinal ε0 (which
we could not express within the type T1).

7.6.4 Properties of the Set AP

The set of additive principal ordinals is not empty: it contains at least the
ordinals 1 and ω.

Lemma AP_one : In AP 1.

Lemma AP_omega : In AP omega.

Moreover, 1 is the least principal ordinal and ω is the second element of AP.

Lemma least_AP: least_member lt AP 1.

Lemma omega_second_AP :
least_member lt

(fun alpha => 1 < alpha /\ In AP alpha)
omega.

The set AP is closed under addition, and unbounded.

Lemma AP_plus_closed (alpha beta gamma : Ord):
In AP alpha -> beta < alpha -> gamma < alpha ->
beta + gamma < alpha.

Theorem AP_unbounded : Unbounded AP.

140 CHAPTER 7. COUNTABLE ORDINALS (AFTER SCHÜTTE)

Finally, AP is (topologically) closed and ordered by the segment of all count-
able ordinals.

Definition Closed (B : Ensemble Ord) : Prop :=
forall M, Included M B -> Inhabited _ M ->

countable M -> In B (|_| M).

Theorem AP_closed : Closed AP.

Lemma AP_o_segment : the_ordering_segment AP = ordinal.

7.6.4.1 Properties of the Function φ0

The ordering function φ0 of the set AP is defined on the full set O and is con-
tinuous (Schütte calls such a function normal).

Theorem normal_phi0 : normal phi0 AP.

The following properties come from the definition of φ0 as the ordering func-
tion of AP. It may be interesting to compare these proofs with the computational
ones described in Chapter 4.

Lemma AP_phi0 (alpha : Ord) : In AP (phi0 alpha).

Lemma phi0_zero : phi0 zero = 1.

Lemma phi0_mono (alpha beta : Ord) :
alpha < beta -> phi0 alpha < phi0 beta.

Lemma phi0_inj (alpha beta : Ord) :
phi0 alpha = phi0 beta -> alpha = beta.

Lemma phi0_sup : forall (U: Ensemble Ord),
Inhabited _ U -> countable U -> phi0 (|_| U) = |_| (image U phi0).

Lemma is_limit_phi0 (alpha : Ord) :
zero < alpha -> is_limit (phi0 alpha).

Lemma omega_eq : omega = phi0 1.

Lemma phi0_le (alpha : Ord) : alpha <= phi0 alpha.

Please note that the lemma omega_eq above, is consistent with the inter-
pretation of the ordering function φ0 as the exponential of basis ω. Indeed we
could have written this lemma with our alternative notation:

Lemma omega_eq : omega = omega^ 1.

7.7. MORE ABOUT ε0 141

7.7 More about ε0

Let us recall that the limit ordinal ε0 cannot be written within the type T1.
Since we are now considering the set of all countable ordinals, we can now prove
some properties of this ordinal.

We prove the inequality α < ωα whenever α < ε0. Note that this condition
was implicit in Module Epsilon0.T1.

Lemma lt_phi0 (alpha : Ord):
alpha < epsilon0 -> alpha < phi0 alpha.

The proof is as follows:
1. Since α < ε0, consider the least i such that α is strictly less than the

omega-tower of height i.

2. • If i = 0, then the result is trivial (because α = 0)
• Otherwise let i = j+1; α is greater than or equal to the omega-tower

of height j. By monotonicity, φ0(α) is greater than or equal to the
omega-tower of height j + 1, thus strictly greater than α

Moreover, ε0 is the least ordinal α that verifies the equality α = ωα, in other
words the least fixpoint of the function φ0.

Theorem epsilon0_lfp : least_fixpoint lt phi0 epsilon0.

7.8 Critical Ordinals
For any (countable) ordinal α, the set Cr(α) is inductively defined as follows by
Schütte (p.81 of [Sch77]).

• Cr(0) is the set AP of additive principal ordinals.
• If 0 < α, then Cr(α) is the intersection of all the sets of fixpoints

of the Cr(β) for β < α.

This definition is translated in Coq in Module Schutte.Critical, as the
least fixpoint of a functional.

Definition Cr_fun : forall alpha : Ord,
(forall beta : Ord, beta < alpha -> Ensemble Ord) ->
Ensemble Ord

:=
fun (alpha :Ord)

(Cr : forall beta,
beta < alpha -> Ensemble Ord)

(x : Ord) => (
(alpha = zero /\ AP x) \/
(zero < alpha /\
forall beta (H:beta < alpha),
the_ordering_segment (Cr beta H) x /\ ord (Cr beta H) x = x)).

Definition Cr (alpha : Ord) : Ensemble Ord :=
(Fix all_ord_acc (fun (_:Ord) => Ensemble Ord) Cr_fun) alpha.

../theories/html/hydras.Epsilon0/T1.html#lt_phi0
../theories/html/hydras.Schutte.Critical.html

142 CHAPTER 7. COUNTABLE ORDINALS (AFTER SCHÜTTE)

Definition phi (alpha : Ord) : Ord -> Ord
:= ord (Cr alpha).

Definition A (alpha : Ord) : Ensemble Ord :=
the_ordering_segment (Cr alpha).

For instance, we prove that Cr(0) is the set of additive principals and that
ε0 belongs to Cr(1).

Lemma Cr_zero_AP : Cr 0 = AP

Lemma epsilon0_Cr1 : In (Cr 1) epsilon0.

Exercise 7.1 Prove that ε0 is the least element of Cr(1).

7.8.1 A flavor of Infinity
The family of the Cr(α)s is made of infinitely many unbounded (hence infinite)
sets. Let us quote Lemma 5, p. 82 of [Sch77]:

For all α, the set Cr(α) is closed (for the least upper bound of non-
empty countable sets) and unbounded.

We prove this result by transfinite induction on α of both properties.
The proof is still quite long, by transfinite induction over α.

Section Proof_of_Lemma5.
Let P (alpha:Ord) := Unbounded (Cr alpha) /\ Closed (Cr alpha).

Lemma Lemma5 : forall alpha, P alpha.
(* ... *)
End Proof_of_Lemma5.

Corollary Unbounded_Cr alpha : Unbounded (Cr alpha).
Proof.

now destruct (Lemma5 alpha).
Qed.

Corollary Closed_Cr alpha : Closed (Cr alpha).
Proof.

now destruct (Lemma5 alpha).
Qed.

7.9 Cantor Normal Form
The notion of Cantor normal form is defined for all countable ordinals. Never-
theless, note that, contrary to the implementation based on type T1, the Cantor
normal form of an ordinal α may contain α as a sub-term1.

1This would prevent us from trying to represent Cantor normal forms as finite trees (like
in Sect. 4.1.2)

7.9. CANTOR NORMAL FORM 143

We represent Cantor normal forms as lists of ordinals. A list l is a Cantor
normal form of a given ordinal α if it satisfies two conditions:

• The list l is sorted (in decreasing order) w.r.t. the order ≤

• The sum of all the ωβi where the βi are the terms of l (in this order) is
equal to α.

From Schutte.CNF

Definition cnf_t := list Ord.

Fixpoint eval (l : cnf_t) : Ord :=
match l with nil => zero

| beta :: l' => phi0 beta + eval l'
end.

Definition sorted (l: cnf_t) :=
LocallySorted (fun alpha beta => beta <= alpha) l.

Definition is_cnf_of (alpha : Ord)(l : cnf_t) : Prop :=
sorted l /\ alpha = eval l.

By transfinite induction on α, we prove that every countable ordinal α has
at least a Cantor normal form.

Theorem cnf_exists (alpha : Ord) :
exists l: cnf_t, is_cnf_of alpha l.

By structural induction on lists, we prove that this normal form is unique.

Lemma cnf_unicity : forall l alpha,
is_cnf_of alpha l ->
forall l', is_cnf_of alpha l' -> l=l'.

Proof.
induction l.
(* ... *)

Theorem cnf_exists_unique (alpha:Ord) :
exists! l: cnf_t, is_cnf_of alpha l.

Finally, the following two lemmas relate ε0 with Cantor normal forms.
If α < ε0, then the Cantor normal form of α is made of ordinals strictly less

than α.

Lemma cnf_lt_epsilon0 :
forall l alpha,

is_cnf_of alpha l -> alpha < epsilon0 ->
Forall (fun beta => beta < alpha) l.

Exercise 7.2 Please consider the following statement :

../theories/html/hydras.Schutte.CNF.html#cnf_t

144 CHAPTER 7. COUNTABLE ORDINALS (AFTER SCHÜTTE)

Lemma cnf_lt_epsilon0_iff :
forall l alpha,

is_cnf_of alpha l ->
(alpha < epsilon0 <-> Forall (fun beta => beta < alpha) l).

Is it true ?

Finally, the Cantor normal form of ε0 is just ωε0 .

Lemma cnf_of_epsilon0 : is_cnf_of epsilon0 (epsilon0 :: nil).
Proof.

split.
- constructor.
- simpl; now rewrite alpha_plus_zero, epsilon0_fxp.

Qed.

Project 7.1 Implement pages 82 to 85 of [Sch77] (critical, strongly critical,
maximal critical ordinals, Feferman’s ordinal Γ0).

Remark 7.2 The sub-directory theories/Gamma0 contains an (incomplete, still
undocumented) implementation of the set of ordinals below Γ0, represented in
Veblen normal form.

7.10 An Embedding of T1 into Ord
Our library Schutte.Correctness_E0 establishes the link between two very
different modelizations of ordinal numbers. In other words, it “validates” a
data structure in terms of a classical mathematical discourse considered as a
model. First, we define a function from T1 into Ord by structural recursion.

Fixpoint inject (t:T1) : Ord :=
match t with

| T1.zero => zero
| T1.ocons a n b => AP.phi0 (inject a) * S n + inject b

end.

This function enjoys good commutation properties with respect to the main
operations which allow us to build Cantor normal form.

Theorem inject_of_zero : inject T1.zero = zero.

Theorem inject_of_finite (n : nat):
inject (T1.fin n) = n.

Theorem inject_of_phi0 (alpha : T1):
inject (phi0 alpha) = AP.phi0 (inject alpha).

Theorem inject_plus (alpha beta : T1): nf alpha -> nf beta ->
inject (alpha + beta)%t1 = inject alpha + inject beta.

../theories/html/hydras.Gamma0.html
../theories/html/hydras.Schutte.correctness_E0.html

7.11. RELATED WORK 145

Theorem inject_mult_fin_r (alpha : T1) :
nf alpha -> forall n:nat , inject (alpha * n)%t1 = inject alpha * n.

Theorem inject_mono (beta gamma : T1) :
T1.lt beta gamma ->
T1.nf beta -> T1.nf gamma ->
inject beta < inject gamma.

Theorem inject_injective (beta gamma : T1) : nf beta -> nf gamma ->
inject beta = inject gamma -> beta = gamma.

Finally, we prove that inject is a bijection from the set of all terms of T1 in
normal form to the set members epsilon0 of the elements of Ord strictly less
than ε0.

Theorem inject_lt_epsilon0 (alpha : T1):
inject alpha < epsilon0.

Theorem embedding :
fun_bijection (nf: Ensemble T1) (members epsilon0) inject.

7.10.1 Remarks
Let us recall that the library Schutte depends on five axioms and lies explicitly
in the framework of classical logic with a weak version of the axiom of choice
(please look at the documentation of Coq.Logic.ChoiceFacts). Nevertheless,
the other modules: Epsilon0, Hydra, et Gamma0 do not import any axioms and
are really constructive.

Project 7.2 There is no construction of ordinal multiplication in [Sch77]. It
would be interesting to derive this operation from Schütte’s axioms, and prove
its consistence with multiplication in ordinal notations for ε0 and Γ0.

7.11 Related Work
In [Gri13], José Grimm establishes the consistency between our ordinal notations
(T1 and T2 (Veblen normal form) and his implementation of ordinal numbers
after Bourbaki’s set theory.

../theories/html/hydras.Schutte.Schutte.html
https://coq.inria.fr/distrib/current/stdlib/Coq.Logic.ChoiceFacts.html
../theories/html/hydras.Epsilon0.Epsilon0.html
../theories/html/hydras.Hydra.Hydra.html
../theories/html/hydras.Gamma0.Gamma0.html

146 CHAPTER 7. COUNTABLE ORDINALS (AFTER SCHÜTTE)

Chapter 8

The Ordinal Γ0 (first draft)

This chapter and the files it presents are still very incomplete, considering the
impressive properties of Γ0 [Gal91]. We hope to add new material soon, and
accept contributions!

8.1 Introduction
We present a notation system for the ordinal Γ0, following Chapter V, Section
14 of [Sch77]: “A notation system for the ordinals < Γ0”. We try to be as close
as possible to Schütte’s text and usual practices of Coq developments.

The ordinal Γ0 is defined in Section 13 of [Sch77] as the least strongly critical
ordinal. It is widely known as the Feferman-Schütte ordinal.

Section V, 13 of [Sch77] defines strongly critical and maximal α-critical or-
dinals:

• α is strongly critical if α is α-critical,

• γ is maximal α-critical if γ is α-critical, and, for all ξ > α, γ is not
ξ-critical.

From Schutte.Critical

Definition strongly_critical alpha := In (Cr alpha) alpha.

Definition maximal_critical alpha : Ensemble Ord :=
fun gamma =>

In (Cr alpha) gamma /\
forall xi, alpha < xi -> ~ In (Cr xi) gamma.

Definition Gamma0 := the_least strongly_critical.

Project 8.1 Prove that a (countable) ordinal α is strongly critical iff φα(0) = α
(Theorem 13.13 of [Sch77]).

147

../theories/html/hydras.Schutte.Critical.html#strongly_critical

148 CHAPTER 8. THE ORDINAL Γ0 (FIRST DRAFT)

Project 8.2 Prove that the set of strongly critical ordinals is unbounded and
closed (Theorem 13.14 of [Sch77]). Thus this set is not empty, hence has a least
element. Otherwise, the definition of Γ0 above would be useless.

In the present version of this development, we only study Γ0 as a notation
system, much more powerful than the ordinal notation for ε0.

8.2 The Type T2 of Ordinal Terms
The notation system for ordinals less than γ0 comes from the following theorem
of [Sch77], where ψ α is the ordering function of the set of maximal α-critical
ordinals.

Any ordinal 6= 0 which is not strongly critical can be expressed in
terms of + and ψ.

Project 8.3 This theorem is not formally proved in this development yet. It
should be!

Like in Chapter 4, we define an inductive type with two constructors, one
for 0, the other for the construction ψ(α, β)× (n+1)+ γ, adapting a Manolios-
Vroon-like notation [MV05] to Veblen normal forms.
From Gamma0.T2

(** [gcons alpha beta n gamma] is : [psi(alpha,beta)*(S n)+ gamma] *)

Inductive T2 : Set :=
| zero : T2
| gcons : T2 -> T2 -> nat -> T2 -> T2.

Notation "[alpha , beta]" := (gcons alpha beta 0 zero)
(at level 0): t2_scope.

Like in chapter 4, we get familiar with the type T2 by recognising simple
constructs like finite ordinals, ω, etc., as inhabitants of T2.

Notation "'one'" := [zero,zero] : T2_scope.

(** The (n+1)-th finite ordinal *)
Notation "'FS' n" := (gcons zero zero n zero) (at level 10) : T2_scope.

(** the [n]-th ordinal *)
Definition fin (n:nat) := match n with 0 => zero | S p => FS p end.

Notation "'omega'" := [zero,one] : T2_scope.

Notation "'epsilon0'" := ([one,zero]) : T2_scope.

Definition epsilon alpha := [one, alpha].

../theories/html/hydras.Gamma0.T2.html#T2

8.3. HOW BIG IS Γ0? 149

Figure 8.1: Veblen normal form

8.3 How Big is Γ0?
Let us define a strict order on type T2. The following definition is an adapta-
tion of Schütte’s, taking into account the multiplications by a natural number
(inspired by [MV05], and also present in T1).

Inductive lt : T2 -> T2 -> Prop :=
| (* 1 *)
lt_1 : forall alpha beta n gamma, zero t2< gcons alpha beta n gamma
| (* 2 *)
lt_2 : forall alpha1 alpha2 beta1 beta2 n1 n2 gamma1 gamma2,

alpha1 t2< alpha2 ->
beta1 t2< gcons alpha2 beta2 0 zero ->
gcons alpha1 beta1 n1 gamma1 t2<
gcons alpha2 beta2 n2 gamma2

| (* 3 *)
lt_3 : forall alpha1 beta1 beta2 n1 n2 gamma1 gamma2,

beta1 t2< beta2 ->
gcons alpha1 beta1 n1 gamma1 t2<
gcons alpha1 beta2 n2 gamma2

| (* 4 *)
lt_4 : forall alpha1 alpha2 beta1 beta2 n1 n2 gamma1 gamma2,

alpha2 t2< alpha1 ->
[alpha1, beta1] t2< beta2 ->
gcons alpha1 beta1 n1 gamma1 t2<
gcons alpha2 beta2 n2 gamma2

| (* 5 *)
lt_5 : forall alpha1 alpha2 beta1 n1 n2 gamma1 gamma2,

alpha2 t2< alpha1 ->
gcons alpha1 beta1 n1 gamma1 t2<
gcons alpha2 [alpha1, beta1] n2 gamma2

150 CHAPTER 8. THE ORDINAL Γ0 (FIRST DRAFT)

| (* 6 *)
lt_6 : forall alpha1 beta1 n1 n2 gamma1 gamma2, (n1 < n2)%nat ->

gcons alpha1 beta1 n1 gamma1 t2<
gcons alpha1 beta1 n2 gamma2

| (* 7 *)
lt_7 : forall alpha1 beta1 n1 gamma1 gamma2, gamma1 t2< gamma2 ->

gcons alpha1 beta1 n1 gamma1 t2<
gcons alpha1 beta1 n1 gamma2

where "o1 t2< o2" := (lt o1 o2): T2_scope.

Hint Constructors lt : T2.

Seven constructors! In order to get accustomed with this definition, let us
look at a small set of examples, covering all the constructors of lt.

8.3.1 Examples
Proof of 0 < ε0

Example Ex1: 0 t2< epsilon0.
Proof. constructor 1. Qed.

Proof of ω < ε0

Example Ex2: omega t2< epsilon0.
Proof. info_auto with T2. (* uses lt_1 and lt_2 *) Qed.

Proof of ψ(ω, 8)× 13 + 56 < ψ(ω, 8)× 13 + 57

Example Ex3: gcons omega 8 12 56 t2< gcons omega 8 12 57.
Proof.

constructor 7; constructor 6; auto with arith.
Qed.

Proof of ε0 < ψ(2, 1)

Example Ex4: epsilon0 t2< [2,1].
Proof.

constructor 2; auto with T2.
- constructor 6; auto with arith.

Qed.

Proof of ψ(2, 1) < ψ(2, 3)

Example Ex5 : [2,1] t2< [2,3].
Proof.

constructor 3; auto with T2.

8.4. VEBLEN NORMAL FORMS 151

- constructor 6; auto with arith.
Qed.

Proof of ψ(1, 0)× 13 + ω < ψ(0, ψ(2, 1))

Example Ex6 : gcons 1 0 12 omega t2< [0,[2,1]].
Proof.
constructor 4.
- constructor 1.
- constructor 2.

+ constructor 6; auto with arith.
+ constructor 1.

Qed.

Proof of ψ(2, 1)× 43 + ε0 < ψ(1, ψ(2, 1))

Example Ex7 : gcons 2 1 42 epsilon0 t2< [1, [2,1]].
Proof.
constructor 5.
constructor 6; auto with arith.
Qed.

Project 8.4 Write a tactic that solves automatically goals of the form (α t2<
β), where α and β are closed terms of type T2.

8.4 Veblen Normal Forms
Definition 8.1 A term of the form ψ(α1, β1) × n1 + ψ(α2, β2) × n2 + · · · +
ψ(αk, βk)×nk is said to be in [Veblen] normal form if for every i < n, ψ(αi, βi) <
ψ(αi+1, βi+1), all the αi and βi are in normal form, and all the ni are strictly
positive integers.

Inductive nf : T2 -> Prop :=
| zero_nf : nf zero
| single_nf : forall a b n, nf a -> nf b -> nf (gcons a b n zero)
| gcons_nf : forall a b n a' b' n' c',

[a', b'] t2< [a, b] ->
nf a -> nf b ->
nf(gcons a' b' n' c')->
nf(gcons a b n (gcons a' b' n' c')).

Let us look at some positive examples (we have to prove some inversion
lemmas before proving counter-examples).

Lemma nf_fin i : nf (fin i).
Proof.
destruct i.
- auto with T2.
- constructor 2; auto with T2.

152 CHAPTER 8. THE ORDINAL Γ0 (FIRST DRAFT)

Qed.

Lemma nf_omega : nf omega.
Proof. compute; auto with T2. Qed.

Lemma nf_epsilon0 : nf epsilon0.
Proof. constructor 2; auto with T2. Qed.

Lemma nf_epsilon : forall alpha, nf alpha -> nf (epsilon alpha).
Proof. compute; auto with T2. Qed.

Example Ex8: nf (gcons 2 1 42 epsilon0).
Proof.

constructor 3; auto with T2.
- apply Ex4.
- apply nf_fin.
- apply nf_fin.

Qed.

8.4.1 Length of a Term
The notion of term length is introduced by Schütte as a helper for proving (at
least) the trichotomy property and transitivity of the strict order lt on T2.
These properties are proved by induction on length.

Fixpoint nbterms (t:T2) : nat :=
match t with zero => 0

| gcons a b n v => (S n) + nbterms v
end.

Fixpoint t2_length (t:T2) : nat :=
match t with
zero => 0

| gcons a b n v =>
nbterms (gcons a b n v) +
2 * (Max.max (t2_length a)

(Max.max (t2_length b)
(t2_length_aux v)))

end
with t2_length_aux (t:T2) : nat :=
match t with
| zero => 0
| gcons a b n v =>

Max.max (t2_length a)
(Max.max (t2_length b) (t2_length_aux v))

end.

Compute t2_length (gcons 2 1 42 epsilon0).

= 48 : nat

8.4. VEBLEN NORMAL FORMS 153

8.4.2 Trichotomy
Trichotomy is another name for the well-known property of decidable total
ordering (like Standard Library’s Compare_dec.lt_eq_lt_dec).

We first prove by induction on l the following lemma:
From Gamma0.Gamma0

Lemma tricho_aux (l: nat) : forall t t' :T2,
t2_length t + t2_length t' < l ->
{t t2< t'} + {t = t'} + {t' t2< t}.

Then we get our version of lt_eq_lt_dec, and derive a comparison function;

Definition lt_eq_lt_dec (t t': T2) : {t t2< t'}+{t = t'}+{t' t2< t}.
Proof.
eapply tricho_aux.
eapply lt_n_Sn.

Defined.

Definition compare (t1 t2 : T2) : comparison :=
match lt_eq_lt_dec t1 t2 with
| inleft (left _) => Lt
| inleft (right _) => Eq
| inright _ => Gt
end.

With the help of compare, we get a boolean version of nf (being in Veblen
normal form).

Fixpoint nfb (alpha : T2) : bool :=
match alpha with

zero => true
| gcons a b n zero => andb (nfb a) (nfb b)
| gcons a b n ((gcons a' b' n' c') as c) =>

match compare [a', b'] [a, b] with
Lt => andb (nfb a) (andb (nfb b) (nfb c))
| _ => false
end

end.

Compute compare (gcons 2 1 42 epsilon0) [2,2].

= Lt
: comparison

Compute nfb (gcons 2 1 42 epsilon0).

= true
: bool

../theories/html/hydras.Gamma0.Gamma0#tricho_aux

154 CHAPTER 8. THE ORDINAL Γ0 (FIRST DRAFT)

Compute nfb (gcons 2 1 42 (gcons 2 2 4 epsilon0)).

= false
: bool

Remark 8.1 The connexion between the predicate nf and the relation lt on
one part, and the functions nfb and compare on the other, is expressed by the
following lemmas:

Lemma nfb_equiv gamma : nfb gamma = true <-> nf gamma.

Lemma compare_correct alpha beta :
CompareSpec (alpha = beta) (lt alpha beta) (lt beta alpha)

(compare alpha beta).

The function compare helps to make easier proofs of inequalities of closed
terms of type T2.

First, we prove a lemma:

Lemma compare_Lt : forall alpha beta, compare alpha beta = Lt ->
alpha t2< beta.

Proof.
intros alpha beta; destruct (compare_correct alpha beta);
trivial; discriminate.

Qed.

Then, we give another version of the proof of Sect. 8.3.1 on page 151.

Example Ex6 : gcons 1 0 12 omega t2< [0,[2,1]].
Proof. now apply compare_Lt. Qed.

8.5 Main Functions on T2

8.5.1 Successor
The successor function is defined by structural recursion.
From Gamma0.T2

Fixpoint succ (a:T2) : T2 :=
match a with zero => one

| gcons zero zero n c => fin (S (S n))
| gcons a b n c => gcons a b n (succ c)

end.

8.5.2 Addition
Like for Cantor normal forms (see Sect. 4.1.7.2), the definition of addition in T2
requires comparison between ordinal terms.

../theories/html/hydras.Gamma0.T2.html#succ

8.5. MAIN FUNCTIONS ON T2 155

Fixpoint plus (t1 t2 : T2) {struct t1}:T2 :=
match t1,t2 with
| zero, y => y
| x, zero => x
| gcons a b n c, gcons a' b' n' c' =>

(match compare (gcons a b 0 zero)
(gcons a' b' 0 zero) with

| Lt => gcons a' b' n' c'
| Gt => gcons a b n (c + gcons a' b' n' c')
| Eq => gcons a b (S(n+n')) c'
end)

end
where "alpha + beta" := (plus alpha beta): T2_scope.

Example Ex7 : 3 + epsilon0 = epsilon0.
Proof. trivial. Qed.

8.5.3 The Veblen Function φ

The enumeration function of critical ordinals, presented in Sect. 7.8 on page 142,
is recursively defined in type T2.

Definition phi (alpha beta : T2) : T2 :=
match beta with zero => [alpha, beta]

| [b1, b2] =>
(match compare alpha b1
with Datatypes.Lt => [b1, b2]
| _ => [alpha,[b1, b2]]
end)

| gcons b1 b2 0 (gcons zero zero n zero) =>
(match compare alpha b1
with Datatypes.Lt =>

[alpha, (gcons b1 b2 0 (fin n))]
| _ => [alpha, (gcons b1 b2 0 (fin (S n)))]
end)

| any_beta => [alpha, any_beta]
end.

Despite its complexity, the function phi is well adapted to proofs by simpli-
fication or computation.

Example Ex8: phi 1 (succ epsilon0) = [1, [1,0] + 1].
Proof. reflexivity. Qed.

(** All epsilons are fixpoints of phi 0 *)

Theorem epsilon_fxp : forall beta, phi zero (epsilon beta) =
epsilon beta.

Proof. reflexivity. Qed.

Theorem epsilon0_fxp : epsilon0 = phi zero epsilon0.
Proof. apply epsilon_fxp. Qed.

156 CHAPTER 8. THE ORDINAL Γ0 (FIRST DRAFT)

The relation between the constructor ψ and the function φ is studied in [Sch77],
and partially implemented in this development. Please contribute!

For instance, the following theorem states that, if γ is the sum of a limit
ordinal β and a finite ordinal n, and β is a fixpoint of φ(α), then ψ(α, γ) =
φα(γ + 1).

phi_psi :
forall (alpha : T2) [beta gamma : T2] [n : nat],
nf gamma ->
limit_plus_fin beta n gamma ->
phi alpha beta = beta -> [alpha, gamma] = phi alpha (succ gamma)

Example Ex9 : [zero, epsilon 2 + 4] = phi 0 (epsilon 2 + 5).
Proof. trivial. Qed.

On the other hand, φ can be expressed in terms of ψ.

phi_of_psi:
forall a b1 b2 : T2,
phi a [b1, b2] = (if lt_ge_dec a b1 then [b1, b2] else [a, [b1, b2]])

Example Ex10 : phi omega [epsilon0, 5] = [epsilon0, 5].
Proof. reflexivity. Qed.

Project 8.5 Please study a way to pretty print ordinal terms in Veblen normal
form (see Section 4.1.8 on page 77).

8.6 An Ordinal Notation for Γ0

In order to consider type T2 as an ordinal notation, we have to build an instance
of class ON (See Definition page 46).

First, we define a type that contains only terms in Veblen normal form, and
redefine lt and compare by delegation (see for comparison the construction of
type E0 in Sect. 4.1.5.1 on page 73).

Module G0.

Class G0 := mkg0 {vnf : T2; vnf_ok : nfb vnf}.

Definition lt (alpha beta : G0) := T2.lt (@vnf alpha) (@vnf beta).

Definition compare alpha beta := Gamma0.compare (@vnf alpha) (@vnf beta).

Then, we prove that lt is a well-founded strict order and that the function
compare is correct.

8.6. AN ORDINAL NOTATION FOR Γ0 157

Instance lt_sto : StrictOrder lt.

Lemma lt_wf : well_founded lt.

Lemma compare_correct alpha beta :
CompareSpec (alpha = beta) (lt alpha beta) (lt beta alpha)

(compare alpha beta).

Instance Gamma0: ON lt compare.
Proof.
split.
- apply lt_sto.
- apply lt_wf.
- apply compare_correct.

Qed.

Remark 8.2 The proof of lt_wf has been written by Évelyne Contejean, using
her library on the recursive path ordering (see also remark 4.2 on page 81).

Project 8.6 Prove that Epsilon0 (page 81) is a sub-notation system of Gamma0.
Prove that the implemantations of succ, +, φ0, etc. are compatible in both

notation systems.
Note that a function T1_inj from T1 to T2 has already been defined. It may

help to complete the task.
From Gamma0.T2

(* injection from T1 *)

Fixpoint T1_to_T2 (alpha :T1) : T2 :=
match alpha with
| T1.zero => zero
| T1.ocons a n b => gcons zero (T1_to_T2 a) n (T1_to_T2 b)
end.

Project 8.7 Prove that the notation system Gamma0 is a correct implementa-
tion of the segment [0,Γ0) of the set of countable ordinals.

../theories/html/hydras.Gamma0.T2.html#T1_to_T2

158 CHAPTER 8. THE ORDINAL Γ0 (FIRST DRAFT)

Chapter 9

Appendices

159

160 CHAPTER 9. APPENDICES

Bibliography

[Bau08] Andrej Bauer. The hydra game. https://github.com/an-
drejbauer/hydra, 2008.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving
and Program Development. Coq’Art: The Calculus of Inductive
Constructions. Springer, 2004. http://www.labri.fr/perso/
casteran/CoqArt/index.html.

[Bur75] William H. Burge. Recursive programming techniques / William H.
Burge. Addison-Wesley Pub. Co Reading, Mass, 1975.

[BW85] Wilfried Bucholz and Stan Wainer. Provably computable functions
and the fast growing hierarchy. In Stephen G. Simpson, editor, Pro-
ceedings of the AMS-IMS-SIAM Joint Summer Research Conference,
1985.

[Can55] Georg Cantor. Contributions to the Founding of the Theory of Trans-
finite Numbers. Courier Corporation, 1955.

[Cas07] Pierre Castéran. Utilisation en Coq de l’opérateur de description.
In Actes des Journées Francophones des Langages Applicatifs, 2007.
http://jfla.inria.fr/2007/actes/index.html.

[CC06] Pierre Castéran and Évelyne Contéjean. On ordinal notations. User
Contributions to the Coq Proof Assistant, 2006.

[CCF+10] Evelyne Contejean, Pierre Courtieu, Julien Forest, Andrei Paske-
vich, Olivier Pons, and Xavier Urbain. AÒ3pat, an approach for
certified automated termination proofs. In 2010 ACM SIGPLAN
Workshop on Partial Evaluation and Program Manipulation, pages
63–72. ACM, 2010.

[Chl11] Adam Chlipala. Certified Programming with Dependent Types. MIT
Press, 2011. http://adam.chlipala.net/cpdt/.

[CLKK07] Hubert Comon-Lundh, Claude Kirchner, and Hélène Kirchner, edi-
tors. Rewriting, computation and proof : essays dedicated to Jean-
Pierre J ouannaud on the occasion of his 60th birthday. Lecture
Notes in Computer Science. Springer, Berlin, New York, 2007.

[Coq] Coq Development Team. The coq proof assistant. https://coq.in-
ria.fr.

161

http://www.labri.fr/perso/casteran/CoqArt/index.html
http://www.labri.fr/perso/casteran/CoqArt/index.html
http://adam.chlipala.net/cpdt/

162 BIBLIOGRAPHY

[Der82] Nachum Dershowitz. Orderings for term-rewriting systems. Theo-
retical Computer Science, 17(3):279 – 301, 1982.

[DM07] Nachum Dershowitz and Georg Moser. The hydra battle revisited.
In Hubert Comon-Lundh, Claude Kirchner, and Hélène Kirchner,
editors, Rewriting, Computation and Proof: Essays Dedicated to
Jean-Pierre Jouannaud on the Occasion of His 60th Birthday, pages
1–27. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[GAA+13] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot,
Cyril Cohen, François Garillot, Stéphane Roux, Assia Mahboubi,
Russell O’Connor, Sidi Biha, Ioana Pasca, Laurence Rideau, Alexey
Solovyev, Enrico Tassi, and Laurent Théry. A machine-checked proof
of the odd order theorem. pages 163–179, 07 2013.

[Gal91] Jean H. Gallier. What’s so special about Kruskal’s theorem and the
ordinal Gamma0? A survey of some results in proof theory. Ann.
Pure Appl. Log., 53(3):199–260, 1991.

[Gon08] Georges Gonthier. Formal proof — the four-color theorem. Notices
of the American Mathematical Society, 55(11), December 2008.

[Goo44] R. L. Goodstein. On the restricted ordinal theorem. Journal of
Symbolic Logic, 9(2):33–41, 1944.

[Gri13] José Grimm. Implementation of three types of ordinals in Coq.
Research Report RR-8407, INRIA, 2013.

[H+15] Thomas Hales et al. A formal proof of the Kepler conjecture.
https://arxiv.org/abs/1501.02155, 2015.

[Hue97] Gérard Huet. The zipper. J. Funct. Program., 7(5):549–554, Septem-
ber 1997.

[KP82] Laurie Kirby and Jeff Paris. Accessible independence results for
Peano arithmetic. Bulletin of the London Mathematical Society,
14:725–731, 1982.

[KS81] Jussi Ketonen and Robert Solovay. Rapidly growing Ramsey func-
tions. Annals of Mathematics, 113(2):267–314, 1981.

[MT] Assia Mahboubi and Enrico Tassi. Mathematical components.
https://math-comp.github.io/mcb/.

[MV05] Panagiotis Manolios and Daron Vroon. Ordinal arithmetic: Al-
gorithms and mechanization. Journal of Automated Reasoning,
34(4):387–423, May 2005.

[P+] Benjamin Pierce et al. Software foundations. https://softwarefoun-
dations.cis.upenn.edu/.

[Prő13] Hans Jürgen Prőmel. Ramsey Theory for Discrete Structures, chap-
ter Rapidly Growing Ramsey Functions. Springer, Cham, 2013.

https://math-comp.github.io/mcb/

9.1. FUTURE WORK (PROJECTS) 163

[Sch77] Kurt Schutte. Proof theory / Translation from the German by J. N.
Crossley. Springer-Verlag Berlin ; New York, 1977.

[Sla07] Will Sladek. The Termite and the Tower: Goodstein sequences
and provability in pa. www.uio.no/studier/emner/matnat/ifi/
INF5170/v08/undervisningsmateriale/sladekgoodstein.pdf,
2007.

[SM19] Matthieu Sozeau and Cyprien Mangin. Equations reloaded. Proceed-
ings of the ACM on Programming Languages, 3(ICFP):1–29, July
2019.

[Tel00] Gerard Tel. Introduction to Distributed Algorithms. Cambridge Uni-
versity Press, 2 edition, 2000.

[Wai70] S. S. Wainer. A classification of the ordinal recursive func-
tions. Archiv für mathematische Logik und Grundlagenforschung,
13(3):136–153, Dec 1970.

9.1 Future Work (projects)
This document and the proof scripts are far from being complete.

First, there must be a lot of typos to correct, references and index items to
add. Many proofs are too complex and should be simplified, etc.

The following extensions are planned, but help is needed:

• Semi automatic tactics for proving inequalities α < β, even when α and
β are not closed terms.

• Extension to Γ0 (in Veblen normal form)

• More lemmas about hierarchies of rapidly growing functions, and their
relationship with primitive recursive functions and provability in Peano
arithmetic (following [KS81, KP82]).

• From Coq’s point of view, this development could be used as an illustration
of the evolution of the software, every time new libraries and sets of tactics
could help to simplify the proofs.

9.2 How to Install the Libraries
• The present distribution has been checked with version 8.11.0 of the Coq

proof assistant, with the plug-ins coq-paramcoq and coq-equations.

• just go into the theories directory, and type ”make”

9.3 Comments on Exercises and Projects
Although we do not plan to include complete solutions to the exercises, we think
it would be useful to include comments and hints, and questions/answers from
the users. In constrast, “projects” are supposed, once completed, to be included
in the repository.

www.uio.no/studier/emner/matnat/ifi/INF5170/v08/undervisningsmateriale/sladekgoodstein.pdf
www.uio.no/studier/emner/matnat/ifi/INF5170/v08/undervisningsmateriale/sladekgoodstein.pdf

164 BIBLIOGRAPHY

9.4 Index

Table 9.1: Main types and type classes

Name Description Page
Battle type class of battle types 28
E0 (well formed) ordinals below ε0 73

Hvariant variants for proving termination of hydra battles 38
Hydra tree-like representation of hydras 19
Hydrae finite sequences of hydras 19
ON ordinal notations 46

ON_for comparison of an ordinal notation with Schütte’s model 63
ON_iso isomorphism of ordinal notations 64
Ord countable ordinals (after Schütte) 128
ppT1 pretty printed version of T1 77
SubON comparison of ordinal notations 62
T1 ordinal terms below ε0 68
T2 ordinal terms below Γ0 148
WO well orders (Schütte’s definition) 128

Table 9.2: Main functions and constants

Name Gallina Math Description Page
canon canon alpha i {α}(i) Canonical sequence 91

canonS canonS alpha i {α}(i+ 1) Helper for canon 91
F_ F_ alpha n Fα(n) Wainer’s F fast growing hierarchy 123
H_ H_ alpha n Hα(n) Hardy’s H fast growing hierarchy 117

iterate iterate f n x f (n)(x) Functional iteration 31
L_ L_ alpha k Lα(k) final step of a standard path 114
succ succ alpha Successor 75, 132 …

zero:Ord 0 The least ordinal (Schütte’s model) 130

9.4. INDEX 165

Table 9.3: Main predicates

Name Gallina Math Description Page
lt : T1->T1->Prop lt alpha beta α < β strict order on type T1 1 71
LT: T1->T1->Prop alpha o< beta α < β strict order on type T1 2 73
Lt : E0->E0->Prop alpha o< beta α < β strict order on type E0 3 74

nf: T1->Prop nf alpha alpha is in Cantor normal form 72
1 This order is total, but not well-founded, because of not well formed terms.
2 Restriction of lt to terms in normal form; this order is partial, but well-founded.
3 This order is total and well-founded.

Table 9.4: Infix notations

Name Gallina Math Description Page
on_lt alpha o< beta α < β ordinal inequality 1 47
on_le alpha o<= beta α ≤ β ordinal inequality 47
plus alpha + beta α+ β ordinal addition 76, …
oplus alpha o+ beta α⊕ β Hessenberg sum 82
round h -1-> h' one round of a battle 26
rounds h -+-> h' one or more rounds of a battle 27

round_star h -*-> h' any number of rounds of a battle 27
1 Some notations may belong to several scopes. For instance, “o<” is bound in
ON_scope, E0_scope, t1_scope, etc., and locally in several libraries.

Table 9.5: Other notations

Name Gallina Math Description Page
F F n n The n-th finite ordinal 69, 134
FS FS n n+ 1 The n+ 1-th finite ordinal 2 69

omega omega ω the first infinite ordinal 135, 74, 69, …
phi0 phi0 alpha φ0(α), ω

α exponential of base ω 69
2 Note that there exist also various coercions from nat to types of ordinal. De-
pending on the current scope and Coq’s syntactic analysis algorithm, F may be
left implicit.

Index

Coq
Commands
Function, 54
Print Assumptions, 9
Program, 59, 62
Scheme, 22

Plug-ins
Equations, 114, 117, 123

Techniques
Mutually inductive types, 22
Sigma types, 101
Transfinite induction, 142
Unicity of equality proofs, 61,
74

Well-founded induction, 79

Exercises, 21, 24, 27, 39, 41, 51, 58, 59,
63, 64, 74, 76, 78, 93–95, 101,
124, 125, 142, 143

Functions
pp (pretty printing terms in Can-

tor normal form), 77

Maths
Fast growing functions, 123
Accessibility inside epsilon0, 93
Additive principal ordinals, 70, 138
Canonical sequences, 90
Cantor normal form, 67
Critical ordinals, 141
Hardy Hierarchy, 116
Ketonen-Solovay machinery, 89
Large sequences, 107
Minimal large sequences, 107
Ordering functions, 135
Ordinal numbers, 45
Proofs of impossibility, 39
Transfinite induction, 57, 78, 81,

84, 90, 92, 95, 97, 100, 102,
109, 116, 121, 143

Wainer Hierarchy, 122

Notations
phi0 (exponential of base omega),

69

Predicates
Closed, 140
mlarge (minimal large sequences),

107
path_to, 94
round, 26
round_n, 26
Termination, 38

Projects, 19, 27, 63–65, 78, 81–83, 85,
92, 105, 116, 144, 145, 147,
148, 151, 156, 157, 163

166

	Introduction
	Remarks
	Acknowledgements

	Hydras and Hydra Games
	Hydras and their Representation in Coq
	Relational Description of Hydra Battles
	A Long Battle
	Generic Properties

	Introduction to Ordinal Numbers and Ordinal Notations
	The Mathematical Point of View
	Ordinal Numbers in Coq
	Countable Ordinals
	Ordinal Notations
	Examples of Ordinal Notations
	Limits and Successors
	The Ordinal omega2
	A Notation for Finite Ordinals
	Comparing two Ordinal Notations
	Comparing an Ordinal Notation with SchÃ¼tte's Model
	Isomorphism of Ordinal Notations
	Other Ordinal Notations

	A proof of termination, using epsilon0
	The Ordinal epsilon0
	Well-foundedness and Transfinite Induction
	A Variant for Hydra Battles

	The Ketonen-Solovay machinery
	Introduction
	Canonical Sequences
	Accessibility inside epsilon0 : Paths
	A Proof of Impossibility
	The Case of Standard Battles

	Large Sets and Rapidly Growing Functions
	Definitions
	The Length of Minimal Large Sequences
	The Wainer-Hardy Hierarchy (Functions H_alpha)
	The Wainer Hierarchy (Functions F_alpha)

	Countable Ordinals (after Schütte)
	Declarations and Axioms
	Additional Axioms
	The Successor Function
	Finite Ordinals
	The Definition of omega
	The Exponential of Basis omega
	More about epsilon0
	Critical Ordinals
	Cantor Normal Form
	An Embedding of T1 into Ord
	Related Work

	The Ordinal Gamma0 (first draft)
	Introduction
	The Type T2 of Ordinal Terms
	How Big is Gamma0?
	Veblen Normal Forms
	Main Functions on T2
	An Ordinal Notation for Gamma0

	Appendices
	Future Work (projects)
	How to Install the Libraries
	Comments on Exercises and Projects
	Index

