Formal Specification of Java Concurrency
to Assist Software Verification

Brad Long and Ben Long
Software Verification Research Centre
School of Into Tech and Elec Eng
The University of Queensland

Presented by: Paul Strooper

The University of Queensland

Overview

1 Motivation

1 Formal (Z) model of Java Concurrency

— state and operation schemas: request a lock,
walt, notify, ...

— safety and liveness properties: deadlock,
starvation, ...

1 Discussion

M otivation

1 Verification of concurrent programs is difficult
— Inherent non-determinism

— safety and liveness properties: contention, deadlock,
etc.

1 Models of Java Concurrency
— textual models insufficient

— formal model to support static analysis, run-time
checks, test case generation, etc.

1 Formal Z model

— Includes specification of general correctness
properties

Z Specificaion — State Schema

__System
active + PTHREAD

locked + OBJECT — THREAD
candidates : THREAD — OBJECT
blocked + THREAD — OBJECT
waiting : THREAD — OBJECT

ran locked |) dom blocked |) dom candidates |) dom waiting C active
(0,1) : locked & (t,0) € (blocked \) candidates \) waiting)

ran blocked C dom locked

blocked C candidates

dom blocked M dom waiting = &

dom candidates M dom waiting = &

Z Specificalon — Reguesting a L ock

__requestLock
ASystem
17 : THREAD; o? : OBJECT

1?7 € dom candidates

((0?,17) € locked = candidates’ = candidates & {(t7,07)})
((07,17) € locked = candidates’ = candidates)

active' = active A locked' = locked

blocked' = blocked N waiting' = waiting

Z Specificalon — Serving a Lock

__serveLock
ASystem
0?: OBJECT

active’ = active A waiting' = waiting
(07 € ran candidates =
locked’ = locked N
candidates’ = candidates /\ blocked’ = blocked)
(0?7 € ran candidates N 07 € dom locked =
¢t : dom candidates | (1, u?) € candidates o
(locked' = locked T {(0?,1) f'\
candidates’ = Fﬂf?d!dﬂi‘ﬂi‘ (1 07’)} A
blocked' = (blocked \g ﬂﬂ} (candidates’' 1> {07}}})
(0?7 € ran mndrdarfs A 07 € domloc Rf?d =
locked' = locked N
candidates’ = candidates N
blocked' = blocked & (candidates 1> {07}))

Z Specificaion — Releasing a L ock

releaselock

ASystem

0? : OBJECT

locked' = {07} < locked

active’ = active A blocked' = blocked
candidates’ = candidates \ waiting' = waiting

Z Specificaion — wait()

__wail
ASystem
o? : OBJECT: 1? : THREAD
(0?,17) € locked
waiting' = waiting & {(t7,07)}
locked’ = locked \ {(0?,17)}
active' = active A blocked' = blocked
candidates’ = candidates

Z Specificaion — notify()

__notify
ASystem
o? : OBJECT
active' = active N locked’ = locked A blocked' = blocked
0? € dom locked
(07 € ranwaiting =

Jt : domwaiting | (1,07) E waiting e

(waiting' = waiting \ {(t,07)} A
candidates’ = mnchdarﬁ O A{(t,07)}))
(0? € ran uamng =

(nmm?g = waiting A candidates' = candidates))

Z Specificaion — notifyAll ()

notifyAll
._\ System
- OBJECT

0 '?' & dom locked

waiting’ = waiting > {07}

f:cmfhcfufu = Lumhdu‘rm & (waiting 1> {f:ﬂ)

active' = active A locked = locked A blocked' = blocked

Z Specificaion — System

sysRequestlLock = requestlock servel.ock
sysReleaselLock = releaselock § servelLock
sysWait = wait § servel.ock

sysNotify = notify § serveLock

sysNotifvAll = notifvAll § serveLock

Z Specificalon — Properties 1

11 Absence from permanent waiting (dormancy)

¥t : domwaiting & < (t € dom candidates)
11 Absence from permanent blocking

¥ (t,0) : blocked & & ((0,1) € locked)

11 Absence from permanent locking

¥ (0,1) i locked ¢ & (o0, 1) € locked)

Z Specificalon — Properties 2

1 Absence from deadlock
DeadlockCycle == dom((blocked § locked)™ M idryrean)
DeadlockCycle = &
1 Absence from starvation

Deadlocked == dom([blocked | locked) 1> DeadlockCycle)

¥ (t,0) : blocked \ Deadlocked & < ((0,1t) € locked)

Discussion

11 Properties can serve as basis for software
verification tools
— static analysis
— model checking
— dynamic analysis

11 Example: deadlock detection
— manage sets of threads as specified in Z model

— can be implemented using standard Java collection
classes

— check properties in JVM

Summary

1 Formal Z model for Java concurrency
— state schema and operations
— safety and liveness properties

1 Can serve as a basis for software
verification tools

