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Overview

1 Motivation

1 Formal (Z) model of Java Concurrency

— state and operation schemas: request a lock,
walt, notify, ...

— safety and liveness properties: deadlock,
starvation, ...

1 Discussion




M otivation

1 Verification of concurrent programs is difficult
— Inherent non-determinism

— safety and liveness properties: contention, deadlock,
etc.

1 Models of Java Concurrency
— textual models insufficient

— formal model to support static analysis, run-time
checks, test case generation, etc.

1 Formal Z model

— Includes specification of general correctness
properties




Z Specificaion — State Schema

__System
active + PTHREAD

locked + OBJECT — THREAD
candidates : THREAD — OBJECT
blocked + THREAD — OBJECT
waiting : THREAD — OBJECT

ran locked |) dom blocked | ) dom candidates | ) dom waiting C active
(0,1) : locked & (t,0) € (blocked \) candidates \) waiting)

ran blocked C dom locked

blocked C candidates

dom blocked M dom waiting = &

dom candidates M dom waiting = &




Z Specificalon — Reguesting a L ock

__requestLock
ASystem
17 : THREAD; o? : OBJECT

1?7 € dom candidates

((0?,17) € locked = candidates’ = candidates & {(t7,07)})
((07,17) € locked = candidates’ = candidates)

active' = active A locked' = locked

blocked' = blocked N waiting' = waiting




Z Specificalon — Serving a Lock

__serveLock
ASystem
0?: OBJECT

active’ = active A waiting' = waiting
(07 € ran candidates =
locked’ = locked N
candidates’ = candidates /\ blocked’ = blocked)
(0?7 € ran candidates N 07 € dom locked =
¢t : dom candidates | (1, u?) € candidates o
(locked' = locked T {(0?,1) f'\
candidates’ = Fﬂf?d!dﬂi‘ﬂi‘ (1 07’)} A
blocked' = (blocked \g ﬂﬂ} (candidates’' 1> {07}}})
(0?7 € ran mndrdarfs A 07 € domloc Rf?d =
locked' = locked N
candidates’ = candidates N
blocked' = blocked & (candidates 1> {07} ))




Z Specificaion — Releasing a L ock

releaselock

ASystem

0? : OBJECT

locked' = {07} < locked

active’ = active A blocked' = blocked
candidates’ = candidates \ waiting' = waiting




Z Specificaion — wait()

__wail
ASystem
o? : OBJECT: 1? : THREAD
(0?,17) € locked
waiting' = waiting & {(t7,07)}
locked’ = locked \ {(0?,17)}
active' = active A blocked' = blocked
candidates’ = candidates




Z Specificaion — notify()

__notify
ASystem
o? : OBJECT
active' = active N locked’ = locked A blocked' = blocked
0? € dom locked
(07 € ranwaiting =

Jt : domwaiting | (1,07) E waiting e

(waiting' = waiting \ {(t,07)} A
candidates’ = mnchdarﬁ O A{(t,07)}))
(0? € ran uamng =

(nmm?g = waiting A candidates' = candidates))




Z Specificaion — notifyAll ()

notifyAll
._\ System
- OBJECT

0 '?' & dom locked

waiting’ = waiting > {07}

f:cmfhcfufu = Lumhdu‘rm & (waiting 1> {f:ﬂ )

active' = active A locked = locked A blocked' = blocked




Z Specificaion — System

sysRequestlLock = requestlock  servel.ock
sysReleaselLock = releaselock § servelLock
sysWait = wait § servel.ock

sysNotify = notify § serveLock

sysNotifvAll = notifvAll § serveLock




Z Specificalon — Properties 1

11 Absence from permanent waiting (dormancy)

¥t : domwaiting & < (t € dom candidates)
11 Absence from permanent blocking

¥ (t,0) : blocked & & ((0,1) € locked)

11 Absence from permanent locking

¥ (0,1) i locked ¢ & (o0, 1) € locked)




Z Specificalon — Properties 2

1 Absence from deadlock
DeadlockCycle == dom((blocked § locked)™ M idryrean)
DeadlockCycle = &
1 Absence from starvation

Deadlocked == dom([blocked | locked) 1> DeadlockCycle)

¥ (t,0) : blocked \ Deadlocked & < ((0,1t) € locked)




Discussion

11 Properties can serve as basis for software
verification tools
— static analysis
— model checking
— dynamic analysis

11 Example: deadlock detection
— manage sets of threads as specified in Z model

— can be implemented using standard Java collection
classes

— check properties in JVM




Summary

1 Formal Z model for Java concurrency
— state schema and operations
— safety and liveness properties

1 Can serve as a basis for software
verification tools




