
Concerto Workshop JPDC at IPDPS 2003, Nice 1

Resource Management for Parallel

Adaptive Components
Luc Cour trai, Frédér ic Guidec,

Nicolas Le Sommer, Yves Mahéo

Valor ia, Université de Bretagne-Sud

Workshop JPDC, IPDPS
22 April 2003, Nice

Concerto Workshop JPDC at IPDPS 2003, Nice 2

Context and objectives

• Research domain : Grid Computing
– Applications exploiting one or several distributed

platforms

• Target platforms (~ clusters)
– more and more heterogeneous (hardware and network)

– often non dedicated (e.g. workstations in a fast LAN →
multiple applications and users)

• Approach
– Complexity and reusabilty : components
– Clusters : parallelism
– Heterogeneity : adaptation

Concerto Workshop JPDC at IPDPS 2003, Nice 3

Parallel adaptive components

• Parallel component
– Component ≡ deployment unit

⋅ a component is deployed on a distributed platform
⋅ a component involves several activities running in

parallel

• Adaptive component
– Adaptation…

⋅ at deployment time
⋅ at run time

– … according to the environment
⋅ Environment ≡ set of resources whose state can be

observed at run time

Concerto Workshop JPDC at IPDPS 2003, Nice 4

Research directions

• Objectives
– Definition of a basic model of parallel component
– Modelling of the environment in terms of

resources used (or usable) by a component
ªDefinition of resource observation schemes

• Prototype
– Java
– Deployment platform for parallel adaptive

components: Concerto

Concerto Workshop JPDC at IPDPS 2003, Nice 5

Parallel component

• Structure
– Component ≡ set of threads

– Grouping of threads in fragments
⋅ Fragment ≡ unit of placement

⋅ threads within the same fragment can share objects

⋅ threads of distinct fragments communicate in the usual ways
(sockets, RMI, JMS,…)

• Naming
– Identification as a resource

– Name provided by the functional part (RMI, etc.)

Concerto Workshop JPDC at IPDPS 2003, Nice 6

Interfaces

• Functional interface
,Under the programmer’s responsability

⋅ RMI interface, client-server with TCP/UDP, etc.

• Life-cycle interface
– Deployment, launching, termination…

• Resource interface
– Component ≡ (observable) resource

Concerto Workshop JPDC at IPDPS 2003, Nice 7

Deployment of components
on the Concerto platform

Node #1 Node #2

Node #3

1 JVM per node

Fragments isolated
within a JVM

1 component = n fragments
disseminated over m nodes

n fragments per JVM
m threads per fragment

Concerto Workshop JPDC at IPDPS 2003, Nice 8

Deployment

• XML Descriptor

• Structure
– Lists of fragments and threads

• Directives for the placement of fragments
– Replication
– Placement on a specific node

• Deployment constraints
– Needs regarding the platform (e.g. RMI registry)

Concerto Workshop JPDC at IPDPS 2003, Nice 9

Resource management

• Services offered to components
– Resource discovery
– Observation of a resource’s state
– Notification on state changes

• Approach
– Model and observe resources locally on each

node
– Take into account the distribution of resources
– Model and manage “global” resources

Concerto Workshop JPDC at IPDPS 2003, Nice 10

Resource modelling

• “System” resources
– Characterize the hardware platform

⋅ e.g. CPU, memory, swap, network interfaces, hard disks

• “Conceptual” resources
– Characterize applicative resources

⋅ e.g. threads, sockets, directories, files

– … or provide application-level services
⋅ e.g. RMI registry, communication library

– … or take part into the deployment model
⋅ e.g. component, fragment

Concerto Workshop JPDC at IPDPS 2003, Nice 11

Resource modelling

Resource
+id(): ResourceId
+observe(): ObservationReport

NetworkInterface

Socket

CPU Link

Memory

ThreadFile

ClusterNode ComponentDatagramSocket

Fragment

ResourceId

identified by

) To each type of resource corresponds a Java class in Concerto

) New types of resources can be added in the system when needed

Concerto Workshop JPDC at IPDPS 2003, Nice 12

Distributed resources

• Every resource modelled as an object in
Concerto …
– ... has a unique identifier

ª One can designate a resource without ambiguity
wherever it is located in the cluster

– … is observable
ª One can consult the state of a resource, expressed as

an observation report
, A specific type of observation report corresponds to

each type of resource

Concerto Workshop JPDC at IPDPS 2003, Nice 13

Resource manager

• An instance created on each node of the cluster
– Knows all the local resources and can observe their

state.
⋅ The resource manager present on a node is informed of

every resource creation or destruction on this node.

• The different resource manager instances
cooperate to provide a uniform service over the
whole cluster
– Identification, localization and consultation of the

state of resources (local or distant)

Concerto Workshop JPDC at IPDPS 2003, Nice 14

Tracking resources

• Two kinds of patterns for tracking and observing
resources selectively

– Resource patterns
⋅ Selection on the type of resources or their attributes

– Search patterns
⋅ Specification of the scope of the search
⋅ e.g. local search, limited to a given node, limited to

neighbors, global

Concerto Workshop JPDC at IPDPS 2003, Nice 15

Example
// Acces to the Resource Manager
ResourceManager m = ResourceManager.getManager();

// Pattern definitions
ResourcePattern SockPat =

new SocketPattern(InetAddress.AnyAddress, "195.83.160/24"
PortRange.AnyPort, new PortRange(0,1023));

SearchPattern RamaPat = new LocalSearch("rama"));

// Search for a set of resources
Set RamaSockIds = m.getResourcesIds(RamaPat, SockPat);

// Observation of one of the resources
ResourceId resId = an element of the RamaSockIds set

ObservationReport report = m.getObservationReport(resId);

Concerto Workshop JPDC at IPDPS 2003, Nice 16

Other features
• Sporadic resources

– Examples : network interface, USB device,...
– For each type of resource:

⋅ Monitor polling the system and maintaing a list of
resource objects

• Notification of events
– specification of events pertaining to resources,

based on patterns
– atomic and composite events
– local or distant monitoring

Concerto Workshop JPDC at IPDPS 2003, Nice 17

Architecture of the platform

Concerto Distributed componentsConcerto Distributed components

D-Raje Distributed ResourceObservationD-Raje Distributed ResourceObservation

Raje Local resources
(“ system” + “ conceptual”)
Raje Local resources

(“ system” + “ conceptual”)
Saje Local resources

(“ system”)
Saje Local resources

(“ system”)

Modified
JVM (Kaffe) Modified JDK Standard JVM + JDKStandard JVM + JDK

OSOS

Concerto Workshop JPDC at IPDPS 2003, Nice 18

Concerto Control Panel

Loading of new
components

Visualization of the content
of a component

Hosts of the
cluster

Placement of the
fragments in the cluster

Output of the program

Concerto Workshop JPDC at IPDPS 2003, Nice 19

Conclusion

• Concerto: a Java platform for the deployment
of parallel components that can take
advantage of resource information

• Basic component model
– basis for more structured parallel components

• Management of resource information
– basis for adaptation
– external adaptation strategies to be integrated in

the component model

