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Introduction and Motivation

e Java widely used for embedded platforms

e Java Is slow for array-based applications

— 130 times more slowly than C program for a
matrix multiplication program

« Many embedded applications are array-
based

— Image, video...

Optimization needed for array based
embedded Java applications




Execution Cycles Breakdown
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Objective @

* Improve the memory performance of
embedded Java applications




Cause of Cache Misses

 Mismatch between array access pattern
and array data layout

Row-major data layout
Access columns in the innermost loop
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Classical Ways to Improve {(\

* Loop transformation
— Change access pattern
— Restricted by inherent data dependence

« Array layout transformation
— Change the way that array data are stored

— Global effect for accesses to this array
— Not restricted by data dependence
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ransformation for Java Programs

* Loop transformation Is not suitable for
Java programs

— Violate the precise exception rule

— Java programs are distributed as bytecodes,
not as Java source

Array layout transformation
— Can be implemented in JVM
— Dynamic layout transformation




Dynamic Layout Transformation {(‘\
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 Transform array data layout while JVM Is
running
 Incur performance overhead
— Apply with care
e Transform an array only if it is really
necessary (very bad cache behavior)

— Accessed frequently enough
— Shows bad cache behavior




Our Approach @
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Our Approach

Detection Phase

e Detecting the
degradation in the

Selection Phase cache performance
e Trigger data

transformation only
If cache miss rate is
high enough

Application Phase

Re-writing Phase




Our Approach

Detection Phase

Selection Phase

Application Phase

Re-writing Phase

e Selecting the arrays
to be transformed

* Frequently accessed
 Poor cache locality




Our Approach

Detection Phase

Selection Phase

Application Phase

Re-writing Phase

* Deciding how to
transform the
selected arrays

 Apply the
transformations

* Bring an outer

dimension to the
Innermost




Our Approach

Detection Phase

Selection Phase

Application Phase

Re-writing Phase

 Change the array
references in the
code to reflect the
new memory layout

 Parse the bytecode
and modify it




Summary of Our Approach

« Adaptively select the arrays that need to be
transformed

 Make the innermost loop traverse the array
along the fastest changing subscript position

— May take several transformations until the right one is
found, and cache behavior is improved

* Rewrite bytecode to avoid using transformation
table

Reduce capacity misses




Java Array Layout
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Row-pointer memory layout




Transformed Array Layout
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Another Transformation
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Array Interleaving

 TwoO arrays are accessed together in a
loop

— Conflict misses

« Array interleaving
— Interleave data from two arrays together

— Two arrays must belong to the same
compatibility set
* Their access frequencies are very similar

Multiple arrays interleaving Is possible




Array Interleaving
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Normalized Execution Time
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Time per Iteration
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Execution Time Breakdown of

—+the Optimized Codes

Execution Time Breakdown

B Profiling O Transformation W Execution




Conclusion and Future Work

* Run-time layout transformation for
embedded Java applications

— Reduce cache misses

e Future Work
— More sophisticated transformations

— Skip transformation according future
usefulness

— Port to other JVMs




