Improving Memory Performance
of Embedded Java Applications
by Dynamic Layout Modificatio

F. Li, P. Agrawal, G. Eberhardt, E. Manavoglu, S. Ugurel,
M. Kandemir

Department of Computer Science & Engineering
The Pennsylvania State University

Introduction and Motivation

e Java widely used for embedded platforms

e Java Is slow for array-based applications

— 130 times more slowly than C program for a
matrix multiplication program

« Many embedded applications are array-
based

— Image, video...

Optimization needed for array based
embedded Java applications

Execution Cycles Breakdown

B Computation O Memory Accesses

100%
80%
60%
40%
20%

0%

On average, 45.4% of execution

cycles are spent in memory access
o SN

Execution Cycles Breakdown

Objective @

* Improve the memory performance of
embedded Java applications

Cause of Cache Misses

 Mismatch between array access pattern
and array data layout

Row-major data layout
Access columns in the innermost loop

f

Classical Ways to Improve {(\

* Loop transformation
— Change access pattern
— Restricted by inherent data dependence

« Array layout transformation
— Change the way that array data are stored

— Global effect for accesses to this array
— Not restricted by data dependence

Transformations @
Loop Data .

Original Transformation Transformation
iR ======—=s, ——
MmO === ——
[MOOOAN — S=====H ===
MIMOO0 S ——
Hy == SRR

L [[[T T | T 1 ::!>
int AMI[N; int AM[N; e

for(i=0;i<Ni++) for()j=0;j<M]++) int ALN[M;
for(j=0;j<Mj++) for(i=0;i<Ni++) for(i=0;i<N;i-++)
= AJ][T] = AT for(j=0;]<Mj++)
= ALT][]]

ransformation for Java Programs

* Loop transformation Is not suitable for
Java programs

— Violate the precise exception rule

— Java programs are distributed as bytecodes,
not as Java source

Array layout transformation
— Can be implemented in JVM
— Dynamic layout transformation

Dynamic Layout Transformation {(‘\

Lo
o -

 Transform array data layout while JVM Is
running
 Incur performance overhead
— Apply with care
e Transform an array only if it is really
necessary (very bad cache behavior)

— Accessed frequently enough
— Shows bad cache behavior

Our Approach @

Selection Phase

Application Phase

Re-writing Phase

Our Approach

Detection Phase

e Detecting the
degradation in the

Selection Phase cache performance
e Trigger data

transformation only
If cache miss rate is
high enough

Application Phase

Re-writing Phase

Our Approach

Detection Phase

Selection Phase

Application Phase

Re-writing Phase

e Selecting the arrays
to be transformed

* Frequently accessed
 Poor cache locality

Our Approach

Detection Phase

Selection Phase

Application Phase

Re-writing Phase

* Deciding how to
transform the
selected arrays

 Apply the
transformations

* Bring an outer

dimension to the
Innermost

Our Approach

Detection Phase

Selection Phase

Application Phase

Re-writing Phase

 Change the array
references in the
code to reflect the
new memory layout

 Parse the bytecode
and modify it

Summary of Our Approach

« Adaptively select the arrays that need to be
transformed

 Make the innermost loop traverse the array
along the fastest changing subscript position

— May take several transformations until the right one is
found, and cache behavior is improved

* Rewrite bytecode to avoid using transformation
table

Reduce capacity misses

Java Array Layout

A[NJ[N][Ng], N;=3, N,=2, N3=3

A[0]

/

A[1]

A[2]

N

A[o][o] [P Al0[0][0] | A[0][0][1] [A[O][0][2]
A[0][1] [~ A[0][1][0] | A[0][1][1] |A[O][1][2]
A[1][0] [—®{A[1][0][0] |A[1][0]1[1] |A[1][0][2]
ALL[1] | A[1][a][0] [A[21[2][2] | AT2][2][2]
A[2][0] —P|A[2][0][0] | A[2][0][1] | A[2][0][2]
A2][1] P A[2][2][0] |A[2][1][1] | A[2][1][2]

Row-pointer memory layout

Transformed Array Layout

A[NL]IN3I[N] T Ao

>
o
N
o
H

A[0]

A[1]

A[2]

l
111131111

>(=]1=|[=][>=]|>
=

cllellellelle] e
N

>[=]1=|[=][>]|>

Another Transformation

A[N][N3][N]

A[0][0]

A[O][1

/ A[O][2
A[O]

A[1] \ A[1][O]

A[1][1

v vy

2 [=]1=
o
o
=
>
=
o
=
>
N
o
=

v vy
Z(Z]1=
o
=
=
>
=
=
=
>
N
=
=

Array Interleaving

 TwoO arrays are accessed together in a
loop

— Conflict misses

« Array interleaving
— Interleave data from two arrays together

— Two arrays must belong to the same
compatibility set
* Their access frequencies are very similar

Multiple arrays interleaving Is possible

Array Interleaving

A[0][0]

A[O][1]

A[0][2]

B[O][O]

B[O][1]

B[O][2]

A[1][0]

A[1][1]

A[1][2]

B[1][0]

B[1][1]

B[1][2]

EEPREEER!

A[2][0]

A[2][1]

A[2][2]

Original

B[2][0]

B[2][1]

B[2][2]

Interleaved

Normalized Execution Time

o) lLlevell OLevel 2
£ W Level 3 @ Interleaving
|_
c
o 1
§ 0.8
x 0.6 - -
S 0.4 - :
N 0.2 :
'© .
= T L L«
o Q}+ NS’ 2NN SR % O ?‘é

% A @V N @Qf

o W

Time per Iteration

er lteratior

me P

Ti

o
N O
o1 ol

0.4

o _©O
OCRLONn
= 01N O

— Qriginal — Optimized

1 5 9 13 17 21 25 29 33 37 41 45

f

Execution Time Breakdown of

—+the Optimized Codes

Execution Time Breakdown

B Profiling O Transformation W Execution

Conclusion and Future Work

* Run-time layout transformation for
embedded Java applications

— Reduce cache misses

e Future Work
— More sophisticated transformations

— Skip transformation according future
usefulness

— Port to other JVMs

