
CRPC

Outline

1. Introduction to Data-Parallelism
2. Fortran 90 Features
3. HPF Parallel Features
4. HPF Data Mapping Features
5. Parallel Programming in HPF
6. HPF Version 2.0

CRPC

Virtual
processors

Physical
processors

Data Mapping

• Data mapping complements data parallelism by
placing data for parallel access

• HPF uses a two-phase data mapping:
– ALIGN: Creates a relationship between objects

– DISTRIBUTE: Partitions an object between processors

– Vendors may define further levels of mapping

ALIGN
(static) &
REALIGN
(dynamic)

DISTRIBUTE
(static) &

REDISTRIBUTE
(dynamic)

Vendor
extensions

arrays arrays or
templates

CRPC

Data Mapping, cont.

• Goals:
– Avoiding Contention: Data updated in parallel should be on

different processors

– Locality of Reference: Data used together should be on the
same processor

• These goals are sometimes in conflict
– To avoid all contention, put every data item on its own

processor

– To maximize locality, put all data on one processor

– HPF gives you the tools to resolve these conflicts, but doesn’t
solve them for you

CRPC

The DISTRIBUTE Directive

• Syntax:

– !HPF$ DISTRIBUTE array(dist-format-list) [ONTO procs]

– !HPF$ DISTRIBUTE(dist-format-list) [ONTO procs]:: array-list

• Semantics:

– Each dimension of array is divided according to the
corresponding pattern in dist-format-list

– ONTO (if present) names the processor array to distribute on

• Options for dist-format

– (Let N be the number of elements.)

– (Let P be the number of processors.)

– BLOCK : Contiguous pieces of size N/P on each processor

– CYCLIC : Every Pth element to the same processor

– CYCLIC(K) : Every Pth block of size K to the same processor

– * : Dimension not distributed

CRPC

Examples of DISTRIBUTE

REAL W(12,12),X(12,12),Y(12,12),Z(12,12)

!HPF$ DISTRIBUTE W(BLOCK,*)

!HPF$ DISTRIBUTE X(*,CYCLIC)

!HPF$ DISTRIBUTE Y(BLOCK,BLOCK)

!HPF$ DISTRIBUTE Z(CYCLIC(2),CYCLIC(3))

(BLOCK, *) (* , CYCLI C)

(BLOCK, BLOCK) (CYCLI C(2) , CYCLI C(3))

CRPC

Why Use DISTRIBUTE?

• Compilation is based on the data distribution
– Computations will execute in parallel if

– They are conceptually parallel (e.g. array operations)

– The data is partitioned (e.g. by DISTRIBUTE)

• Communication and synchronization are based
on the data distribution

– BLOCK reduces surface-to-volume ratio

– CYCLIC (and CYCLIC(K)) improves load balance

– * keeps things on one processor

CRPC

DISTRIBUTE and Communication

• Communication (data movement) happens
when two data items on different processors
must be brought together

– Assume a(n) , a(m) are on different processors

– a(n) = a(m)	 – Communicate one element

– x = a(n) + a(m)	 – Communicate one of {a(n) ,a(m) }

– a(n) = a(n)	 – No communication

• How communication is accomplished is a
system problem

– Depends on data mapping (DISTRIBUTE and ALIGN)

– Depends on data access (subscripts of arrays)

– Depends on implementation (whose compiler?)

CRPC

Rules of Thumb for Communication

• BLOCK is good for local (e.g. nearest-neighbor) communication

– Look for subscripts like a(i+1,j-1)

– Look for intrinsics like CSHIFT

– Warning: BLOCK depends on array size

• CYCLIC has non-obvious locality

– Look for subscripts like x(i+jmp) , where jmp is a multiple of the
number of processors

– For example, jmp may be a power of 2 on a hypercube machine

– CYCLIC always balances the memory load

• CYCLIC(K) has some of the advantage of each

• Strides are expensive on any distribution

– But some special cases are worth recognizing

• Broadcasts are equally expensive on any distribution

• Communication between different distributions is very expensive

CRPC

Quantifying Communication

• Basic idea:
– Match elements that are combined
– Data volume is the number of matches that cross processor

boundaries
– Communication start-ups are one of

– The number of distinct ordered pairs of processors [parallel]
– The same as data volume [sequential]

REAL b(24) , c (24)
!H PF$ DIS TRI BUTE b(BLOCK) , c(CYCLI C)
FORALL (i =1: 24) b(i) = c(i)

b(i)

c(i)

CRPC

Quantifying Communication: BLOCK

FORALL (i= LB:UB) b(i)=b(i+ K)

FORALL (i= LB:UB) b(i)=b(A*i+ K)

FORALL (i= LB:UB) b(i)=b2(i+ K)

FORALL (i= LB:UB) b2(i)=b(A*i+ K)

b(i)

b(i +K)

b(i)

b(A* i +K)

b(i)

b2(i +K)

b(A* i +K)

b2(i)

CRPC

Quantifying Communication: CYCLIC

FORALL (i= LB:UB) c(i)=c(i+ K)

FORALL (i= LB:UB) c(i)=c(A*i+ K)

FORALL (i= LB:UB) c(i)=c2(i+ K)

FORALL (i= LB:UB) c2(i)=c(A*i+ K)

c(i)

c(i +K)

c (i)

c(A* i +K)

c (i)

c2(i +K)

c(A* i +K)

cs(i)

CRPC

Quantifying Communication:
Other Cases

• CYCLIC(K)
– Quantify as if BLOCK on many processors (As if each processor

stores K elements)

– Remove communications between processors that are mapped
together (due to divisibility)

• Distinct distributions
– In general, communicate almost all elements of array

– In general, each processor communicates with all others

• Indirection arrays (and other complex
subscripts)

– Can't be handled at compile time

– But efficient runtime methods can minimize data volume and
reduce contention (at the cost of some preprocessing)

CRPC

Other Communication Topics

• Intrinsics and HPF library
– Most generate regular collective communications patterns

– CSHIFT ⇒ circular shift

– TRANSPOSE ⇒ all-to-all

– SUM, SUM_PREFIX, SUM_SUFFIX ⇒ reduction tree

– SUM_SCATTER ⇒ irregular pattern

– Efficient collective communications methods are known

– Compilers that don’t use them won’t stay in business

• Precise communication information
– Compiler analysis and optimization makes it very difficult to

determine or control

– A real opportunity for programming tools

CRPC

Typical Uses of DISTRIBUTE

• Nearest-neighbor relaxation
– BLOCK in dimension(s) with most parallelism

– CYCLIC(K) may help with load balancing

• Dense linear algebra
– CYCLIC(K) in one or two dimensions

• Indirection array data structures
– “No silver bullet”

– BLOCK, with careful numbering of data elements?

CRPC

Multigrid: A Complicated
Case for DISTRIBUTE

Smooth &
Restrict

Smooth &
Restrict

Prolong &
Smooth

Prolong &
Smooth

Fine Mesh

Coarse Mesh

CRPC

Possible Data Structures for Multigrid

Single Shared Array List of Arrays

CRPC

Possible DISTRIBUTE Patterns
for Multigrid

• Single shared array for all levels
– Smoothing: All CSHIFT operations

– Prolongation and Restriction: All CSHIFT operations

– Conclusion: Use some form of BLOCK

– If start-up cost is high: 1-D BLOCK (in longest dimension)

– Otherwise: 2-D BLOCK may be better

• List of arrays, one per level
– Smoothing: All CSHIFT operations

– Prolongation and Restriction: copies between different-sized
arrays

– Conclusion: Use some form of BLOCK on each level

– May want to change for coarser grid levels

CRPC

Possible DISTRIBUTE Patterns
for Multigrid (cont.)

Single Shared Array List of Arrays

CRPC

The ALIGN Directive

• Syntax:

– !HPF$ ALIGN array(source-list) WITH target(subscript-list)

– !HPF$ ALIGN(source-list) WITH target(subscript-list) ::
array-list

• Semantics:

– Creates a relationship between array and target so that for all
values of the source-list variables, array(source-list) and
target(subscript-list) are stored on the same processor

– Only target can be distributed explicitly

• Options for subscript-list

– Linear function of one source-list variable

– Triplet notation

– Must match “: ” in source-list

– Element-wise matching as in array assignment

– * (Replication)

CRPC

Examples of ALIGN

REAL W(6,6),X(6,6),Y(5),Z(3)

!HPF$ALIGN X(I,J)WITH W(J,I)

!HPF$ALIGN Y(K)WITH W(K,*)

!HPF$ALIGN Z(L)WITH X(3,2*L-1)

W X Y Z

Using DIS TRI BUTE W(BLOCK,*)

Using DISTRIBUTE W(*,B LOCK)

CRPC

ALIGN and Communication

• Communication (data movement) happens
when two data items on different processors
must be brought together

• ALIGN relates array elements, ensuring they are
mapped together

– !HPF$ ALIGN a(i) WITH b(i+1)

– No communication for a(10) = b(11)

– No information about a(10) = b(10)

• You can also think of this as modifying
DISTRIBUTE

– Substitute the ALIGN subscripts before doing the
communication analysis

CRPC

Quantifying Communication: ALIGN

REAL a(16), b(8)

!HPF$ ALIGN b(i) WITH a(2*i)

!HPF$ DISTRIBUTE a(BLOCK)

FORALL (j=1:7) b(i) = a(2*i+1)

⇒ FORALL (j=1:16) b´(2*j) = a(2*j+1)

⇒ FORALL (j´=2:32:2) b´(j´) = a(j´+1)

⇒ Communicate at block boundaries

a(2* i +1)

b(i)

CRPC

Why Use ALIGN?

• “Copy” distributions

– DISTRIBUTE one array as the “master” for data layout

– ALIGN other arrays to it

– Just modify one line to change all the distributions

– This will be common when porting codes!

• Off-by-one problems

– Sometimes boundaries get in the way of DISTRIBUTE

• Differing array sizes

– Will the compiler handle this better?

REAL a(16), b(8)
!HPF$ ALIGN b(i) WITH a(2*i)
!HPF$ DISTRIBUTE a(BLOCK)

– Or this?

REAL a(16), b(8)
!HPF$ DISTRIBUTE a(BLOCK), b(BLOCK)

CRPC

Typical Uses of ALIGN

• Align major arays together
– If all arrays represent quantities in the same physical space,

with the same discretization, ALIGN them

– If arrays are accessed differently (e.g. to represent different
physics), ALIGN based on those access groups

• More complex cases:
– Multigrid with lists of arrays: Use ALIGN with stride 2 between

levels

– Other cases: Often handled by choosing one “main” array and
using a variety of ALIGN directives

– Finding good ALIGN and DISTRIBUTE patterns for completely
irregular codes is still a research problem

CRPC

Advanced ALIGN Uses

b
even

odd

b
even

odd

a

r

c

a

r

c

a

r

c

!HPF$ ALIGN c(i) WITH a(i,*)
!HPF$ ALIGN r(i) WITH a(*,i)

!HPF$ ALIGN odd(i) WITH b(2*i-1)
!HPF$ ALIGN even(i) WITH b(2*i)

CRPC

Dynamic Data Mapping

• One data mapping is not always appropriate for
an entire program

– Different behavior in different phases

– “First sweep in the X dimension, then sweep in the Y
dimension”

– ALLOCATABLE arrays can change size

• Therefore, HPF needs executable DISTRIBUTE
and ALIGN

– Called REALIGN and REDISTRIBUTE

– DYNAMIC attribute (compare to ALLOCATABLE)

CRPC

The DYNAMIC Directive

• Syntax:
– !HPF$ DYNAMIC entity-decl-list

– !HPF$ DYNAMIC :: entity-decl-list

• Semantics:
– Any array in entity-decl-list can be used in a REALIGN or

REDISTRIBUTE directive

– DYNAMIC appears only in the declarations section

– DYNAMIC arrays can also appear in ALIGN or DISTRIBUTE to
get initial distributions)

CRPC

The REALIGN Directive

• Syntax:
– !HPF$ REALIGN array(source-list) WITH target(subscript-list)

– !HPF$ REALIGN (source-list) WITH target(subscript-list) ::
array-list

• Semantics:
– Creates a dynamic relationship between array and target so

that for all values of the source-list variables, array(source-list)
and target(subscript-list) are stored on the same processor

– Array must have the DYNAMIC attribute

– Ends any previous ALIGN or DISTRIBUTE for array

– Communicates data already in array to its new home

– Lasts until another REALIGN or REDISTRIBUTE for the same
array

– I.e., Not static scope

CRPC

The REDISTRIBUTE Directive

• Syntax:
– !HPF$ REDISTRIBUTE array(dist-format-list) [ONTO

processors]
– !HPF$ REDISTRIBUTE (dist-format-list) [ONTO processors] ::

array-list

• Semantics:
– Dynamically divides each dimension of array according to the

corresponding pattern in dist-format-list
– Also changes the mappings of anything already aligned to array

– I.e., Array was previously the target in an ALIGN or
REALIGN

– Array must have the DYNAMIC attribute
– Communicates data to its new processor home
– Lasts until another REALIGN or REDISTRIBUTE for the same

array

CRPC

Typical Use of Dynamic Data Mapping

Picking mappings based on input data

!HPF$ DYNAMIC u

!HPF$ ALIGN WITH x(:,:) :: y(:,:), z(:,:)

IF (n1>n2) THEN

!HPF$ REDISTRIBUTE x(BLOCK,*)

ELSE

!HPF$ REDISTRIBUTE x(*,BLOCK)

END IF

! Note: Compiler doesn't know precise data

! mappings of any array at this point

CRPC

Dynamic Data Mapping in
Other Applications

• FFT, ADI, and other directional sweeps
– (RE)DISTRIBUTE BLOCK in parallel dimension for first sweep

– Perform sweep

– REDISTRIBUTE BLOCK in the next dimension

– Perform sweep, …

• Cyclic reduction and other recursive doubling
methods

– (Only if number of processors P is a power of 2)

– (RE)DISTRIBUTE BLOCK

– Reduce by step 1, then 2, … to P/2

– REDISTRIBUTE CYCLIC

– Reduce by P, 2*P, …

CRPC

Data Mapping in Subroutine Calls

• Some subroutines require data to use a specific
mapping, so actual arguments must be
remapped

• Some subroutines can use any mapping, so
actual arguments should be passed in place

• Sometimes the programmer knows the
incoming data mappings, sometimes not

• HPF has options to say all of this!

• Any remappings are undone on procedure
return

CRPC

Mapping Options for Dummy
Arguments

• DISTRIBUTE
– “* ” instead of dist-format-list or ONTO clause indicates any

incoming distribution is acceptable (i.e. leave data in place)

– “* ” before dist-format-list or ONTO indicates data should stay in
place, and guarantees that the actual has this distribution

– If you are passing array subsections, the possible distributions
are limited

• ALIGN
– “* ” instead of or before target with similar meanings to above

• INHERIT
– A new attribute, allowing references back to the index space of

the actual (i.e. the whole array, rather than the subset passed)

CRPC

Typical Mappings of
Dummy Arguments

Option 1: Pass entire arrays every time

SUBROUTINE smooth(r,u,f,nx,ny)
REAL r(nx,ny), u(nx,ny), f(nx,ny)
!HPF$ DISTRIBUTE u *(BLOCK,BLOCK)
!HPF$ ALIGN WITH *u(i,j) :: r(i,j), f(i,j)

Option 2: Pass array subsections in place

SUBROUTINE smooth(r,u,f)
REAL r(:,:), u(:,:), f(:,:)
!HPF$ INHERIT r, u, f
!HPF$ DISTRIBUTE *(BLOCK,BLOCK) :: r, u, f

CRPC

Dummy Arguments in
Other Applications

• Libraries
– Prescriptive mapping (“remap actual”) if a specific mapping is

needed

– Transcriptive mapping (“take anything”) for embarrassingly
parallel

– Descriptive mapping (“this is coming”) for internal routines,
probably after checking distribution of (transcriptively mapped)
user arguments

• Non-reusable modules
– Descriptive mapping probably fastest

– Prescriptive mapping probably safer

CRPC

Other Mapping Features

• PROCESSORS

– Define size and shape of processors array

– Only guaranteed when size of processors array equals
NUMBER_OF_PROCESSORS()

– !HPF$ PROCESSORS name(shape-spec-list)

• TEMPLATE

– Defines an index domain for alignment and distribution, but no
memory

– !HPF$ TEMPLATE name(shape-spec-list)

• ALLOCATABLE Arrays and POINTER Targets

– ALIGN and DISTRIBUTE take effect (and have expressions
evaluated) when the array is allocated

– If used as the target of REALIGN, then the array must be
allocated when REALIGN takes effect.

CRPC

Storage and Sequence Association

• Generally, if an array can be storage or sequence
associated then it may not be explicitly mapped

• A variable is sequential if it is

– Part of a sequential COMMON

– EQUIVALENCEd to something

– An assumed-size array

– Part of a Fortran 90 derived type with the SEQUENCE attribute, or

– Declared by !HPF$ SEQUENCE

• COMMON blocks may be nonsequential if they are consistently
declared

• If an array is reshaped at procedure call, the actual and dummy
must be sequential

• Nonsequential arrays can always be explicitly mapped

• Sequential arrays can be explicitly mapped if they exactly cover
their aggregate variable group

CRPC

Hints for Using Data Mapping

• ALIGN data based on physical domains

– Arrays with the same domain should be aligned

– Arrays not physically connected should not

• DISTRIBUTE based on parallelism

– Optimal performance comes from parallel operations on a
distributed axis

• Pick distribution pattern based on communications

– BLOCK generally good for local stencils and fully-filled arrays

– CYCLIC and CYCLIC(K) generally good for load balancing and
triangular loops

– Conflicts require compromises, remapping, complex compilers,
or new algorithms

• REALIGN with care; REDISTRIBUTE with extreme care

– Computation performed must outweigh communication for the
remapping

