
CRPC

Outline

1. Introduction to Data-Parallelism
2. Fortran 90 Features
3. HPF Parallel Features
4. HPF Data Mapping Features
5. Parallel Programming in HPF
6. HPF Version 2.0

CRPC

Data-Parallel Statements

• Data parallelism emphasizes having many
fine-grain operations, such as computations on
every element of an array

• HPF has several ways to exploit data
parallelism:

– Array expressions: Taken from Fortran 90

– FORALL: Tightly-coupled parallel execution based on the
structure of an index space

– PURE: Procedures without side effects that may be called in
FORALL

– INDEPENDENT: Assertion that iterations do not interfere with
each other

– HPF library and intrinsics: Extended from Fortran 90

CRPC

The Single-Statement FORALL

• Syntax:
– FORALL (index-spec-list [, mask-expr]) forall-assignment

– index-spec is int-variable = triplet-spec

– forall-assignment is ordinary assignment or pointer assignment

• Semantics:
– Equivalent to array assignment in Fortran 90

– For each value of indices, check the mask

– Compute right-hand sides for unmasked values

– Make assignments to left-hand sides for unmasked values

– Multiple assignments to the same location are not
standard-conforming (i.e. are undefined)

• Note: FORALL is not a general-purpose parallel
loop!

CRPC

The Multi-Statement FORALL

• Syntax:
– FORALL (index-spec-list [, mask])

	 forall-body-list
END FORALL

– forall-body can be a forall-assignment, FORALL, or WHERE

• Semantics:
– Multi-statement FORALL is shorthand for a series of

single-statement FORALLs

– Multi-statement FORALLs can be nested to produce more
complex iteration spaces

– Each bottom-level assignment statement is completed before
the next one starts

• Note: FORALL is not a general-purpose parallel
loop!

CRPC

An Example of FORALL

Initially,
a = [0, 1, 2, 3, 4]

b = [0, 10, 20, 30, 40]

c = [-1, -1, -1, -1, -1]

FORALL (i = 2:4)

a(i) = a(i-1) + a(i+1)

c(i) = b(i) * a(i+1)

END FORALL

Afterwards,
a = [0, 2, 4, 6, 4]

b = [0, 10, 20, 30, 40]

c = [-1, 40, 120, 120, -1]

Begin

End

3+12+0 4+2

)2(a)3(a)4(a

4*01 6*02 4*03

)2(c)3(c)4(c

CRPC

An Example of DO

Initially,
a = [0, 1, 2, 3, 4]

b = [5, 6, 7, 8, 9]

c = [10, 20, 30, 40, 50]

DO i = 2, 4

a(i) = a(i-1) + a(i+1)

c(i) = b(i) * a(i+1)

END DO

Afterwards,
a = [0, 10, 60, 40, 4]

b = [5, 6, 7, 8, 9]

c = [10, 60, 420, 320, 50]

Begin

End

)2(a)3(a)4(a

2*01

)2(c)3(c)4(c

2 3+2+0 5 4+

3*02 4*03

CRPC

An Example of Nested FORALLs

FORALL (i = 1:3)

a(i) = b(i)

FORALL (j = 1:i)

c(i,j) = d(i,j)

END FORALL

END FORALL

b(3)

B egin

Begin B egin Begin

End

EndEndEnd

b(1) b(2)

a(1) a(2) a(3)

d(1,1)

c(1,1)

d(2,1)

c(2,1)

d(2,2)

c(2,2)

d(3,1)

c(3,1)

d(3,2)

c(3,2)

d(3,3)

c(3,3)

CRPC

An Example of Masked FORALL

FORALL (i=1:3, &
	 j=1:5:2, &
	 i.NE.j)

a(i,j) = i+j

END FORALL

Begin

End

I = 1, 2, 3 J = 1, 3, 5

I=1
J=1
F

I=1
J=3

T

I=1
J=5
T

I=2
J=1
T

I=2
J=3

T

I=2
J=5
T

I=3
J=1
T

I=3
J=3

F

I=3
J=5
T

I=1
J=3

4

I=1
J=5

6

I=2
J=1
3

I=2
J=3

5

I=2
J=5

7

I=3
J=1
4

I=3
J=5
8

I=1
J=3

A(1,3)

I=1
J=5

A(1,5)

I=2
J=1

A(2,1)

I=2
J=3

A(2,3)

I=2
J=5

A(2,5)

I=3
J=1

A(3,1)

I=3
J=5

A(3,5)

Valid Set

Active Set

Right-hand
Sides

Left-hand
Sides

CRPC

Why Use FORALL?

Assignments to array sections
FORALL (i = 1:4, j = 2:4) a(i,j) = a(i,j-1)

FORALL (i = 1:4) a(i,i) = a(i,i) * scale

FORALL (i = 1:4)
	 FORALL (j=i:4) a(i,j) = a(i,j) / a(i,i)
END FORALL

FORALL (i=1:4)
	 FORALL (j=ilo(i):ihi(i)) x(j) = x(j)*y(i)
END FORALL

Calculating based on a subscript
FORALL (i=0:n,j=0:n) a(i,j) = SQRT(1.0*(i*i+j*j))/n

ilo(1:4) = [1,12,4,6]

ihi(1:4) = [2,12,4,8]

1 23 41 4 4

CRPC

Typical Uses of FORALL

Anywhere array statements were used

FORALL (i=0:nx, j=0:ny) u(i,j) = fact*(u(i,j)-avg)

But periodic boundaries are difficult (no wraparound…)

FORALL (j = 0:7:2)

FORALL (i=2:7:2) r(i-1,j)=f(i,j)

r(7,j) = f(0,j)

END FORALL

i

j

CRPC

Determinate Behavior of FORALL

• Consider the statement:
– FORALL (i = 1:n) a(ix(i)) = a(i)

• If ix has no repeated values (e.g. ix is a
permutation), this is well-defined

– Note that a(i) is always the “old” value, not the new one
computed elsewhere in the FORALL

• If ix has repeated values (e.g. ix(i)=i/2), this
is not defined by HPF

– The compiler may take any action it feels appropriate…

– Assigning one of the possible values is appropriate

– Reporting an error is appropriate

– Assigning a random number is appropriate

CRPC

Some Implications of FORALL

• There is lots of fine-grain parallelism
– All right-hand sides of the same statement in body

– All left-hand sides of the same statement in body

– However, synchronization may be needed between RHS and
LHS or between statements

– However, data copying may be needed to implement parallelism

• Syntax (almost) implies determinate behavior
– Exception: Attempted assignments of multiple values to one

location

– This was intentional

CRPC

PURE Functions

• PURE functions have no side effects

• Syntactic constraints:
– Global variables and dummy arguments cannot be used in any

context that may cause the variable to become defined

– Left hand side of assignment

– DO index, ASSIGN, ALLOCATE

– Actual argument with INTENT(OUT)

– Targets of pointer assignments (due to later use of pointers)

– Full list of restrictions is too long to fit on this slide!

– No external I/O or file operations

– Only inherited distribution/alignment of dummies and locals

• Intrinsic functions are PURE

CRPC

PURE Functions in Pictures

COMMON X
REAL Y, Z
Z = FCN(Y)

Normal FCN

PURE FCN

X

Y

Z

FCN(Y)

X

Y

Z

X

Y

Z

FCN(Y)

X

Y

Z

CRPC

PURE Functions and FORALL

• PURE functions are the only ones that can be
invoked from a FORALL

• Safe to do this because they have no side
effects

• Useful to do this because there are things you
cannot do (directly) in a FORALL

– Conditionals and iteration

– E.g., Do point-wise iteration this way

– Local variables

– E.g., Handle temporaries this way

CRPC

Why Use PURE Functions?

• Elemental functions
– Intrinsics

– Equations of state, etc.

– Note: A row can be an element!

• Pointwise iteration
– Mandelbrot sets

– Pointwise Newton iterations

CRPC

PURE for Mandelbrot Sets

! The caller (Explicit interface not shown)
FORALL (i=1:n, j=1:m)

k(i,j) = mandelbrot (CMPLX((i-1)*1.0/(n-1), &
(j-1)*1.0/(m-1)), 1000)

END FORALL

! The callee
PURE INTEGER FUNCTION mandelbrot(x, itol)
COMPLEX, INTENT(IN) :: x
INTEGER, INTENT(IN) :: itol
COMPLEX xtmp
INTEGER k

k = 0
xtmp = -x
DO WHILE (ABS(xtmp)<2.0 .AND. k<itol)

xtmp = xtmp*xtmp - x
k = k + 1

END DO
mandelbrot = k

END FUNCTION mandelbrot

CRPC

Avoiding the PURE Function in
Mandelbrot

k0 = 0

FORALL (i=1:n, j=1:m)

x(i,j) = CMPLX((i-1)*1.0/(n-1),(j-1)*1.0/(m-1))

k(i,j) = 0

xtmp(i,j) = -x(i,j)

mask(i,j) = .TRUE.

END FORALL

DO WHILE (ANY(mask(1:n,1:m)) .AND. k0<1000)

FORALL (i=1:n, j=1:m, mask(i,j))

xtmp(i,j) = xtmp(i,j)*xtmp(i,j)-x(i,j)

k(i,j) = k(i,j) + 1

mask(i,j) = ABS(xtmp(i,j))<2.0

END FORALL

k0 = k0 + 1

END DO

CRPC

An Impure Function

REAL FUNCTION polluted(w, x, y)
REAL, INTENT(IN) :: w
REAL, INTENT(IN) :: x(10)
REAL, TARGET :: y(100)
INTEGER, SAVE :: last = 1
REAL, POINTER :: z
INTEGER num_call
REAL, TARGET :: lookup
COMMON /GLOBAL/ num_call, lookup
INTERFACE

PURE SUBROUTINE bin_search(a, b, i)
REAL, INTENT(IN) :: a
REAL, INTENT(INOUT) :: b(100)
INTEGER, INTENT(INOUT) :: i
END SUBROUTINE bin_search

END INTERFACE
CALL bin_search(w, lookup, last)
z => y(last:last+9)
num_call = num_call + 1
polluted = SUM(x*z)

END FUNCTION polluted

CRPC

A Purified Function

PURE REAL FUNCTION clean(w, x, y)
REAL, INTENT(IN) :: w
REAL, INTENT(IN) :: x(10)
REAL, INTENT(IN) :: y(100)
INTEGER last
REAL, POINTER :: z
INTEGER num_call
REAL, TARGET :: lookup
COMMON /GLOBAL/ num_call, lookup
INTERFACE

PURE SUBROUTINE bin_search(a, b, i)
REAL, INTENT(IN) :: a
REAL, INTENT(IN) :: b(100)
INTEGER, INTENT(INOUT) :: i
END SUBROUTINE bin_search

END INTERFACE
last = 1
CALL bin_search(w, lookup, last)
clean = SUM(x * y(last:last+9))

END FUNCTION clean

CRPC

The INDEPENDENT Directive

• Syntax:
– !HPF$ INDEPENDENT [, NEW(variable-list)]

• Semantics:
– INDEPENDENT is an assertion that no iteration affects any other

iteration in any way
– NEW variables are treated as if they were allocated anew for

each iteration (DO only)
– Applied to a DO: states that there are no loop carried

dependences (except for NEW variables)
– Applied to a FORALL: states that no index point assigns to any

location that another uses
– If the assertion is false, the program is not

standard-conforming (i.e. results are not defined)

• Note: INDEPENDENT is not a general parallel
loop!

CRPC

An Example of INDEPENDENT

Initially,
a = [0, 2, 4, 6, 1, 3, 5, 7]

b = [6, 5, 4, 3, 2, 3, 4, 5]

c = [-1,-1,-1,-1,-1,-1,-1,-1]

!HPF$ INDEPENDENT

DO j = 1, 3

a(j) = a(b(j))

c(a(j)) = a(j)*b(a(j))

END DO

Afterwards,
a = [3, 1, 6, 6, 1, 3, 5, 7]

b = [6, 5, 4, 3, 2, 3, 4, 5]

c = [6,-1,12,-1,-1,18,-1,-1]

Begin

End

63 1

)1(a)2(a)3(a

4*3 6*1 3*6

)3(c)1(c)6(c

CRPC

Another Example of FORALL

Initially,
a = [0, 2, 4, 6, 1, 3, 5, 7]

b = [6, 5, 4, 3, 2, 3, 4, 5]

c = [-1,-1,-1,-1,-1,-1,-1,-1]

!HPF$ INDEPENDENT
FORALL (j = 1:3)

a(j) = a(b(j))

c(a(j)) = a(j)*b(a(j))

END FORALL

Afterwards,
a = [3, 1, 6, 6, 1, 3, 5, 7]

b = [6, 5, 4, 3, 2, 3, 4, 5]

c = [6,-1,12,-1,-1,18,-1,-1]

Begin

End

63 1

)1(a)2(a)3(a

4*3 6*1 3*6

)3(c)1(c)6(c

CRPC

Another Example of FORALL

Initially,
a = [0, 2, 4, 6, 1, 3, 5, 7]

b = [6, 5, 4, 3, 2, 3, 4, 5]

c = [-1,-1,-1,-1,-1,-1,-1,-1]

!HPF$ INDEPENDENT
FORALL (j = 1:3)

a(j) = a(b(j))

c(a(j)) = a(j)*b(a(j))

END FORALL

Afterwards,
a = [3, 1, 6, 6, 1, 3, 5, 7]

b = [6, 5, 4, 3, 2, 3, 4, 5]

c = [6,-1,12,-1,-1,18,-1,-1]

Begin

End

63 1

)1(a)2(a)3(a

4*3 6*1 3*6

)3(c)1(c)6(c

With INDEPENDENT

Begin

End

63 1

)1(a)2(a)3(a

4*3 6*1 3*6

)3(c)1(c)6(c

CRPC

An Example of
Nested INDEPENDENT FORALLs

!HPF$ INDEPENDENT

FORALL (i = 1:3)

a(i) = b(i)

FORALL (j = 1:i)

c(i) = d(i)

END FORALL

END FORALL

b(3)

Begin

B egin Begin Begin

End

EndEndEnd

b(1) b(2)

a(1) a(2) a(3)

d(1,1)

c(1,1)

d(2,1)

c(2,1)

d(2,2)

c(2,2)

d(3,1)

c(3,1)

d(3,2)

c(3,2)

d(3,3)

c(3,3)

CRPC

The INDEPENDENT Directive:
More Details

• The Fundamental Rule:

– If one iteration writes to an object, others cannot read or write it

• Things that write to an object:

– Assignment, ASSIGN, DO index, …

– To the object itself

– To an aggregate that contains it

– Through a pointer to it

– Input/Output statements

– Write the file pointer (except INQUIRE)

– READ assigns to its input list

• Things that read an object

– Uses in expressions (as you expect)

– Input/Output statements

– Read the file pointer (always)

CRPC

Examples of Correct
INDEPENDENT Assertions

Always true
!HPF$ INDEPENDENT
FORALL (i=2:n-1) a(i) =b(i-1)+b(i)+b(i+1)

!HPF$ INDEPENDENT, NEW(j)

DO k = 2, m-1, 2
!HPF$ INDEPENDENT, NEW(vl,vr)

DO j = 2, n-1, 2
vr = x(j,k) - x(j-1,k)
vl = x(j+1,k) - x(j,k)

x(j,k) = x(j,k) + 0.5*(vr-vl)

END DO

END DO

Some compilers will catch these on their own;
some won't

CRPC

Examples of Incorrect
INDEPENDENT Assertions

INDEPENDENT does not handle reductions
!HPF$ INDEPENDENT
DO i = 1, n

x = x + a(i)*a(i)
END DO

INDEPENDENT does not know about higher-level
correctness

DO WHILE (err > err_tol)
!HPF$ INDEPENDENT
DO i = 2, n-1

b(i) = a(i)
a(i) = 0.5 * (a(i-1) + a(i+1))
b(i) = ABS(b(i) - a(i))

END DO
err = MAXVAL(b(2:n-1))

END DO

CRPC

Example of Data-Dependent
INDEPENDENT Assertion

Sometimes true
!HPF$ INDEPENDENT, NEW(j, n1)
DO i = 1, nblack

n1 = iblue(i)
DO j = ibegin(n1), ibegin(n1+1)-1

x(n1) = x(n1) + y(j)*x(ired(j))
END DO

END DO

CRPC

Example of Data-Dependent
INDEPENDENT Assertion

Sometimes true
!HPF$ INDEPENDENT, NEW(j, n1)
DO i = 1, nblack

n1 = iblue(i)
DO j = ibegin(n1), ibegin(n1+1)-1

x(n1) = x(n1) + y(j)*x(ired(j))
END DO

END DO

True

iblue

x

ired 2 4 6

1 3 5 7

8 4 6 8 4 6 8 8 8

CRPC

Example of Data-Dependent
INDEPENDENT Assertion

Sometimes true
!HPF$ INDEPENDENT, NEW(j, n1)
DO i = 1, nblack

n1 = iblue(i)
DO j = ibegin(n1), ibegin(n1+1)-1

x(n1) = x(n1) + y(j)*x(ired(j))
END DO

END DO

True

iblue

x

ired 2 4 6

1 3 5 7

8 4 6 8 4 6 8 8 8

False

iblue

x

ired 2 4 6

1 1 5 6

8 4 6 8 4 6 8 8 8

CRPC

Possibly Correct
INDEPENDENT Assertion

! Correct if Fermat's Last Theorem is true
!HPF$ INDEPENDENT, NEW(ix, iy, n, z, zi)

DO i = 1, 10
forever: DO

READ (i , '(2I12,I3)') ix, iy, n
IF (ix<=0 .OR. iy<=0 .OR. n<=2) &

EXIT forever
z = (ix**n + iy**n) ** (1.0/n)
WRITE (i+10 , '(E18.6)') z
zi = FLOOR(z)
IF (zi == z) THEN

PRINT *, 'Fermat was wrong!'
PRINT *, 'Notify Andrew Wiles!'
GOTO 100

END IF
END DO

END DO
100	 CONTINUE

CRPC

Why Use INDEPENDENT?

Yet another way to do (some) array assignments

!HPF$ INDEPENDENT
DO i = 1, n
	 a(i) = b(i)
END DO

Express application-dependent information

! “colors” don't interfere with each other
DO i = 1, ncolor
	 !HPF$ INDEPENDENT, NEW(i1,i2,f12)
	 DO ix = color_beg(i), color_end(i)
	 	 i1 = icolor(ix,1)
	 	 i2 = icolor(ix,2)
	 	 f12 = w(i1)-w(i2)
	 	 x(i1) = x(i1) + f12
	 	 x(i2) = x(i2) - f12
	 END DO
END DO

CRPC

Typical Use of INDEPENDENT

Express application-dependent information

! Meshes stored in 1-D array don't overlap
!HPF$ INDEPENDENT
DO k = 1, n_mesh
	 CALL update(x(:) ,neighbor(:,ibeg(k):iend(k)))
END DO

SUBROUTINE update(x, nbr)
REAL x(:), tmp
INTEGER nbr(2,:), i
	 DO i = 1, UBOUND(nbr,2)
	 	 tmp = flux (x(nbr(1,i)), x(nbr(2,i)))
	 	 x(nbr(1,i)) = x(nbr(1,i)) + tmp
	 	 x(nbr(2,i)) = x(nbr(2,i)) - tmp
	 END DO
END

CRPC

INDEPENDENT as an Assertion

!HPF$ INDEPENDENT
DO I = 1, N
	 A(INDX(I)) = B(I)
END DO
DO J = 1, N

HIST(INDX(J)) = HIST(INDX(J)) + 1
END DO

The programmer thinks:
	 “If INDX has repeated

values, then the algorithm
will converge no matter
which one is assigned to A.
So it's safe to mark the I loop
INDEPENDENT.”

The compiler thinks:
	 “Since there's no

dependence, INDX must be
a permutation. I can
compute HIST with a bitwise
OR reduction instead of
integer additions.”

CRPC

Some Implications of INDEPENDENT

• Iterations of an INDEPENDENT can execute
atomically in parallel

– Communication/synchronization can be done outside the loop

– No way to force synchronization inside the loop

• A conflict is a conflict, even if it doesn't matter
– “It will eventually converge to the same thing”: not allowed

• Behavior matters, not syntax
– OK to call a function that behaves like PURE for this case

• Different iterations can read/write to different
files (I/O units)

– But not to the same file

CRPC

In Summary:
DO, FORALL and INDEPENDENT

DO i = 1, 3
	 a(i) = b(i)
	 c(i) = d(i)
END DO

b(3)

Begin

End

b(1) b(2)

a(1) a(2) a(3)

d(1) d(2) d(3)

c(1) c(2) c(3)

FORALL (i = 1:3)
	 a(i) = b(i)
	 c(i) = d(i)
END FORALL

b(3)

Begin

End

b(1) b(2)

a(1) a(2) a(3)

d(1) d(2) d(3)

c(1) c(2) c(3)

!HPF$ INDEPENDENT
DO i = 1, 3
	 a(i) = b(i)
	 c(i) = d(i)
END DO

b(3)

Begin

End

b(1) b(2)

a(1) a(2) a(3)

d(1) d(2) d(3)

c(1) c(2) c(3)

CRPC

The HPF Library and New Intrinsics

• Extended intrinsics: MAXLOC, MINLOC

• One elemental intrinsic: ILEN

• System inquiry intrinsics:
NUMBER_OF_PROCESSORS

• New reduction functions: IAND

• Combining-scatter functions: SUM_SCATTER

• Prefix reduction functions: SUM_PREFIX

• Sorting functions: GRADE_UP

• Bit manipulation functions: POPCNT

• Data distribution inquiry subroutines:
HPF_DISTRIBUTION

CRPC

Examples of HPF Library

• Many implement data-parallel operations that are not elemental

X = SUM(A)

x = a i
i =1

n

∑

Z = SUM_SCATTER(C, Z, I ND)

z j = c i
i ∋ind i = j

∑

Y = SUM_PREFI X(B)

y j = b i
i =1

j

∑

A

X Σ

B

Y Σ Σ Σ Σ Σ Σ ΣΣ

I ND

C

Z

1 3 6 3 361 1

Σ Σ Σ

CRPC

Why Use the HPF Library?

• If you need the functions…
– Round out the set of reductions

– All built-in associative, commutative functions

– Partial reductions (prefix reductions) for all reductions

– Sorting

• Functions were chosen for the library because
– They are useful

– They are data-parallel

– They are hard to implement efficiently by hand

CRPC

Typical Uses of HPF Library

Accumulations through indirection arrays

x = SUM_SCATTER(flux, x, nbr(1,1:n))
x = SUM_SCATTER(-flux, x, nbr(2,1:n))
! Equivalent to the following
DO i = 1, n
	 x(nbr(1,i)) = x(nbr(1,i)) + flux(i)
	 x(nbr(2,i)) = x(nbr(2,i)) - flux(i)
END DO

Manipulating array-based sparse structures

inum(1:n) = MAX(iend(1:n)-ibeg(1:n)+1, 0)
ibeg_new(1:n) = SUM_PREFIX(inum(1:n)) + 1
iend_new(1:n) = ibeg_new(1:n)+inum(1:n)-1
! Moving the data left as exercise for reader

CRPC

EXTRINSIC Procedures

• EXTRINSIC is an escape mechanism for calling
other paradigms from HPF code

• On the caller (HPF) side:
– There must be an explicit interface with EXTRINSIC directive

– Remapping occurs to guarantee that arguments meet any
distribution specifications

– System synchronizes all processors before the call

– System calls “local” routine on every processor

• On the callee (non-HPF) side:
– INTENT(IN) and INTENT(OUT) must be obeyed

– If variables are replicated, caller must make them consistent
before return

– Processors can access their own section of distributed arrays

CRPC

Hints for Using
Data Parallel Statements

• Use FORALL to extend array operations
– More shapes

– User-defined elemental functions

– Better than array syntax?

• Beware of hidden overheads
– Intra-statement overheads

– Inter-statement synchronizations

– Complex pure functions

• Assert INDEPENDENT only when it is true
– This has implications for debuggers and programming

environments!

