Kempe recoloring version of Hadwiger’s conjecture

Clément Legrand-Duchesne
LaBRI, Bordeaux
October 31, 2023

Joint work with Marthe Bonamy, Marc Heinrich and Jonathan Narboni
Recoloring with Kempe changes

Kempe chain (1879)

Maximal bichromatic connected component in G
Recoloring with Kempe changes

Kempe chain (1879)
Maximal bichromatic connected component in G
Recoloring with Kempe changes

Kempe chain (1879)

Maximal bichromatic connected component in G

Usual questions

• Are any two k-colorings of a graph G equivalent?
• Are all k-colorings equivalent to a $\chi(G)$-coloring?
• How many Kempe changes separate any two k-colorings?
• Application to sampling: Does the corresponding Markov chain mix well?
Recoloring with Kempe changes

Kempe chain (1879)
Maximal bichromatic connected component in G

Usual questions

• Are any two k-colorings of a graph G equivalent?
 Are all k-colorings equivalent to a $\chi(G)$-coloring?

• How many Kempe changes separate any two k-colorings?

• Application to sampling: Does the corresponding Markov chain mix well?
Graph minor

H is a minor of G if H can be obtained by deleting vertices, edges and contracting edges of G

K_t is a minor of G if and only if $V_1 \sqcup \cdots \sqcup V_t \subseteq V(G)$, with V_i connected and $G[V_1, \ldots, V_t] = K_t$
Graph minor

Graph minor

H is a minor of G if H can be obtained by deleting vertices, edges and contracting edges of G

K_t is a minor of G if and only if $V_1 \sqcup \cdots \sqcup V_t \subseteq V(G)$, with V_i connected and $G[V_1, \ldots, V_t] = K_t$

Wagner, Kuratowski 1930

A graph is planar iff K_5-minor and $K_{3,3}$-minor free
Hadwiger’s conjecture

Appel, Haken 1976
If G is planar, then $\chi(G) \leq 4$

Robertson, Sanders, Seymour, Thomas 1997
Much simpler proof, but still computer assisted

Hadwiger’s conjecture 1943
If G is K_t-minor free then $\chi(G) \leq t - 1$
Proved for $1 \leq t \leq 6$, widely open for $t > 6$
Meyniel 1978
All 5-colorings of a planar graph are Kempe-equivalent (tight)

Las Vergnas and Meyniel 1981
All 5-colorings of a \(K_5\)-minor free graph are Kempe-equivalent
Meyniel 1978
All 5-colorings of a planar graph are Kempe-equivalent (tight)

Las Vergnas and Meyniel 1981
All 5-colorings of a K_5-minor free graph are Kempe-equivalent

Conjecture 1 [Las Vergnas and Meyniel 1981]
All the t-colorings of a K_t-minor free graph are Kempe-equivalent

Conjecture 2 [Las Vergnas and Meyniel 1981]
All the t-colorings of a K_t-minor free graph are Kempe-equivalent to a $(t - 1)$-coloring
Frozen colorings

Frozen coloring

α is frozen if ∀i, j, the graph induced by colors i and j is connected

Quasi-minor

K_t is quasi-minor of G if there exists V_1 ⊔ ... ⊔ V_t such that ∀i ≠ j, G[V_i ∪ V_j] is connected and G[V_1, ..., V_t] = K_t

K_t-minor ⇒ quasi K_t-minor Frozen

t-coloring ⇒ quasi K_t-minor
Frozen colorings

Frozen coloring

\(\alpha \) is frozen if \(\forall i, j \), the graph induced by colors \(i \) and \(j \) is connected

Quasi-minor

\(K_t \) is quasi-minor of \(G \) if there exists \(V_1 \cup \cdots \cup V_t \) such that \(\forall i \neq j \), \(G[V_i \cup V_j] \) is connected and \(G[V_1, \ldots V_t] = K_t \)
Frozen colorings

Frozen coloring

α is frozen if $\forall i, j$, the graph induced by colors i and j is connected

Quasi-minor

K_t is quasi-minor of G if there exists $V_1 \sqcup \cdots \sqcup V_t$ such that $\forall i \neq j$, $G[V_i \cup V_j]$ is connected and $G[V_1, \ldots, V_t] = K_t$

K_t-minor \Rightarrow quasi K_t-minor

Frozen t-coloring \Rightarrow quasi K_t-minor
Motivation

If G has no K_t minor and all its t-colorings are Kempe equivalent then either

- no frozen t-coloring
- only one t-coloring up to color permutation \leadsto Hadwiger’s conjecture is false
Last conjecture

Motivation

If G has no K_t minor and all its t-colorings are Kempe equivalent then either

- no frozen t-coloring
- only one t-coloring up to color permutation \leadsto Hadwiger’s conjecture is false

Conjecture 3 [Las Vergnas and Meyniel 1981]

No K_t-minor \Rightarrow No quasi K_t-minor \Rightarrow No frozen t-coloring
Motivation

If G has no K_t minor and all its t-colorings are Kempe equivalent then either

- no frozen t-coloring
- only one t-coloring up to color permutation \Leftrightarrow Hadwiger’s conjecture is false

Conjecture 3 [Las Vergnas and Meyniel 1981]

No K_t-minor \Rightarrow No quasi K_t-minor \Rightarrow No frozen t-coloring

Conjecture 3 holds for

- [Las Vergnas and Meyniel ’81] $t \leq 5$
- [Jørgensen ’94] $t = 8$
- [Song and Thomas ’06] $t = 9$
- [Kriesell ’21] $t = 10$
No K_t-minor implies ...

1. t-recolorable
2. Every t-coloring is equivalent to a $(t-1)$-coloring
3. No quasi-K_t-minor

\iff Hadwiger’s conjecture is false

Assuming Hadwiger

$\forall \varepsilon > 0$ and large enough t, $\exists G$ with a frozen t-coloring but no $K(2t + \varepsilon)$ t-minor. This graph admits another t-coloring.

Any graph with a quasi-K_t-minor has a K_{t^2}-minor.
To sum up

No K_t-minor implies ...

1. t-recolorable

2. Every t-coloring is equivalent to a $(t-1)$-coloring

3. No quasi-K_t-minor

Assuming Hadwiger's conjecture is false

Bonamy, Heinrich, L., Narboni '23

- Strongly disproved for large t: $\forall \varepsilon > 0$ and large enough t, $\exists G$ with a frozen t-coloring but no $K_{(2/3+\varepsilon)t}$-minor. This graph admits another t-coloring.
No K_t-minor implies ...

1. t-recolorable \hspace{1cm} \land \hspace{1cm} 3. No quasi-K_t-minor \rightarrow \text{Hadwiger’s conjecture is false}

Assuming Hadwiger

2. Every t-coloring is equivalent to a $(t-1)$-coloring

Bonamy, Heinrich, L., Narboni ’23

• Strongly disproved for large t: $\forall \varepsilon > 0$ and large enough t, $\exists G$ with a frozen t-coloring but no $K_{(\frac{2}{3}+\varepsilon)t}$-minor. This graph admits another t-coloring.

• Any graph with a quasi-K_t-minor has a $K_{\frac{t}{2}}$-minor
Random construction of G_t

• Start with a clique on $V = \{a_1, b_1, \ldots, a_t, b_t\}$
Random construction of G_t

- Start with a clique on $V = \{a_1, b_1, \ldots, a_t, b_t\}$
- For all i, remove a_ib_i
Random construction of G_t

- Start with a clique on $V = \{a_1, b_1, \ldots a_t, b_t\}$
- For all i, remove $a_i b_i$
- For all i, j, pick independently at random an edge in $\{a_i, b_i\} \times \{a_j, b_j\}$ and remove it
Sketch of proof

Random construction of G_t

• Start with a clique on $V = \{a_1, b_1, \ldots, a_t, b_t\}$
• For all i, remove a_ib_i
• For all i, j, pick independently at random an edge in $\{a_i, b_i\} \times \{a_j, b_j\}$ and remove it

Properties of G_t

• has a frozen t-coloring
• $\mathbb{P}(G_t \text{ has another } t\text{-coloring}) \xrightarrow{t \to \infty} 1$
• $\mathbb{P}(G_t \text{ is } K_{(\frac{2}{3}+\varepsilon)t}\text{-minor free}) \xrightarrow{t \to \infty} 1$
\[P(G_t \text{ is } K_{(\frac{2}{3} + \epsilon)t}-\text{minor free}) \xrightarrow{t \to \infty} 1 \]

Sort the bags in a \(K_{(\frac{2}{3} + \epsilon)t}-\text{minor}\)

- Bags of size 1 \(\rightarrow K_{p_1} \) simple minor
- Bags of size 2 \(\rightarrow K_{p_2} \) double minor
- Bags of size at least 3 \(\rightarrow K_{p_3} \) triple minor
\[\mathbb{P}(G_t \text{ is } K_{\left(\frac{2}{3} + \varepsilon\right)t\text{-minor free}}) \xrightarrow{t \to \infty} 1 \]

Sort the bags in a \(K_{\left(\frac{2}{3} + \varepsilon\right)t\text{-minor}} \)

- Bags of size 1 \(\rightarrow K_{p_1} \) simple minor
- Bags of size 2 \(\rightarrow K_{p_2} \) double minor
- Bags of size at least 3 \(\rightarrow K_{p_3} \) triple minor

\[\mathbb{P}(G_t \text{ is } K_{\left(\frac{2}{3} + \varepsilon\right)t\text{-minor free}}) \xrightarrow{t \to \infty} 1 \text{ because} \]

- For all \(\varepsilon_1 > 0 \), \(\mathbb{P}(G_t \text{ has no simple } K_{\varepsilon_1 t\text{-minor}}) \xrightarrow{t \to \infty} 1 \)
- For all \(\varepsilon_2 > 0 \), \(\mathbb{P}(G_t \text{ has no double } K_{\varepsilon_2 t\text{-minor}}) \xrightarrow{t \to \infty} 1 \)
- \(G_t \) has no triple \(K_{\frac{2}{3} t + 1}\text{-minor} \)
For all $\varepsilon > 0$, $\mathbb{P}(G_t \text{ has no simple } K_{\varepsilon t} \text{-minor}) \xrightarrow{t \to \infty} 1$

- Simple K_p-minor = induced K_p
- Given $S \subset V$ of size p,

$$
\mathbb{P}(S \text{ induces a } K_p) \leq \left(\frac{3}{4} \right)^p
$$
For all $\epsilon > 0$, $\mathbb{P}(G_t \text{ has no simple } K_{\epsilon t}\text{-minor}) \xrightarrow{t \to \infty} 1$

- Simple K_p-minor = induced K_p
- Given $S \subset V$ of size p,
 \[\mathbb{P}(S \text{ induces a } K_p) \leq \left(\frac{3}{4}\right)^{\binom{p}{2}} \]
- By Union-Bound:
 \[\mathbb{P}(G_t \text{ has an induced } K_{\epsilon t}) \leq \left(\frac{2t}{\epsilon t}\right) \left(\frac{3}{4}\right)^{\binom{\epsilon t}{2}} \]
 \[\leq 2^{2t} \left(\frac{3}{4}\right)^{\binom{\epsilon t}{2}} \]
 \[\xrightarrow{t \to \infty} 0 \]
For all $\varepsilon > 0$, $\mathbb{P}(G_t \text{ has no double } K_{\varepsilon t}-\text{minor}) \xrightarrow{t \to \infty} 1$

A special case of double-minor

- Let S' be a set of pairwise disjoint pairs of vertices, such that $\forall i$, at most one of a_i, b_i is involved in S'.
- $G_t \setminus S'$: contract pairs in S' and remove the rest
For all $\varepsilon > 0$, $\mathbb{P}(G_t \text{ has no double } K_{\varepsilon t}\text{-minor}) \xrightarrow{t \to \infty} 1$

A special case of double-minor

- Let S' be a set of pairwise disjoint pairs of vertices, such that $\forall i$, at most one of a_i, b_i is involved in S'.
- $G_t \setminus S'$: contract pairs in S' and remove the rest
- $\forall (x_1, y_1), (x_2, y_2) \in S'$, $\mathbb{P}(\exists \text{ an edge between } \{x_1, y_1\} \text{ and } \{x_2, y_2\}) = 1 - (\frac{1}{4})^4$
- $\mathbb{P}(G_t \setminus S' \text{ is a clique}) = (1 - (\frac{1}{4})^4)^{|S'|\choose 2}$
For all $\varepsilon > 0$, $\mathbb{P}(G_t \text{ has no double } K_{\varepsilon t}-\text{minor}) \xrightarrow{t \to \infty} 1$

A special case of double-minor

- Let S' be a set of pairwise disjoint pairs of vertices, such that $\forall i$, at most one of a_i, b_i is involved in S'.
- $G_t \setminus S'$: contract pairs in S' and remove the rest
- $\forall (x_1, y_1), (x_2, y_2) \in S'$, $\mathbb{P}(\exists \text{ an edge between } \{x_1, y_1\} \text{ and } \{x_2, y_2\}) = 1 - \left(\frac{1}{4}\right)^4$
- $\mathbb{P}(G_t \setminus S' \text{ is a clique}) = \left(1 - \left(\frac{1}{4}\right)^4\right)^{\binom{|S'|}{2}}$
- For $|S'| = \varepsilon't$, at most $\binom{2t}{2\varepsilon't} \cdot (2\varepsilon t)! \leq (2t)^{2\varepsilon t}$ possibilities
- By Union-Bound:

$$\mathbb{P}(\exists \text{ special } S', G_t \setminus S' = K_{\varepsilon't}) \leq (2t)^{2\varepsilon't} \left(1 - \frac{1}{4^4}\right)^{\binom{\varepsilon't}{2}} \xrightarrow{t \to \infty} 0$$
For all $\varepsilon > 0$, $\mathbb{P}(G_t \text{ has no double } K_{\varepsilon t}\text{-minor}) \xrightarrow{t \to \infty} 1$

Reducing to the special case

- Let S be a double $K_{\varepsilon t}\text{-minor}$
- Greedy special $S' \subset S$: $\forall i$, if a_i and b_i are involved in S, remove the pair containing b_i
For all $\varepsilon > 0$, $\mathbb{P}(G_t \text{ has no double } K_{\varepsilon t}\text{-minor}) \xrightarrow{t \to \infty} 1$

Reducing to the special case

- Let S be a double $K_{\varepsilon t}\text{-minor}$
- Greedy special $S' \subset S$: $\forall i$, if a_i and b_i are involved in S, remove the pair containing b_i
- $|S'| \geq \frac{\varepsilon}{3}t$ so take $\varepsilon' = \frac{\varepsilon}{3}$:

\[
\mathbb{P}(\exists S \text{ a double } K_{\varepsilon t}\text{-minor}) \leq \mathbb{P}(\exists \text{ a special } S', G_t \setminus S' = K_{\varepsilon' t}) \xrightarrow{t \to \infty} 0
\]
Open questions

Open questions

• What is the infimum \(c \) such that for \(t \) large enough, there is \(G \) with a quasi \(K_t \)-minor but no \(K_{ct} \)-minor?

\[
\frac{1}{2} \leq c \leq \frac{2}{3}
\]
Open questions

- What is the infimum c such that for t large enough, there is G with a quasi K_t-minor but no K_{ct}-minor?
 \[\frac{1}{2} \leq c \leq \frac{2}{3} \]

- Is there c' such that for every t, all the $c't$-colourings of a graph with no K_t-minor are equivalent?
 \[\frac{3}{2} \leq c' \quad \text{and all } O(t\sqrt{\log(t)})\text{-colorings are equivalent} \]
Open questions

- What is the infimum c such that for t large enough, there is G with a quasi K_t-minor but no K_{ct}-minor?

 \[
 \frac{1}{2} \leq c \leq \frac{2}{3}
 \]

- Is there c' such that for every t, all the $c't$-colourings of a graph with no K_t-minor are equivalent?

 \[
 \frac{3}{2} \leq c' \quad \text{and all } O(t \sqrt{\log(t)})\text{-colorings are equivalent}
 \]

- What is the maximum t for which any graph with no K_t minor is t-recolorable? $t \geq 5$
Open questions

• What is the infimum c such that for t large enough, there is G with a quasi K_t-minor but no K_{ct}-minor?

\[\frac{1}{2} \leq c \leq \frac{2}{3} \]

• Is there c' such that for every t, all the $c't$-colourings of a graph with no K_t-minor are equivalent?

\[\frac{3}{2} \leq c' \quad \text{and all } O(t\sqrt{\log(t)})\text{-colorings are equivalent} \]

• What is the maximum t for which any graph with no K_t minor is t-recolorable? $t \geq 5$

Thanks!