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Abstract: We address the concrete problem of verifying graph properties expressed in Monadic
Second Order (MSO) logic. It is well-known that the model-checking problem for MSO logic on
graphs is fixed-parameter tractable (FPT) [Cou09, Chap 6] with respect to tree-width and clique-
width. The proof uses tree-decompositions (for tree-widthas parameter) and clique-decompositions
(for clique-width as parameter), and the construction of a finite tree automaton from an MSO sen-
tence, expressing the property to check. However, this construction may fail because either the
intermediate automata are too big even though the final automaton has a reasonable size or the
final automaton itself is too big to be constructed:the sizesof automata depend, exponentially in
most cases, on the tree-width or the clique-width of the graphs to be verified. We present ideas
to overcome these two causes of failure. The first idea is to give a direct construction of the au-
tomaton in order to avoid explosion in the intermediate steps of the general algorithm. When the
final automaton is still too big, the second idea is to represent the transition function by a function
instead of computing explicitly the set of transitions; this entirely solves the space problem. All
these ideas have been implemented in Common Lisp.
Key Words: Tree automata, Monadic second order logic, Graphs, Lisp

1 Introduction

It is well-known from [DF99], [FG06],[CMR01] that the model-checking problem for
MSO logic on graphs is fixed-parameter tractable (FPT) with respect to tree-width and
clique-width (cwd).

The standard proof is to construct a finite bottom-up tree automaton that recognizes
a tree (or clique) decomposition of the graph. However, the size of the automaton can
become extremely large and cannot be bounded by a fixed elementary function of the
size of the formula unless P=NP [FG04]. This makes the problem hard to tackle in
practice, because it is just impossible to construct the tree automaton.

Systematic approaches have been proposed for subclasses ofMSO formulas with
limited quantifications in [KL09]. Our approach is not systematic; we consider specific
problems which we want to solve in practice, for large classes of graphs.

In the general algorithm, the combinatorial explosion may occur each time we en-
counter an alternation of quantifiers which induces a determinization of the current au-
tomaton. We want to avoid determinizations as much as possible. Initial ideas to achieve
this goal were first presented in [CD10].



We do not capture all MSO graph properties, but we can formalize in this way col-
oring and partitioning problems to take a few examples. In this article, we only discuss
graphs of bounded clique-width, but the ideas work as well for graphs of bounded tree-
width, in particular because if a graph has a tree-widthtwd ≤ k, it has a clique-width
cwd ≤ 2k+1. There is however an exponential blow-up.

The Autowrite1 software written in Common Lisp was first designed to check call-
by-need properties of term rewriting systems [Dur02]. For this purpose, it implements
tree (term) automata. In the first implementation, just the emptiness problem (does the
automaton recognizes the empty language) was used and implemented.

In subsequent versions [Dur05], the implementation was developed in order to pro-
vide a complete library of operations on term automata. The next natural step is to
solve concrete problems using this library and to test the limits of the implementation.
Checking graph properties is a perfect challenge for Autowrite.

Given a property expressed by a MSO formula, we have experimented the three
following techniques.
1. compute the automaton from the MSO formula and using the general algorithm,

2. compute directly the final automaton,

3. define the automaton with implicit transition function instead of computing its set
of transitions.

The first technique is the only one which is completely general in theory. The two
first techniques have the advantage that once the final automaton is computed (and
minimized), it can be memorized for further use. The minimalautomaton obtained in
both cases is unique: it depends only on the property and not on its logical description.
This can be helpful to verify that the two constructions are correct.

The limits are soon reached using the first technique. The second technique allows
to go somewhat further. With the third technique there is almost no more limitation (at
least not the same ones) because the whole automaton is neverconstructed.

In this paper, we do not address the problem of finding terms representing a graph,
that is, to find a clique-width decomposition of the graph. Insome cases, the graph of
interest may come with a “natural decomposition” from whichthe clique decomposition
of bounded clique-width is easy to obtain but for the generalcase the known algorithms
are not practically usable.

To illustrate our approach, we shall stick to a unique example along the paper al-
though we have made experiments with many more graph properties.

Path Property: Let Path(X1, X2) be the monadic second-order formula expressing
that, for an undirected graphG and setsX1 andX2 of vertices this graph, we have
X1 ⊆ X2, |X1| = 2 and there is a path inG[X2] linking the two vertices ofX1

2 .

1 http://dept-info.labri.fr/ ˜ idurand/autowrite/
2 To simplify the presentation, we confuse somewhat syntax and semantics. We note in the same

way a variableXi and its values (sets of vertices)
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Figure 1: A graph to test the propertyPath(X1, X2)

Consider the graph of Figure 1. IfX1 = {v3, v8} andX2 = {v1, v3, v4, v7, v8} the
propertyPath(X1, X2) holds forG: |X1| = 2 and there is a pathv8−v7−v1−v4−v3

from v8 to v3 with vertices inX2. The property does not hold ifX1 = {v3, v8} and
X2 = {v1, v3, v4, v8}.

Forcwd = 2, we were able to obtain the term automaton (see below how terms de-
scribe graphs) directly from the MSO formula starting from the automata representing
the basic operations, transforming and combining them withboolean operations, de-
terminization, complementation, projection, cylindrification. But it runs out of memory
for cwd = 3.

We were successful in constructing the direct automaton forcwd up to 4. But for
cwd = 5, the program runs out of memory because the constructed automaton is simply
too big.

For higher clique-width, there is no way of representing explicitly the transitions.
This is when the third method comes on stage. The really new idea here is to represent
the transition function precisely by a function. Consequently, there is no more need to
store the transitions. Transitions are computed on the fly when the automaton is running
on a given term (representing a graph). A graph of clique-width k havingn vertices is
represented by a termt of size|t| ≤ f(k).n. Hence, only|t| transitions are needed. This
number is in practice much less that the number of transitions of an automaton able to
process all possible terms denoting graphs of clique-width≤ k.

After recalling how graphs of bounded clique-width are represented by terms and
how properties on such graphs can be expressed in MSO, we shall describe our experi-
ments using Autowrite trying to construct automata verifying properties on graphs.

2 Preliminary

2.1 Term automata

We recall some basic definitions concerning terms and term automata. Much more in-
formation can be found in the on-line book [CDG+02]. We consider a finite signature
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F (set of symbols with fixed arity) andT (F) the set of (ground) terms built from a
signatureF .

Example 1.LetF be a signature containing the symbols{a, b, adda b, rela b, relb a,⊕}

with
arity(a) = arity(b) = 0 arity(⊕) = 2

arity(adda b) = arity(rela b) = arity(relb a) = 1

We shall see in Section 2.3 that this signature is suitable towrite terms representing
graphs of clique-width at most2.

Example 2.t1, t2, t3 andt4 are terms built with the signatureF of Example 1.

t1 = ⊕(a, b)

t2 = adda b(⊕(a,⊕(a, b)))

t3 = adda b(⊕(adda b(⊕(a, b)), adda b(⊕(a, b))))

t4 = adda b(⊕(a, rela b(adda b(⊕(a, b)))))

We shall see in Table 1 their associated graphs.

Definition 1. A (finite bottom-up)term automaton3 is a quadrupleA = (F , Q, Qf , ∆)

consisting of a finite signatureF , a finite setQ of states, disjoint fromF , a subset
Qf ⊆ Q of final states, and a set of transitions rules∆. Every transition is of the form
f(q1, . . . , qn) → q with f ∈ F , arity(f) = n andq1, . . . , qn, q ∈ Q.

Term automata recognizeregular term languages[TW68]. The class of regular term
languages is closed by the boolean operations (union, intersection, complementation)
on languages which have their counterpart on automata. For all details on terms, term
languages and term automata, the reader should refer to [CDG+02].

2.2 Graphs as a logical structure

We consider finite, simple, loop-free, undirected graphs (extensions are easy)4. Every
graph can be identified with the relational structure〈VG, edgG〉 whereVG is the set of
vertices andedgG the binary symmetric relation that describes edges:edgG ⊆ VG×VG

and(x, y) ∈ edgG if and only if there exists an edge betweenx andy.
Properties of a graphG can be expressed by sentences of relevant logical languages.

For instance, “G is complete” can be expressed by

∀x, ∀y, edgG(x, y)

Monadic Second order Logic is suitable for expressing many graph properties.

3 Term automata are frequently called tree automata, but it isnot a good idea to identify trees,
which are particular graphs, with terms.

4 We consider such graphs for simplicity of the presentation but we can work as well with di-
rected graphs, loops, labeled vertices and edges
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Table 1: Graphs corresponding to the terms of Example 2

2.3 Term representation of graphs of bounded clique-width

Definition 2. Let L be a finite set of vertex labels and we consider graphsG such that
each vertexv ∈ VG has a labellabel(v) ∈ L. The operations on graphs are⊕, the union
of disjoint graphs, the unary edge additionadda b that adds the missing edges between
every vertex labeleda to every vertex labeledb, the unary relabelingrela b that renames
a to b (with a 6= b in both cases). A constant terma denotes a graph with a single vertex
labeled bya and no edge.

LetFL be the set of these operations and constants.
Every termt ∈ T (FL) defines a graphG(t) whose vertices are the leaves of the

term t. Note that, because of the relabeling operations, the labels of the vertices in the
graphG(t) may differ from the ones specified in the leaves of the term.

A graph hasclique-widthat mostk if it is defined by somet ∈ T (FL) with |L| ≤ k.

Note also that if the termt describing a graphG does not use redundancies like
adda b(adda b(. . .)), then|t| = Θ(|VG|).

Example 3.For L = {a, b}, the corresponding signature has already be presented in
Example 1. The graphs corresponding to the terms defined in Example 2 are depicted
in Table 1.

Example 4.The graph of Figure 1 is of clique-width≤ 5. It can be represented with
the term built withL = {a, b, c, d, e} and shown on the left of Figure 2.

Let X1, . . . , Xm be sets of vertices of a graphG. We can define properties of
(X1, . . . , Xm). For example,

E(X1, X2) : there is an edge between somex1 ∈ X1 and somex2 ∈ X2;
Sgl(X2) : X2 is a singleton set;
X1 ⊆ X2 : X1 is a subset ofX2.

Definition 3. Let P (X1, . . . , Xm) be a property of sets of verticesX1, . . . , Xm graphs
G denoted by termst ∈ T (FL). Let Fm

L
be obtained fromFL by replacing each

constanta by the constantsaˆ w wherew ∈ {0, 1}m. For fixedL, let LP,(X1,...,Xm),L
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be the set of termst in T (Fm
L

) such thatP (X1, . . . , Xm) is true inG(t), whereXi is
the set of vertices which corresponds to the leaves labeled by aˆ w where thei-th bit of
w is 1. Hencet ∈ T (Fm

L
) defines a graphG(t) and an assignment of sets of vertices to

the set variablesX1, ..., Xm.

Example 5.The graph of Figure 1 with vertex assignmentX1 = {v3, v8} andX2 =

{v1, v3, v4, v7, v8} can be represented5 by the term at the right of Figure 2; it satisfies
the path property. With vertex assignmentX1 = {v3, v8} andX2 = {v1, v3, v4, v8}, it
can be represented by almost the same term but withbˆ00[v7] instead ofbˆ01[v7]

but it does not satisfy the path property anymore.

add_c_d(

add_b_d(
oplus(

d[v1],

rel_d_b(

add_a_d(

oplus(
d[v2],

add_c_e(

oplus(

add_a_b(

add_b_c(
oplus(

a[v3],

oplus(

b[v4],

c[v5])))),
add_a_b(

add_b_e(

oplus(

a[v6],
oplus(

b[v7],

e[v8]))))))))))))

add_c_d(

add_b_d(
oplus(

dˆ01[v1],

rel_d_b(

add_a_d(

oplus(
dˆ00[v2],

add_c_e(

oplus(

add_a_b(

add_b_c(
oplus(

aˆ11[v3],

oplus(

bˆ01[v4],

cˆ00[v5])))),
add_a_b(

add_b_e(

oplus(

aˆ00[v6],
oplus(

bˆ01[v7],

eˆ11[v8]))))))))))))

Figure 2: Terms representing the graph of Figure 1

Example 6.The propertyPath(X1, X2) can be expressed by the following MSO for-
mula:

∀x[x ∈ X1 ⇒ x ∈ X2]∧

∃x, y[x ∈ X1 ∧ y ∈ X1 ∧ x 6= y ∧ ∀z(z ∈ X1 ⇒ x = z ∨ y = z)∧

∀X3[x ∈ X3 ∧ ∀u, v(u ∈ X3 ∧ u ∈ X2 ∧ v ∈ X2 ∧ edg(u, v) ⇒ v ∈ X3) ⇒ y ∈ X3]]

of quantifier-height5. Uppercase variables denote sets of vertices, and lowercase vari-
ables denote individual vertices.

3 Implementation of term automata

The part of Autowrite which is of interest for this work is theimplementation of term
automata together with some operations on these automata.

The main operations that are implemented are:

5 Note that the vertex number inside brackets is not part of thesignature; it is there to help the
reader make the correspondence between the leaves of the term and the vertices of the graph.
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– Reduction (removal of inaccessible states), decision of emptiness; they have been
implemented in the very first version of Autowrite.

– Determinization, Complementation, Minimization, Union,Intersection which have
been added in subsequent versions of Autowrite.

– Signature transformation, Projection and Cylindrification which have been added
to deal with changes of signatures typically fromFm

L
toFm′

L
.

The object at the core of this library is the term automaton. The efficiency of many
operations depends heavily on the data structures chosen torepresent the states and
transitions of the automata. Since the first version of Autowrite [Dur02], much care
has been devoted to improve the representation of automata and the performances have
improved significantly. However, this work, which leads us to the limits of what is
computable in a human’s life, has also shown limits in our implementation, in terms of
space and time. In particular, we have realized that representing the set of transitions is
a crucial point. SInce, we use binary terms, the number of transitions isO(s2) wheres

is the number of states.
From the start, we have represented an automaton as a signed object, (an object with

a signature), a list of references to its states, a list of references to its final states and its
set of transitions.

3.1 Representation of states

The principle that each state of an automaton is representedby a unique Common Lisp
object has been in effect since the beginning of Autowrite. It is then very fast to compare
objects: just compare the references. This is achieved using hash-consing techniques.
On the contrary to systems like MONA [KM01], a state is not just represented by a
number, it can also have constituting elements. The first reason for this choice is that
each state has a meaning which can be better expressed by any Lisp object than by
a simple number. The second reason is that states can themselves contain states from
other automata when building an intersection automaton forexample. The third reason
will me made clear in Section 6 when we define the transition function as a function
instead of defining it as a set of transitions.

Often we need to representsetsof states of an automaton. We have two ways of
representing sets of states,bit vectorsor containersof ordered states.

Bit vectors are faster, but tend to use more space; containers are slower but can be
used when bit vectors lack of space.

Each state has an internal unique number which allows us to order states in the
containers. Operations on containers (equality, union, intersection, addition of a state,
...) can then use algorithms on sorted lists which are faster.
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Figure 3: Dag representation of the transitions

3.2 Transitions

The definition itself of an automaton suggests that the transition function should be
represented by a set of transitions. And it is indeed the onlysolution that we had in
mind when we started writing Autowrite. Whatever representation is chosen to store
the transitions, it must offer a functionδ(f, states) which according to a symbolf of
arity n and a list of statesq1, . . . , qn returns the target state (or a set of target states
in a non-deterministic case)q of the transitionf(q1, . . . , qn) → q stored in the data
structure.

However, the transition function is really a function: if the states have a meaning as
specified in Section 3.1, then in some cases,δ(f, states) can be written as a function
which computes the target stateq according tof and the contents of the statesq1, . . . , qn

without the transition being stored in any data structure. We shall explain this novel
implementation in Section 6.

The first representation chosen to represent a set of transitions is a hash-table: the
key is the list(fq1 . . . qn) (whereqi is in fact the reference to the object representing
the stateqi) and the value is the target stateq of the transitionf(q1, . . . , qn).

For instance, the following set of transitions:

a → q1 f(q1, q2, q3)→q1

b → q2 f(q1, q3, q2)→q3

f(q1, q2, q2)→q2

yields a hash-table with 5 entries corresponding to the 5 left-hand-sides of the transi-
tions. The advantage of this representation is that the left-hand-sides are kept together
and that we can easily take into account commutative symbols. However, when the
symbols have arityn ≥ 2 the table may become of size|Q|n. In order, to reduce the
size of the data structure representing the set of transitions, we have also considered a
dag representation which is illustrated by Figure 3.

We now turn our attention to the problem of computing an automaton accepting the
terms overFL for fixedL representing graphs verifying an MSO property.

8



4 The general method (first method)

The first technique consists in applying the general algorithm which transforms a MSO
formula into an automaton. The algorithm can be applied recursively until an atomic
formula is reached. In order to process a MSO formula, we musttranslate it into a
formula without first-order variables (which has the same quantifier-height) and which
uses only boolean operations (and, or, negation) and simpleatomic properties likeX =

∅, Sgl(X) (denoting thatX is a singleton set),Xi ⊆ Xj for which an automaton is
easily computable.

Some standardization on the names of set variables is then necessary in order to
apply our operations.

The formula given in Example 6 is thus translated as shown below. Note that this
translation is done by hand but could be automated as this is in MONA [KM01].

Example 7.

Path(X1, X2) = X1 ⊆ X2 ∧ P1(X1, X2)

P1(X1, X2) = ∃X3, X4, P2(X1, X2, X3, X4)

P2(X1, X2, X3, X4) = Sgl(X3) ∧ Sgl(X4) ∧ X3 ⊆ X1 ∧ X4 ⊆ X1 ∧ X3 6= X4

∧|X1| = 2 ∧ P4(X2, X3, X4)

P4(X2, X3, X4) = ¬P5(X2, X3, X4)

P5(X2, X3, X4) = ∃X ′
1, P6(X

′
1, X2, X3, X4)

P6(X
′
1, X2, X3, X4) = X3 ⊆ X5 ∧ ¬X4 ⊆ X5 ∧ P7(X

′
1, X2)

P7(X
′
1, X2) = ¬P8(X

′
1, X2)

P8(X
′
1, X2) = ∃X3, X4, P9(X

′
1, X2, X3, X4)

P9(X
′
1, X2, X3, X4) = Sgl(X3) ∧ Sgl(X4) ∧ X3 ⊆ X ′

1 ∧ X3 ⊆ X2 ∧ X4 ⊆ X2∧

Edge(X3, X4) ∧ ¬X4 ⊂ X ′
1

4.1 Basic automata for graph properties

We have implemented constructions parametrized byL of the basic automata which
may appear as atomic formulas in our MSO sentences (the leaves of our MSO formu-
las), among them:

setup-singleton-automaton (cwd m j) Sgl(Xj)

setup-edge-automaton (cwd m i j) Edge(Xi, Xj)

setup-subset-automaton (cwd m j1 j2) Xj1 ⊆ Xj2

setup-nequality-automaton (cwd m j1 j2)Xj1 6= Xj2

setup-equality-automaton (cwd m j1 j2)Xj1 = Xj2

setup-snequality-automaton (cwd m j1 j2)Sgl(Xj1) ∧ Sgl(Xj2) ∧ Xj1 6= Xj2

setup-cardinality-automaton (cwd m j1 i)card(Xj1 ) = i

For example, a call to setup-singleton-automaton(2, 2, 1) returns an automaton work-
ing on terms representing graphs of clique-width at most2 (with L = {a, b}) with two
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NAUTOWRITE> (setf * a* (setup-singleton-automaton 2 2 1))
Singleton-X1 2 states 17 rules
NAUTOWRITE> (show * a* )
Automaton Singleton-X1
States q0 q1
Final States q1
Transitions
aˆ00 -> q0 bˆ00 -> q0 rel_a_b(q0) -> q0 rel_b_a(q0) -> q0
aˆ01 -> q0 bˆ01 -> q0 rel_a_b(q1) -> q1 rel_b_a(q1) -> q1
aˆ10 -> q1 bˆ10 -> q1 add_a_b(q0) -> q0 oplus(q0,q1) -> q1
aˆ11 -> q1 bˆ11 -> q1 add_a_b(q1) -> q1 oplus(q1,q0) -> q1
oplus(q0,q0) -> q0
NIL
NAUTOWRITE> (setf * t * (input-term "add_a_b(oplus(aˆ10,bˆ00))"))
add_a_b(oplus(aˆ10,bˆ00))
NAUTOWRITE> (recognized-p * t * * a* )
!q1
NAUTOWRITE> (recognized-p * t * * a* )
q1
NAUTOWRITE> (setf * nt * (input-term "add_a_b(oplus(aˆ10,bˆ10))"))
add_a_b(oplus(aˆ10,bˆ10))
NAUTOWRITE> (recognized-p * nt * * a* )
NIL

Table 2: Automaton forSgl(X1) with m = 2 andcwd = 2

sets of verticesX1 andX2 and recognizing terms such thatX1 is a singleton, for in-
stance the termadd_a_b(oplus(aˆ10,bˆ00)) .An example of such call is shown
in Table 2.

4.2 The recursive algorithm

Given a formulaφ = P (X1, . . . , Xm), we want to compute the associated automaton
A(φ).

– If the formula is atomic then we call the function which computes the automaton.
For instance, inP9(X

′
1, X2, X3, X4), Sgl(X3) is computed by

setup-singleton-automaton (cwd, 4, 4) .

– If the formula is a disjunctionφ = φ1∨φ2, we compute the union ofAφ1
andAφ2

.

– If the formula is a conjunctionφ = φ1 ∧ φ2, we compute the intersection ofAφ1

andAφ2
.

– If the formula is a negationφ = ¬(φ′), we complement the automatonAφ′ . To be
complementedAφ′ must be determinized.

– If the formula is an existential formula of the form∃Xj , P (X1, . . . , Xm), we do a
projection ofAP (X1,...,Xm) on (1, . . . , i − 1, i + 1, m) which implies a shift in the
indices of variablesXi+1, . . . Xm.

– If the formulaφ = P (X1, . . . , Xm) does mentionXj , we can obtainAφ by a
cylindrification of the automatonAP (X′

1
,...X′

m−1
) (with X ′

i = Xi for 1 ≤ i < j

andX ′
i = Xi+1 for j ≤ i < m) on thej-th components.
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Intersection which is handled by saturation (producing a reduced automaton) pre-
serves determinism. The bottleneck of this general algorithm is the necessity of deter-
minizing an automaton in order to complement it. Each determinization can increase
exponentially the number of states.

Most properties that we tried could not be tested for graphs of clique-width strictly
higher than 2 with this method. It is nevertheless interesting to implement it because it
is completely general and for small clique-width we can use the computed automaton
for a comparison with the automaton that we obtain using the second method that we
are presenting now. The automaton can also be compared with the automaton computed
by MONA (see Section 7).

5 The second method: direct construction of the final automaton

The last remark motivates the following development. For some graph properties ex-
pressible in MSO, the corresponding automaton can be described directly by a set of
states and a description of the transition function on thesestates. Once a proof has been
made that the description is correct (it produces an automaton which recognizes the
terms satisfying the property), one can directly compute the automaton without using
the MSO sentence. Chapter 6 of the book in progress [Cou09], gives such descriptions
for several properties among themPath(X1, X2). As said in the introduction, we shall
stick to the path property although we can handle many others.

We shall not go into all the details of the construction of theautomaton forPath(X1, X2),
but we shall present at least a description of its states and how the transitions function
works.

Let α(G, x) = {labelG(y) | y ∈ VG andx
∗

−G y} ⊆ L.

Let β(G) = {(labelG(x), labelG(y)) | x, y ∈ VG andx
∗

−G y} ⊆ L × L.

Q = {Ok, Error} ∪ {(0, B) | B ⊆ L× L}∪

{[1, A, B] | ∅ 6= A ⊆ L, B ⊆ L× L}∪

{[2, {A, A′}, B] | A, A′ ⊆ L, A 6= ∅, A′ 6= ∅, B ⊆ L× L}

The meaning of these states is described in Table 3. We have2cwd2/2 < |Q| < 2cwd2+2

wherecwd = |L| ≥ 2.
The transition rules are shown in Table 4. In this table, we use the auxiliary func-

tions (⊗, f , g) which can be found in [Cou09].
With the direct construction, we were first able compare the obtained automaton

with the automaton obtained with the general method forcwd = 2. Then we solved the
problem forcwd ∈ {3, 4}.

cwd 2 3 4 5
A/min(A) 25 / 12214 / 1273443 / 2197out
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State q Property Pq
[0, B] X1 = ∅, B = β(G(t, X2)), X1 = {v} ⊆ X2, A = α(G(t, X2), v)

[1, A, B] B = β(G(t, X2)), X1 = {v, v′} ⊆ X2, v = v′, A = α(G(t, X2), v),

[2, {A, A′}, B] A = α(G(t, X2), d), B = β(G(t, X2)) there is no path betweenv andv′ in G(t, X2)

Ok P (X1, X2) holds
Error All other cases

Table 3: Meaning of states for the path propertyPath(X1, X2)

Transition rules Conditions
cˆ 00 → [0, ∅]

cˆ 00 → [0, {(a, a)}] c ∈ L

cˆ 11 → [1, {a}, {(a, a)}]

rela b(Ok) → Ok

rela b([0, B]) → [0, ha,b(B)] whereha,b

rela b([1, A, B]) → [1, ha,b(A), ha,b(B)] replacesa by b

rela b([2, {A, A′}, B]) → [2, {ha,b(A), ha,b(A
′)}, ha,b(B)]

adda b(Ok) → Ok B′ = f(B, a, b)

adda b([0, B]) → [0, B′] D = g(A, B, a, b)

adda b([1, A, B]) → [1, D, B′] D′ = g(A′, B, a, b)

adda b([2, {A, A′}, B]) → [2, {D, D′}, B′] (A ⊙ ((a ⊗ b) ◦ B)) ∩ A′ = ∅

adda b([2, {A, A′}, B]) → Ok (A ⊙ ((a ⊗ b) ◦ B)) ∩ A′ 6= ∅

⊕(Ok, [0, B]) → Ok

⊕([0, B], Ok) → Ok

⊕([0, B], [0, B′]) → [0, B′′]

⊕([0, B], [1, A, B′]) → [1, A, B′′]

⊕([1, A, B], [0, B′]) → [1, A, B′′] B′′ = B ∪ B′

⊕([1, A, B], [1, A′, B′]) → [2, {A, A′}, B′′]

⊕([0, B], [2, {A, A′}, B′]) → [2, {A, A′}, B′′]

⊕([2, {A, A′}, B′], [0, B]) → [2, {A, A′}, B′′]

Table 4: Transition rules of the automaton forPath(X1, X2)
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However, with higher values of clique-width (cwd ≥ 5), we are confronted to a
memory space problem. And indeed the number of states is at least252/2 = 212 ≤ |Q|

which gives at least225 transitions (see [Cou09], Chapter 6).
We have presented experiments only with the path property. But we have tried sev-

eral other properties6 like connectivity, existence of a cycle,k-colorability, ... Most
of the time, the limit is aroundcwd = 3. The conclusion is that for greater values of
clique-width, it is not possible to compute in extenso the transitions of the automata
because its number of states is simply too big (exponential in cwd or more). In a few
cases, we do not run out of memory but the program runs “for ever” (3-colorability with
cwd = 3).

6 The third method: fly-automata

The problems of space (for most properties) or time (coloring property) disappear if
we represent transitions with a function. Defining such transitions (which we callfly-
transitions) consists in defining a lisp function which applies to a symbol f and a list of
states(q1, . . . , qn) and returns the target stateq of the transitionsf(q1, . . . , qn) → q.

This is easily done from the description of the direct construction of the automaton
as the one given in Section 5. Actually, the code that is written to define a concrete
transition can be directly called in the fly-transitions function.

States that will be accessed when running the automaton on a particular term are
initially not known. In most cases, we do not even want to compute the list of accessible
states of the automaton because, this list is simply too big to be computed. The states are
formally described in a compact way; the ones that are useless will never be computed.
The situation is the same for the list of final states. The easiest way to represent final
states is also to use a predicate which tells whether a state is final or not.

So a fly-automaton is just a signed object which has a transition function and a final
state predicate. Of course Common Lisp is very suitable to represent objects containing
functions since functions are first-class objects. Defininga fly-automaton reduces to
defining the transition function and final state predicate.
(defun fly-path-automaton (cwd)

(make-fly-automaton-automaton
(setup-vbits-signature cwd 2)
(lambda (root states)

(make-state
(path-transitions-fun root (mapcar #’state-contents sta tes))))

(lambda (state)
(and (ok-p (state-contents state)) state))

:name (format nil "˜A-PATH-X1-X2-fly-automaton" cwd)))

The transition function of union and intersection automatais an anonymous function
which calls the respective functions of the combined automata. Note that a concrete
automaton can be transformed into a fly automaton: the transition function simply looks

6 See some results at
http://dept-info.labri.fr/ ˜ idurand/autowrite/Graphs/Graphs.pdf
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for the transition in the stored transitions. But the converse may fail for space and time
reasons. We did not reach any limitation using fly-automata which we tried up tocwd =

18. We could run the automata on terms representing terms on anygraph we had a
term representation for. Our problem right now is to find big graphs with their clique-
decomposition in order to perform tests.

In this paper we did not address the difficult problem of finding a clique-width
decomposition of a graph (so the clique-width) of a graph.

This problem was shown to be NP-complete in [FRRS06]. [Oum08] gives polyno-
mial approximated solutions to solve this problem. More canbe found in [Cou09].

Often, when automata are used (in compilation for instance), the automaton is
“small” and the input is much much larger. In the present case, it is the opposite. In
particular, because we do not know how to decompose very large graphs, we are only in
position of using our tools for relatively small graphs (say100 vertices). Consequently,
there is no overhead in using fly-automata. Also, it is not important that the terms repre-
senting graphs be optimal because the computation “on the fly” of transitions does not
depend much on the total number (|L|) of vertex labels.

7 Related work

Monadic second-order logic on finite and infinite words and binary terms is imple-
mented in the software MONA [KM01] developed by Klarlund andothers. Its use for
checking graph properties is considered by Soguet in [Sog08]. MONA, with some tech-
nical adaptations, is usable for the first technique: it is able to automatically compute the
automaton corresponding to an MSO formula; in that it seems quicker than Autowrite.
States are represented by an integer. MONA works with binaryterms only which is ok
for graphs represented with a signature with a maximum arityof 2 (⊕). The symbols
with higher arity are simply transformed into binary symbols which have fake chil-
dren when used in terms. The transitions are represented by atwo dimensional array.
The cell(i, j) contains a binary decision diagram (BDD) which leads for every symbol
f ˆ w to the target statek such thatf ˆ w(i, j) → k. MONA has deterministic transitions
only. When a projection is performed, the determinization is done at the same time. Au-
towrite can deal with symbols of any fixed arity. An importantpoint is that Autowrite
has both deterministic and non deterministic automata. This is very useful when the
deterministic automaton corresponding to the desired property cannot be computed by
lack of space. In that case, Autowrite will be able to check the property with the non
deterministic automaton. See also [Cou09] about this last point.

8 Perspectives

We have still many more properties of graph to experiment among them connectivity.
For the automata for which we could compute the set of transitions, it would be nice
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to create an on-line library of automata corresponding to properties available to the
community of researchers. There is still a lot to be done for improving the efficiency
of Autowrite. We have maintained several data structures for representing the automata
transitions but have not yet conducted systematic tests to evaluate their performances.
In order to do more experiments with our fly-automata, we are currently working on a
program for generating automatically random or particulargraphs (with their decom-
positions) of arbitrary clique-width.
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