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Abstract

Graph complexity measures liketree-width, clique-width, NLC-widthand
rank-widthare important because they yieldFixed Parameter Tractablealgo-
rithms. Rank-width is based on ranks of adjacency matrices of graphs over
GF(2). We propose here algebraic operations on graphs that characterize
rank-width. For algorithmic purposes, it is important to represent graphs by
balanced terms. We give a unique theorem that generalizes several “balanc-
ing theorems” for tree-width and clique-width. New resultsare obtained for
rank-width and a variant of clique-width, calledm-clique-width.

1 Introduction

Graph complexity measures liketree-width[17], clique-width[6], NLC-width[18]
andrank-width[16] are important parameters for the construction of polynomial al-
gorithms. Every graph property expressible by a formula ofMS (Monadic Second-
Order) logic has aFixed Parameter Linearalgorithm if tree-width is taken as pa-
rameter and aFixed Parameter Cubicalgorithm if clique-width (equivalently rank-
width) is taken as parameter. These results are proved in thebooks by Downey and
Fellows [10] and by Flum and Grohe [11] for tree-width, by Courcelle and al. [5]
with help of results by Oum and Seymour [15, 16] for rank-width and clique-width.

Clique-width and rank-width are equivalent in the sense that the same classes
of undirected graphs have bounded clique-width and boundedrank-width. Clique-
width has the advantage of having a definition in terms of verysimple graph op-
erations. Furthermore this definition is the basis of the construction of algorithms
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for checkingMS graph properties in linear time in the size of the algebraic expres-
sions defining the input graphs. Rank-width has the advantage of a good behavior
with respect to vertex-minor inclusion, so that the class ofgraphs of rank-width at
mostk is characterized by finitely many excluded vertex-minors. Furthermore, the
cubic-time algorithm that constructs for a given graph an algebraic expression of
clique-width at most 23k−1 if the graph has clique-width at mostk, is based on the
decomposition underlying rank-width.

In this article we propose algebraic operations on graphs that characterize rank-
width as follows:

a graphG has rank-width at mostk if and only if (iff for short) it is the
value of a term inT(Rk,Ck)

whereRk is a finite set of graph operations,Ck a finite set of constants, both de-
pending onk.

In a few words, the operations are based on coloring verticesby sets of colors
⊆ [k] := {1,2, . . . ,k}, like in the variant of clique-width calledm-clique-width(see
definitions of Section 2 and [6, 7]), but vertex colors are manipulated by linear
transformations on theGF(2) vector space{0,1}k rather than with set union over
subsets of{1, . . . ,k}. Furthermore, edges are created between two disjoint graphs
by means of bilinear forms, taking the vectors of colors as arguments. It is thus
somewhat natural that they can generate (exactly) the set ofgraphs of rank-width
at mostk since rank-width is based on ranks ofGF(2) matrices.

The operation that replaces anywhere a vertex colora by the colorb, and the
one that adds edges between any vertex colored bya and any vertex colored by
b are typical examples of quantifier-free transformations. Quantifier-free transfor-
mations modify logical structures by redefining certain relations by quantifier-free
formulas (see [9, 3] for graph algebras).

For algorithmic purposes, it is useful and sometimes crucial to represent graphs
by a-balanced binary terms, i.e, trees of height at mosta(log(n)+1) wheren is the
number of nodes anda is a constant. This is the case for instance, of the labeling
schemes considered in [8, 7]. Another practical use of balanced terms is the design
of parallel algorithms. This is considered for example by Bodlaender to design
parallel algorithms to construct minimum-width tree-decompositions of graphs or
to solve someNP-complete problems [1, 2].

Therefore it is quite natural to ask whether, every graph of “width” k admits
an a-balanced binary “decomposition” of widthf (k) for some fixed functionf .
It is known that every graph of tree-widthk admits a 2-balanced binary tree-
decomposition of width at most 3k+ 2 [1] and every graph of m-clique-widthk
admits a 6-balanced m-clique-width expression of width at most 2k [7]. We inves-
tigate the problem of a unified framework. We prove a general theorem covering
several particular cases saying that every term inT(F,C) representing abinary
structureis equivalent to a 3-balanced one inT(F ′,C′), where(F ′,C′) is abinary
signatureand(F,C) ⊆ (F ′,C′). For that we introduce a kind of generalization of
the notion of associative and commutative operation, called flexibility.



The main results of this article are: an algebraic characterization of rank-
width, a unified framework for “balancing theorems” with application to rank-
width, clique-width, NLC-width and m-clique-width.

2 Notations and definitions

We denote by[k] the set{1, . . . ,k}. Graphs are finite, simple, loop-free, undirected
unless otherwise specified. A graphG is defined as< VG,edgG > whereedgG ⊆
VG×VG is the symmetric adjacency relation. Without loss of generality we assume
thatVG is always linearly ordered. This order will be used to representedgG by a
square matrix overGF(2).

A sub-cubic treeis a tree such that the degree of each node is at most 3. All
logarithms are in base 2.

Let t be a rooted tree anda∈ R. We say thatt is a-balanced if theheightof t,
i.e., the maximal distance of a leaf to the root, is at mosta(log(n)+1) wheren is
the number of nodes oft.1

Let F be a set of binary functions andC be a set of constants. We denote by
T(F,C) the set of well-formed terms built withF ∪C. They will be discussed as
colored directed and rooted ordered trees in the usual way. Acontextis a term in
T(F,C∪{u}) having a single occurrence of the variableu (a nullary symbol). We
denote byCxt(F,C) the set of contexts. We denote byId the particular contextu.
Let sbe a context andt be a term or a context, we denote bys[t/u] the result of the
substitution oft for u in s.

We define two binary operations on terms and contexts:s◦s′ = s[s′/u], belong-
ing toCxt(F,C) for s,s′ in Cxt(F,C) ands• t = s[t/u], belonging toT(F,C) for s
in Cxt(F,C) andt in T(F,C).

We now recall the definition ofrank-width, a graph complexity measure intro-
duced by Oum and Seymour in their investigations on recognition algorithms for
graphs of boundedclique-width[16]. For an(R,C)-matrix M = (mi j | i ∈ R, j ∈C)
over a fieldF, if X ⊆ R, Y ⊆ C, we letM[X,Y] denote the sub-matrix(mi j | i ∈
X, j ∈Y). For a graphG, we letAG be its adjacency(VG,VG)-matrix overGF(2).

Cut-rank functions. Let G =< VG,edgG > be a graph. We define thecut-rank
functionρG of G by lettingρG(X) = rk(AG[X,VG\X]) for X ⊆VG, whererk is the
matrix rank function. We letρG( /0) = ρG(VG) = 0.

Rank-width. A layout of a graphG is a pair(T, f ) of a sub-cubic treeT and a
bijective function f : VG → {t | t is a node of degree 1 inT}.

For an edgee of T, the connected components ofT\e induce a bipartition of
the set of nodes of degree 1 ofT, hence a bipartition(Xe,Ye) of the set of vertices
of G. The width of an edgee of a layout(T, f ) is ρG(Xe) = ρG(Ye). The width of
a layout(T, f ) is the maximum width over all edges ofT. The rank-widthof G,
denoted byrwd(G), is the minimum width over all layouts ofG.

1This definition is meaningful in the casen = 1.



The notions of rank-width and of clique-width are equivalent in the sense that
a class of graphs has bounded rank-width iff it has bounded clique-width. Oum
has given in [15] aO(n3)-time algorithm that reports that a graph has rank-width
at leastk+1 or outputs a layout of width at most 3k−1. This has been improved
in [12] which gives a cubic-time algorithm that outputs a layout of widthk if the
graph has rank-widthk. But if we want to solve problems definable inMS on
graphs of bounded rank-width, we need to transform the layout into a clique-width
expression (see [16]) and, after that, to use techniques by Courcelle and al. [5].
In this paper, we propose an algebraic characterization of rank-width, which will
allow us to solveMS definable problems without transforming the layout into a
clique-width expression. This is important because the transformation of a layout
of width k may give a(2k+1 − 1)-clique-width expression. The exponent 2k+1 is
part of the large size of constants in FPT algorithms.

Proposition 2.1 [16, 7, 6, 13] For every undirected graph G,

(1) rwd(G) ≤ cwd(G) ≤ 2rwd(G)+1−1
(2) mcwd(G) ≤ cwd(G) ≤ 2mcwd(G)+1

(3) mcwd(G) ≤ twd(G)+3
(4) rwd(G) ≤ 4× twd(G)+2

Here twd, cwd and mcwddenote respectivelytree-width[17], clique-width [6]
andm-clique-width(we recall below the definition of m-clique-width [7]).

M-clique-width. Let L be a finite set of colors. Amulti-colored graphis a triple
<VG,edgG,δG > consisting of a graph<VG,edgG > and a mappingδG associating
with eachx in VG the set of its colors, a subset ofL. A vertex may have zero, one
or several colors.

The following constants will be used: forA⊆ L we letA be a constant denoting
the graphG with single vertexx and δG(x) = A. We write A(x) if we need to
specify the vertexx. The following binary operations will be used: forR⊆ L×L,
for recolorings g,h : L → 2L and for multi-colored graphsG andH we defineK =
G⊗R,g,h H if G and H are disjoint (otherwise we replaceH by a disjoint copy)
where

VK = VG∪VH ,

edgK = edgG∪edgH ∪{xy | x∈VG,y∈VH ,R∩ (δG(x)×δH(y)) 6= /0},
δK(x) = (g◦δG)(x) = {a | a∈ g(b),b∈ δG(x)} if x∈VG,

δK(x) = (h◦δH)(x) if x∈VH .

As in the operations by Wanke [18] these operations add edgesbetween two
disjoint graphs, that are the two arguments of (many) binaryoperations. This is
a difference with clique-width where a single binary operation is used, andηi, j

applied toG⊕H may add edges toG and toH.
We letFL be the set of all binary operations⊗R,g,h andCL be the set of constants

{A | A⊆ L}. Every termt in T(FL,CL) denotes a multi-colored graphval(t) with
colors inL, and every multi-colored graphG is the value of such a term for large



enoughL. To simplify the notation, we will writeFk andCk if L = [k]. We let
mcwd(G) be the minimumk such thatG is the value of a termt ∈ T(Fk,Ck) and
call this number them-clique-widthof G.

3 Vectorial colorings and rank-width

Handling multiple colorings of vertices withk colors is clearly the same thing as
handling colorings with colors in{0,1}k. Let k≥ 1 andB = {0,1}. A B

k-coloring
of a graphG is a mappingγ : VG → B

k with no constraint on the values ofγ for
neighbor vertices. We consider thatx∈VG has colori (among others) iffγ(x)[i] (the
i-th component ofγ(x)) is 1. A B

k-colored graph is a tripleG =< VG,edgG,γG >
whereγG is aB

k-coloring of<VG,edgG >. The emptyBk-colored graph is denoted
by /0k. (This constant can be eliminated from expressions by Remark 3.1). We
define some operations on these graphs.

A mappingh : B
k → B

ℓ is linear if for some(k× ℓ)-matrix and all row-vectors
u ∈ B

k we haveh(u) = u.N. We say thath is described byN. A mapping f :
B

k×B
ℓ → B is saidbilinear if for some(k×ℓ)-matrix and all row-vectorsu∈ B

k,
v∈B

ℓ we havef (u,v) = u.M.vT wherevT indicatestranspositionof the row-vector
v(we say thatf is described byM).

With a B
k-colored graphG =< VG,edgG,γG > we associate the(VG ×VG)-

adjacency (symmetric) matrixAG and theVG× [k]-color matrixΓG, the row vectors
of which are the vectorsγG(x) in B

k for x in VG. We define thecolor-rank of G
as the rank ofΓG and we denote it bycrk(G). Clearly, crk(G) ≤ k if G is B

k-
colored.2 3

Linear recolorings. For h : B
k → B

ℓ a linear mapping andG a B
k-colored graph,

we letRecolh(G) = H = < VG,edgG,γH > whereγH = h◦ γG. HenceγH = ΓG.N
andH is aB

ℓ-colored graph. Ifh andh′ are linear recolorings, described respec-
tively by N andN′, thenh◦h′ is linear and is described byN′.N.

Bilinear product of graphs. Let f : B
k×B

ℓ → {0,1} be a bilinear mapping, let
g : B

k → B
m andh : B

ℓ → B
m be arbitrary linear mappings. ForG, B

k-colored and
H, B

ℓ-colored, we letK = G⊗ f ,g,h H be defined as follows, where, as usual, we
assumeVG∩VH = /0:

VK = VG∪VH ,

edgK = edgG∪edgH ∪{xy | x∈VG,y∈VH , f (γG(x),γH (y)) = 1},

γK(x) = (g◦ γG)(x) if x∈VG, γK(x) = (h◦ γH)(x) if x∈VH ,

where f ,g,h are described respectively byM,N,P. HenceK is aB
m-colored graph.

We order the graphK = G⊗ f ,g,h H by preserving the orderings ofVG andVH and
letting x < y for x ∈ VG andy ∈ VH . We will use the notation⊗M,N,P instead of
⊗ f ,g,h.

2The color-rank ofG should not be confused with itsrank. All ranks are relative toGF(2).
3A graphG=<VG,edgG > is made canonically into aBk-colored graph for eachk, with γG(x) =

(0, . . . ,0) for eachx.



Constants. We will use1 to denote the graph with a single vertex with itsB
1-

coloring by (1). In order to avoid the use of recolorings, and to deal only with
constants and binary operations, we will also use constantsfor the graphsRecolh(1)
whereh ranges over linear recolorings defined by 1-row matricesN = u∈B

k. Such
constants will be denoted byu. We useCk to denote the set of constantsu for
u∈ B

ℓ, ℓ ≤ k.

Remark 3.1 We have

G⊗M,N,P H = H ⊗MT ,P,N G, RecolQ(G)⊗M,N,P RecolQ′(H) = G⊗QMQ′T ,QN,Q′P H,

G⊗M,N,P /0k = RecolN(G), RecolQ(G⊗M,N,P H) = G⊗M,NQ,PQH

whereMT denotes the transposition of the matrixM. We letRn be the set of
linear recolorings and bilinear products. We denote byval(t) the graph defined
by a termt ∈ T(Rn,Cn). This graph is the value of the term in the corresponding
algebra. We can assume with Remark 3.1 that a termt in T(Rn,Cn) is written with
the binary operations⊗M,N,P and the constantsu whereu∈ B

1∪ . . .∪B
n.

Proposition 3.2 1. The operations RecolN are quantifier-free operations.

2. The operations⊗M,N,P are expressible in terms of⊕ and quantifier-free op-
erations.

Corollary 3.3 For each n, everyMS graph property of a graph G can be decided
in time O(|t|), if G is the value of a given term t∈ T(Rn,Cn).

Theorem 3.4 A graph G has rank-width at most n iff it is the value of a term in
T(Rn,Cn).

For the “If” direction, we letG be defined by a termt in T(Rn,Cn) (t has its
root colored by a binary operation⊗M,N,P). We take the syntactic tree oft as a
layout ofG. It is sufficient to prove the claim below to prove that the rank-width
of this layout is at mostn.

Claim 3.5 ([4]) If t = c•t ′, t ′ ∈T(Rn,Cn), c∈Cxt(Rn,Cn)−{Id}, G= val(t), H =
val(t ′) then we have: AG[VH ,VG−VH ] = ΓH .B andΓG[VH ] = ΓH .C for some matri-
ces B and C, and, rk(AG[VH ,VG−VH ]) ≤ n.

For the converse, we prove some technical lemmas. We writeG = H ⊗M K
instead ofH ⊗M,N,P K if we do not care about the coloring ofG but only of its
vertices and edges.

Lemma 3.6 ([4]) Let G be a graph with a bipartition VG = V1∪V2 of its vertices.
Let m= rk(AG[V1,V2]). Then G= H⊗M K where M is a nonsingular m×m matrix,
for someBm-colorings H and K of G[V1] and G[V2] respectively.



Proposition 3.7 ([4]) Assume G= H ⊗A K with A of dimension p× q of rank k.
Let M be a k×k sub-matrix of rank k of A. Then we have N of dimension p×k, P
of dimension q×k such that A= N.M.PT and G= RecolN(H)⊗M RecolP(K).

Lemma 3.8 ([4]) Let G be a graph, let H,K,L be induced subgraphs such that
(VH ,VK ,VL) is a3-partition of VG, with each component not empty. Let h= ρG(VH), k=
ρG(VK), ℓ = ρG(VL). There exist matrices of appropriate dimensions such that

G = (H ⊗M,N1,N2 K)⊗P L.

We can thus prove the following proposition (the “only if” direction of Theo-
rem 3.4).

Proposition 3.9 ([4]) Every graph of rank-width at most n is the value of a term
in T(Rn,Cn).

4 A general framework for establishing balancing theo-
rems

It is known that every graph of tree-widthk has a 2-balanced binary tree-decomposition
of width at most 3k+ 2 [1] and every graph of m-clique-widthk has a 6-balanced
m-clique-width expression of width at most 2k [7]. We will propose a general
framework for establishingbalancing theorems. This will allow us to prove simi-
lar theorems for rank-width, clique-width and NLC-width. Our general framework
combines two ideas.

The first idea, coming from [8] consists in introducing binary operations◦ and
• on terms and contexts representing respectively the composition of the unary
functions associated with two contexts and the evaluation of such a function for an
argument defined by a term. We use a result of [8] showing that every termt in
T(F,C) can be replaced by an equivalent 3-balancedspecial term tb written with◦,
• and the constantId (the trivial context defining the identity). This construction
makes no assumption on the algebraic properties of the signature (F,C).

The second idea introduces a kind of generalization of the notion of an as-
sociative and commutative operation. It concerns a subsignature(F,C) of (F ′,C′).
Roughly speaking iff in F is not associative, hence if we do not havef (x, f (y,z))=
f ( f (x,y),z) for f ∈ F then we require thatf (x, f (y,z)) = f ′( f (x,y),z) for some
f ′ ∈ F ′. We say that(F ′,C′) is (F,C)-flexible if this condition and similar ones
hold. This condition makes it possible to eliminate from a term written withF, C,
◦, • andId the operations◦, • and the constantId and somehow, to express them
in terms of operations ofF ′.

The idea is to associate with a contextc∈ Cxt(F,C) an objectmc denoted by
a termc̃ in T(F ′,C′) and a functionf c ∈ F ′ such thatc• t is equivalent tof c(c̃, t).
For two contextsc andc′ we have (by the condition of flexibility) an operationf c,c′



in F ′ such thatc̃◦c′ is equivalent tof c,c′(c̃, c̃′). It follows that a special termt over
F, C can be transformed into an equivalent term inT(F ′,C′) of no larger height.

By combining the two constructions, we can transform a termt ∈ T(F,C) into
an equivalent 3-balanced term inT(F ′,C′).

In our applications to graph operations we will apply this toa signature(F,C)
using k colors (e.g. (Rk,Ck) corresponding to rank-width at mostk) and prove
that some finite(F ′,C′) ⊇ (F,C) is (F,C)-flexible. This technique also applies to
branch-width and tree-width [14].

Let S be a countable set whose elements are calledsorts. A binaryS -signature
is a pair(F,C) whereF is a set of binary function symbols, each of them having
a types1 × s2 → s wheres1,s2,s∈ S , andC is a set of nullary symbols, each of
them having a types in S . A nullary symbol is called aconstant. We say that a
binaryT -signature(F,C) is a sub-signature of(F ′,C′) if T ⊆ S , F ⊆ F ′, C ⊆C′

and the types of the elements ofF andC are the same for(F ′,C′) and for(F,C).
Let σ : F ∪C → S whereσ( f ) = s if f is a constant of types or a binary function
of types1× s2 → s. We define the type of a termt ∈ T(F,C) asσ(rt), wherert is
its first symbol (the one at the root of its syntactic tree).

Special Terms.We letS= T(F ∪{◦,•},C∪{Id}). We letSc andSt be the least
subsets ofSsuch that:

St := Sc •St ∪ f (St ,St) ∪ b
Sc := Sc ◦Sc ∪ f (St ,Sc) ∪ f (Sc,St) ∪ f (St , Id) ∪ f (Id,St)

with rules for eachf in F, eachb in C. We denote them bySPEt(F,C) and
SPEc(F,C) if we need to specifyF andC. Note thatId /∈ St ∪Sc. The notions
of context and the operations◦ and• extend in presence of sorts. We have actually
several operations◦, • and several constantsId depending on sorts, but we will
overlook this technical point.

For termst in SPEt(F,C)∪SPEc(F,C) we denote by|t|FC the number of oc-
currences of symbols fromF ∪C, by |t|0 the number of occurrences of◦ and•,
and, by|t|Id the number of occurrences ofId.

Every termt in SPEt(F,C) evaluates into a termEval(t) in T(F,C) and every
termc in SPEc(F,C) evaluates into a contextEval(c) in Cxt(F,C)−{Id}.

A more careful proof than the one of [8, Theorem 1] gives the following result.

Theorem 4.1 ([4]) For every term t in T(F,C)−C one can construct a term tb in
SPEt(F,C) such that|tb|FC = |t|FC = |t|, Eval(tb) = t and ht(tb) ≤ 3log(|t|−1).
This term can be constructed in time O(nlog(n)) if n = |t|.

Comb-term. Let Xn+1 = {x1, . . . ,xn+1}. A comb-termis a term inT(F,Xn+1) of
the formq = f1(x1, f2(x2, . . . , fn(xn,xn+1)) . . .). It contains no constant. We denote
it also byq(x1, . . . ,xn,xn+1) in order to specify the list of variables, in the order in
which they occur.

Commutativity. A binaryS -signature(F,C) is commutativewith respect to a class
of algebrasC (that will be implicitly assumed in most cases) if for everyf ∈ F



there exists a functioñf in F such that

f̃M(x,y) = fM(y,x) (1)

for all M ∈ C , all x,y∈ DM.

Comb-decomposition.Thecomb-decompositionof a termt ∈ T(F,C)−C is the
unique writing oft asq(t1, . . . , tn,b) whereq(x1, . . . ,xn+1) is a comb-term,b ∈ C
andti ∈ T(F,C).

The following definition makes sense only ifF is commutative. Letc∈Cxt(F,C)−
{Id}. Let us define by structural induction onc a comb-termq(x1, . . . ,xn,u) for
somen, and a sequence(t1, . . . , tn) of terms inT(F,C) such thatc≃ q(t1, . . . , tn,u)
and≃ denotes the equivalence of terms with respect to the intended classC of
algebras (for whichF is commutative).

We defineComb(c) andseq(c) as follows:

1. Comb(c) = f (x1,u) andseq(c) = (t) if c = f (t, Id).

2. Comb(c) = Comb(c′) andseq(c) = seq(c′) if c = f (c1, t) andc′ = f̃ (t,c1).

3. Comb(c) = f (x1,q(x2, . . . ,xn+1,u)) andseq(c) = (t).seq(c′) if c = f (t,c1),
c1 6= Id andComb(c′) = q(x1, . . . ,xn,u).

These definitions actually extend to contexts defined as terms in SPEc(F,C).
We need only add one clause to(1)-(3):

(4) If c = c′ ◦ c′′ (so thatc′ 6= Id, c′′ 6= Id) if Comb(c′) = q′(x1, . . . ,xp,u) and
Comb(c′′) = q′′(x1, . . . ,xn,u) then we define

Comb(c) asq′(x1, . . . ,xp,q′′(xp+1, . . . ,xn+p,u))
andseq(c) asseq(c′).seq(c′′).

In the following, we will extend the equivalence relation≃ by lettingEval(t)≃
t andEval(c) ≃ c for terms inSPEt(F,C)∪SPEc(F,C).

Flexibility. We let(F ′,C′) and(F,C) be two binary signatures such that(F,C) ⊆
(F ′,C′). We let C be a set of(F ′,C′)-algebras. All equivalences of terms and
contexts denoted by≃ will be considered with respect toC . We say that(F ′,C′)
is (F,C)-flexible if the following conditions hold:

1. F andF ′ are commutative.

2. There exist three mappings:q 7→ q̂, q 7→ f q and(q,q′) 7→ f q,q′ which satisfy
the following properties:

(2.1) For every comb-termq(x1, . . . ,xn,u) over F with n ≥ 2, q̂ is a comb-
term q̂(x1, . . . ,xn) overF ′.

(2.2) If q(x1,u) is the comb-termg(x1,u) thenq̂ = x1 and f q = g.



(2.3) For everyq as in (2.1), we havef q ∈ F ′ andq≃ f q(q̂,u).

(2.4) For every two comb-terms as in (2.1) or (2.2)q(x1, . . . ,xp,u) andq′(x1, . . . ,xn,u)
we havef q,q′ ∈ F ′ and

q̂′′ ≃ f q,q′(q̂(x1, . . . ,xp), q̂′(xp+1, . . . ,xp+n))

whereq′′ = q(x1, . . . ,xp,q′(xp+1, . . . ,xp+n,u)).

If q is a comb-term as in (2.2), Property (2.3) also holds from thedefinitions of
q̂ and f q.

Proposition 4.2 ([4]) If (F ′,C′) is (F,C)-flexible, then for every term t in SPEt(F,C)
one can define a term̃t in T(F ′,C′) that is equivalent to t and such that|t̃|F ′C′ =
|t|FC and ht(t̃) ≤ ht(t).

Combining Theorem 4.1 and Proposition 4.2 we get the following theorem:

Theorem 4.3 ([4]) Let (F ′,C′) be an(F,C)-flexibleS -signature. Every term t in
T(F,C) of size n is equivalent to a3-balanced term t′ in T(F ′,C′). This term can be
constructed in time O(nlog(n)), if we assume that̂q, f q, f q,q′ can be constructed
in time O(max{|q|, |q′|}).

We can apply this theorem to m-clique-width, rank-width, clique-width and
NLC-width. It will suffice to check the flexibility conditionfor appropriate super-
signatures of the signatures that define m-clique-width, rank-width, clique-width
and NLC-width.

Theorem 4.4 ([4, 7])

1. Every graph of m-clique-width k is the value of a3-balanced term of m-
clique-width at most2k.

2. Every graph of rank-width k is the value of a3-balanced term of rank-width
at most2k.

3. Every graph of clique-width or NLC-width k is the value of a3-balanced
clique-width expression of clique-width or NLC-width at most k×2k+1.
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