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  Graph   decompositions 
 

  1. Essential  tool  for  constructing  algorithms. 

  2. Give  structural  descriptions  that  help  to  prove 

              properties    (e.g., the  Graph  Minor Theorem). 
   

 

  -- Tree-decompositions,  

  -- Rank-decompositions  and  clique-width  expressions 

   yield   FPT  algorithms. 

    These  decompositions   are   not  canonical   

    (hence   “difficult”  to  construct).



 3 

                  Canonical  decompositions  
 

   Useful  as  preprocessing  in  many  cases, 

   and  also  to  describe  certain  “features”. 
 

 Construction  time Algos  /  Descriptions  

Modular  decomp. 
     Undirected 

     Directed  

        

         O(n + m)   

        O(n + m)   

Clique-width  <  k, 
interval graphs  and related ones, 
cluster editing, genomics, 
opt.  problems for comparability graphs. 
 
All  transitive  orientations of  a  
comparability  graph, 

Split  decomposition
     Undirected 

     Directed 

 

O(n + m.α(n+m)) 

O(m.log(n)) 

Rank-width  <  k, 
circle  graphs, 3-leaf  powers, 
distance  labelling, 
coloring  and  optimization  problems. 
 
All chord diagrams of a circle graph. 
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Tutte   decomp.  
    (3-connected  comp.) 

  

       O(n+m)   
Tree-width < k. 

All  planar  embeddings of  a  planar 

graph. 

Atomic    

    decomposition 

 

       O(n+m) 

 

Number  of   strongly   connected 

orientations, 

Gauss  words, 

Knots,  Matroids  ??? 
 

Many authors :    Hopcroft, Tarjan, 

Most recent algorithms : Charbit, Corneil, Gioan, Habib, Joeris, Lundberg,  

McConnell, de Montgolfier, Paul, Raffinot, Rao, Tedder, … 
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       Descriptions  via  canonical  decompositions  
 

 Example  :  All  planar  embeddings  of a planar graph.   
 

  1.   The   components  of  the Tutte  decomposition  are   

   3-connected graphs,  cycles  and “bonds”   
            (sets  of parallel edges). 
 

  2.   3-connected  planar  graphs  and  cycles  have  unique  

                  planar  embeddings. 
 

  3.   Bonds  have  planar  embeddings  described  by  

                 permutations. 
 

  4.   The  embeddings  of  the components  can  be  combined 

         into  one  of  the  given  graph.  
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Similar  situations : 
 

  1.  All  transitive  orientations  of  a  comparability graph: 

        using  the  modular decomposition :  

  a  prime  module  has  a unique  transitive  orientation  

        (up to reversal); the  other components  are  edgeless 

  and  cliques  (all  linear  orders  fit). 
 

  2.  All  chord  diagrams  of  a  circle  graph : 

        using  the  split  decomposition :  

  a  prime component  has a  unique  chord  diagram  

       (up  to  flipping, rotation); the others are  as  above (their     

  chord  diagrams  are  defined  from linear orders).
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The  atomic decomposition of a strongly connected graph 

 
   Different  from  the split   

decomposition  of  the  

same  graphs  by  

Cunningham (1982). 
 

   Close  to  the  Tutte   

decomposition. 
 

      The  subgraphs   

Gi  are  its  atoms. 
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Motivation : Gauss  words  describing intersections of curves 
 

              word :  aabb  

   

       

 

 

 

 

 
 

     

        word : abcabc      multiword : (abcd, bfde, aecf ) 
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Question : Can  one  describe  all (tuples of) curves  

          (up to homeomorphism)  corresponding  to  a  given  Gauss 

(multi)word ? 
 

 

 

 

 

 

 

 
 

 An  ambiguous multiword  (abcd , bc, ad) (the circle “bc” is “flipped”).   

 It is not ambiguous for nonoriented curves (invariance under 

flipping). 
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Method : A  multiword  W  yields a (2,2)-regular  graph  Gra(W)  

with  transitions.  
 

   Ex.:  Gra(Z)   for  

   Z = (abcd, akcbkd) 
 

What  are  the  planar  

embeddings   of  Gra(W)   that 

respect   its  transitions  ? 
 

 

Planarity  of  (2,2)-regular t-graphs      (t   means  “with  transitions”)  

Can  be  checked  in  linear  time.   
       (Easy reduction to the usual planarity test). 
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Circular  composition  of  graphs,  t-graphs  and  maps 
 

 

 

 

G = H     e,f K       

 

 

Atoms  :  those   that   cannot   be  decomposed       (as G)  

Theorem : A planar  t-atom  has  a  unique  planar   embedding. 
 By “flipping” the embedding of  K,  one   gets   a   different embed- 

ding  of  the  t-graph  G. (Flipping  is  like  turning  over  a   pancake.) 
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Examples  of  t-atoms : 
 

 

 

 

 

 

 

 

 

                not  planar 
             (as t-atom;  

                                                                      the  graph  is  planar). 
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Circular composition  satisfies some laws  (circular  associativity). 

Graphs  and  not  trees, represent  “normal  forms”  of  terms. 
 

 

 

 

 

 

 

 

 
 

 Circular  composition       e1,e2,e3,e4 (G1, G2, G3, G4) defined as  

    ((G1    e1,e2 G2)     e2,e3 G3)     e3,e4 G4 
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Two vertices belong to an atom    they are not separated  

by  an  “edge-cut”  of  2  edges. 
 

 

 
 

The  quotient  graph  is  a  cactus :  
It  defines  the   

atomic   decomposition. 
 

 

Def. of  cactus : The  2-connected  components  are  circuits.   

Equiv. :  for all  x,y,  there  is  a  unique  path  from  x  to  y 
           (the  directed  version of  one  characterization of undirected  trees). 
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 The  Tutte  decomposition   of   a   2-connected  graph: 
 

 

 

 

 

 

 

 

 

 

 

 

 The  blocks  have  vertex sets {c,d}, {a,b,i,j,k}, {e,f,g,h}, {l,m,n}. 
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Atoms  determined  from  the  Tutte  decomposition 

-  u  and  v  are   separated   

at  block  B  by   { e, f } 
 

-  v  and  w  are  not  separated   

at  block  B  by  { e, f }  
 

An  atom  is  not  in general  a  

(subgraph  of  a)  block of  

the Tutte  decomposition. 
 

The  atomic  decomposition  can  

be  computed  in  linear  time   from   the  Tutte   decomposition. 
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What   about   undirected   graphs ? 
 

 The 2-edge connected graphs (equiv.: connected without bridges)   

are  those  having  a  strongly  connected orientation.  
 

 The  atomic  decomposition  is  (essentially)  invariant  under a 

change  of  strongly  connected  orientation. Because  so  are  the 

notions  of  separation  of  2  vertices  and   of  atom . 

 

G = H     e,f K        

 

Idea :  If  one  reverses  e,  one must also reverse f  to keep  a 

strongly  connected  orientation. 
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Application: Number  of  strongly  connected  (or of Eulerian 

orientations),  denoted  by   #(G).   

Fact:  

G = H     e,f K             #(G)  =  #(H) . #(K) / 2   
 

Hence  if  G  has  atoms  H1, ..., Hp,  then : 

              #(G)  =  #(H1).  ...  . #(Hp) / 2p-1   
 

oOo 

Relation  to  tree-width : 
 

twd(G)  =  Maximum  tree-width  of  the  atoms  of  G  
             (if  twd(G)  > 2) 
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Application  to  Gauss  multiwords 
 

1.  For multiword   W,  construct  the  t-graph  Gra(W).   
 

   Ex.:  Gra(Z)   for  

   Z = (abcd, akcbkd) 
 

 

 

 
 

2. Check  if  Gra(W)   is  planar ;   check  if  it is  a  t-atom. 
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 3. If  planar,  build  the atomic decomposition (trivial if atom). 
 

 4. Build  the  unique  planar embedding  of  each  t-atom. 
  

 5. By  flipping  each  of  the  p t-atoms, we  get   the  2p-1   

     different   planar  embeddings  of  Gra(W).  

  

 All  these  tasks  can  be done by  linear  time  algorithms. 
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Gauss  multiwords  representing  tuples of nonoriented  curves 
 

 

 

 

 

  

 

 

 

 

 

 

The  multiword  (abcd,bc,ad)  is  ambiguous  for  oriented  curves  but 

not  for  nonoriented  ones. The   problem  comes  (only)  from   

small  curves:  those  with   2  intersections. 
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Both  orientations  of  

the  small  red  curve  

give  the  same    

multiword. 

 

 

 

W  =   (ab, w1, …, wn)      W’  =   (w’1, …, w’n)        (we remove a,b) 

 

                    v 

N tuples of nonoriented    N  planar  embeddings  of  Und(Gra(W’))  

 curves  for  W.  
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        General   case   for   nonoriented   curves 

 

Theorem: If   W  is  a    Gauss   multiword  of   the   form  

W = (ab,…,cd, w1,…,wn)      W’  =   (w’1, …, w’n)  (removing a,b,…,c,d), 

w1,…,wn   have  length  > 3                (actually > 4  by  planarity), 

if   W    has    q    small  components  :  ab,…,cd, 

then  Gra(W’)  has  p  t-atoms,  and 
 

there  are  2p-q-1  (q+n)-tuples  of  nonoriented  curves  with 

Gauss  multiword   W.    
Remark:  Each small component yields a  t-atom, whence  the 

number  p-q. 
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There  are   6   small   components   (in red).  

The  remaining  curves (in  black  and  blue)  represent  

Gra(W’)  that   has  7  atoms    64  different  11-tuples of curves 
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    Extensions  and  open questions                    
       

  Curves with multiple intersections, 

  Knot diagrams, 

  Decompositions based on circular composition  

of  directed graphs, 

  Gauss  multiwords  on  other surfaces, 

  Forbidden configurations  (minors ?) for  planar   

4-regular  graphs with transitions, 
 

Algorithmic  applications  ?   Thanks  for suggestions  ! 

Artistic  applications: Possible.  
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Find  grammar  for  the 

Gauss words   

of  kolams  ? 

 

 

 

 

 
 

 

 


